Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Spiro-oxindoles (Spiroindolones) via Oxidative Ring Contraction Approach

Author(s): Yogesh Brijwashi Sharma, Sattu Sravani and Abhijit Hazra*

Volume 27, Issue 15, 2023

Published on: 04 October, 2023

Page: [1336 - 1346] Pages: 11

DOI: 10.2174/0113852728253596230920115307

Price: $65

Abstract

Ring contraction reaction is among the several vital strategies in organic synthesis that can provide very diversified and useful molecular architecture. Among these strategies, the oxidative ring contraction is of special interest as it can give a more straightforward way of designing and synthesizing several complex natural products, specifically the oxindole alkaloids and some newer oxindole analogs. Even this methodology can be expanded to prepare dispiro-bisoxindoles-type compounds besides the dipolar cycloaddition methodology. In this review, we have tried to collect the reports on oxidative ring contraction reactions using several oxidants, like tert-Butyl hypochlorite, oxaziridine, dimethyldioxirane, N-bromosuccinimide, etc., in different reaction conditions for the synthesis of spiro-oxindole natural products as well as newer synthetic analogs.

Graphical Abstract

[1]
Moss, G.P. Extension and revision of the nomenclature for spiro compounds. Pure Appl. Chem., 1999, 71(3), 531-558.
[http://dx.doi.org/10.1351/pac199971030531]
[2]
Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry, 2nd ed; Oxford University Press: Oxford, UK, 2012.
[3]
Zheng, Y.J.; Tice, C.M. The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin. Drug Discov., 2016, 11(9), 831-834.
[http://dx.doi.org/10.1080/17460441.2016.1195367] [PMID: 27233084]
[4]
Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett., 2014, 24(16), 3673-3682.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.081] [PMID: 25052427]
[5]
Chupakhin, E.; Babich, O.; Prosekov, A.; Asyakina, L.; Krasavin, M. Spirocyclic motifs in natural products. Molecules, 2019, 24(22), 4165.
[http://dx.doi.org/10.3390/molecules24224165] [PMID: 31744211]
[6]
Müller, G.; Berkenbosch, T.; Benningshof, J.C.J.; Stumpfe, D.; Bajorath, J. Charting biologically relevant spirocyclic compound space. Chemistry, 2017, 23(3), 703-710.
[http://dx.doi.org/10.1002/chem.201604714] [PMID: 27859909]
[7]
Dawange, M.A.; Urmode, T.D.; Khan, A.; Kusurkar, R.S. Acid catalyzed synthesis of spiroindolone scaffolds by iso‐pictet‐spengler spirocyclisation and evaluation of their antibacterial activity. ChemistrySelect, 2017, 2(8), 2552-2555.
[http://dx.doi.org/10.1002/slct.201700215]
[8]
Gholamzadeh, P. The pictet–spengler reaction: A powerful strategy for the synthesis of heterocycles. Adv. Heterocycl. Chem., 2019, 127, 153-226.
[http://dx.doi.org/10.1016/bs.aihch.2018.09.002]
[9]
Duce, S.; Pesciaioli, F.; Gramigna, L.; Bernardi, L.; Mazzanti, A.; Ricci, A.; Bartoli, G.; Bencivenni, G. An easy entry to optically active spiroindolinones: Chiral brønsted acid-catalysed pictet-spengler reactions of isatins. Adv. Synth. Catal., 2011, 353(6), 860-864.
[http://dx.doi.org/10.1002/adsc.201100050]
[10]
Alizadeh, A.; Mokhtari, J. Synthesis of spiro[indoline-3,4′-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine. Tetrahedron, 2013, 69(30), 6313-6316.
[http://dx.doi.org/10.1016/j.tet.2013.03.102]
[11]
Ryabukhin, S.V.; Panov, D.M.; Plaskon, A.S.; Tolmachev, A.A.; Smaliy, R.V. Application of chlorotrimethylsilane in Pictet-Spengler reaction. Monatsh. Chem., 2012, 143(11), 1507-1517.
[http://dx.doi.org/10.1007/s00706-012-0804-7]
[12]
Burm, B.E.A.; Gremmen, C.; Wanner, M.J.; Koomen, G.J. Synthesis of new bridged tetrahydro-β-carbolines and spiro-fused quinuclidines. Tetrahedron, 2001, 57(10), 2039-2049.
[http://dx.doi.org/10.1016/S0040-4020(01)00023-0]
[13]
Zhou, L.M.; Qu, R.Y.; Yang, G.F. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(5), 603-625.
[http://dx.doi.org/10.1080/17460441.2020.1733526] [PMID: 32106717]
[14]
Panda, S.S.; Jones, R.A.; Bachawala, P.; Mohapatra, P.P. Spirooxindoles as potential pharmacophores. Mini Rev. Med. Chem., 2017, 17(16), 1515-1536.
[PMID: 29056096]
[15]
Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem., 2012, 51, 79-91.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.024] [PMID: 22405285]
[16]
Bhupathi, R.S.; Madhu, B.; Reddy, C.V.R.; Devi, B.R.; Dubey, P.K. Ionic liquid mediated green synthesis of spirooxindoles from N-methyl quinolones and their anti bacterial activity. J. Heterocycl. Chem., 2017, 54(4), 2326-2332.
[http://dx.doi.org/10.1002/jhet.2821]
[17]
Sun, Y.; Liu, J.; Jiang, X.; Sun, T.; Liu, L.; Zhang, X.; Ding, S.; Li, J.; Zhuang, Y.; Wang, Y.; Wang, R. One-Step synthesis of chiral oxindole-type analogs with potent anti-inflammatory and analgesic activities. Sci. Rep., 2015, 5(1), 13699.
[http://dx.doi.org/10.1038/srep13699] [PMID: 26324065]
[18]
Lu, J.; McEachern, D.; Li, S.; Ellis, M.J.; Wang, S. Reactivation of p53 by MDM2 inhibitor MI-77301 for the treatment of endocrine-resistant breast cancer. Mol. Cancer Ther., 2016, 15(12), 2887-2893.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0028] [PMID: 27765850]
[19]
Wang, S.; Sun, W.; Zhao, Y.; McEachern, D.; Meaux, I.; Barriere, C.; Stuckey, J.A.; Meagher, J.L.; Bai, L. SAR405838: An optimized MDM2–p53 interaction inhibitor that induces complete and durable tumor regression. Cancer Res., 2014, 74, 5855-5865.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0799] [PMID: 25145672]
[20]
Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem., 2013, 56(13), 5553-5561.
[http://dx.doi.org/10.1021/jm4005708] [PMID: 23786219]
[21]
Little, P.R.; Hodge, A.; Maeder, S.J.; Wirtherle, N.C.; Nicholas, D.R.; Cox, G.G.; Conder, G.A. Efficacy of a combined oral formulation of derquantel–abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains. Vet. Parasitol., 2011, 181(2-4), 180-193.
[http://dx.doi.org/10.1016/j.vetpar.2011.05.008] [PMID: 21684691]
[22]
Stratmann, K.; Moore, R.E.; Bonjouklian, R.; Deeter, J.B.; Patterson, G.M.L.; Shaffer, S.; Smith, C.D.; Smitka, T.A. Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphonwelwitschii and Westiellaintricata. Relationship to fischerindoles and hapalindoles. J. Am. Chem. Soc., 1994, 116(22), 9935-9942.
[http://dx.doi.org/10.1021/ja00101a015]
[23]
Rottmann, M.; McNamara, C.; Yeung, B.K.S.; Lee, M.C.S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; Cohen, S.B.; Spencer, K.R.; González-Páez, G.E.; Lakshminarayana, S.B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E.K.; Beck, H.P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T.H.; Fidock, D.A.; Winzeler, E.A.; Diagana, T.T. Spiroindolones, a potent compound class for the treatment of malaria. Science, 2010, 329(5996), 1175-1180.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[24]
Ye, N.; Chen, H.; Wold, E.A.; Shi, P.Y.; Zhou, J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect. Dis., 2016, 2(6), 382-392.
[http://dx.doi.org/10.1021/acsinfecdis.6b00041] [PMID: 27627626]
[25]
Acosta-Quiroga, K.; Rojas-Peña, C.; Nerio, L.S.; Gutiérrez, M.; Polo-Cuadrado, E. Spirocyclic derivatives as antioxidants: A review. RSC Adv., 2021, 11(36), 21926-21954.
[http://dx.doi.org/10.1039/D1RA01170G] [PMID: 35480788]
[26]
Comoy, C.; Marot, C.; Podona, T.; Baudin, M-L.; Morin-Allory, L.; Guillaumet, G.; Pfeiffer, B.; Caignerd, D.H.; Renard, P.; Rettori, M.C.; Adam, G.; Guardiola-Lemaître, B. 3-Amino-3,4-dihydro-2H-1-benzopyran derivatives as 5-HT1AReceptor ligands and potential anxiolytic agents. 2. synthesis and quantitative structure−activity relationship studies of spiro. J. Med. Chem., 1996, 39, 4285-4298.
[http://dx.doi.org/10.1021/jm950861w] [PMID: 8863806]
[27]
Zhu, H.; Gao, H.; Ji, Y.; Zhou, Q.; Du, Z.; Tian, L.; Jiang, Y.; Yao, K.; Zhou, Z. Targeting p53–MDM2 interaction by small-molecule inhibitors: Learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol., 2022, 15(1), 91.
[http://dx.doi.org/10.1186/s13045-022-01314-3] [PMID: 35831864]
[28]
Zhang, Q.; Zeng, S.X.; Lu, H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell. Biochem., 2014, 85, 281-319.
[http://dx.doi.org/10.1007/978-94-017-9211-0_16] [PMID: 25201201]
[29]
Nag, S.; Zhang, X.; Srivenugopal, K.S.; Wang, M.H.; Wang, W.; Zhang, R. Targeting MDM2-p53 interaction for cancer therapy: Are we there yet? Curr. Med. Chem., 2014, 21(5), 553-574.
[http://dx.doi.org/10.2174/09298673113206660325] [PMID: 24180275]
[30]
Zhao, Y.; Aguilar, A.; Bernard, D.; Wang, S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J. Med. Chem., 2015, 58(3), 1038-1052.
[http://dx.doi.org/10.1021/jm501092z] [PMID: 25396320]
[31]
Wang, W.; Hu, Y. Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med. Res. Rev., 2012, 32(6), 1159-1196.
[http://dx.doi.org/10.1002/med.20236] [PMID: 23059763]
[32]
Zhou, F.; Liu, Y.L.; Zhou, J. Catalytic Asymmetric synthesis of oxindoles bearing a tetra substitute stereo center at the C‐3 position. Adv. Synth. Catal., 2010, 352(9), 1381-1407.
[http://dx.doi.org/10.1002/adsc.201000161]
[33]
Hong, S.; Jung, M.; Park, Y.; Ha, M.W.; Park, C.; Lee, M.; Park, H. Efficient enantioselective total synthesis of (-)-horsfiline. Chemistry, 2013, 19(29), 9599-9605.
[http://dx.doi.org/10.1002/chem.201301008] [PMID: 23836402]
[34]
Mukaiyama, T.; Ogata, K.; Sato, I.; Hayashi, Y. Asymmetric organocatalyzed michael addition of nitromethane to a 2-oxoindoline-3-ylidene acetaldehyde and the three one-pot sequential synthesis of (-)-horsfiline and (-)-coerulescine. Chemistry, 2014, 20(42), 13583-13588.
[http://dx.doi.org/10.1002/chem.201403932] [PMID: 25155110]
[35]
Pellegrini, C.; Weber, M.; Borschberg, H.J. Total synthesis of (+)-elacomine and (?)-isoelacomine, two hitherto unnamed oxindole alkaloids fromelaeagnus commutata. Helv. Chim. Acta, 1996, 79(1), 151-168.
[http://dx.doi.org/10.1002/hlca.19960790116]
[36]
Miyake, F.Y.; Yakushijin, K.; Horne, D.A. Preparation and synthetic applications of 2-halotryptamines: Synthesis of elacomine and isoelacomine. Org. Lett., 2004, 6(5), 711-713.
[http://dx.doi.org/10.1021/ol030138x] [PMID: 14986956]
[37]
Kang, T.H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur. J. Pharmacol., 2002, 455(1), 27-34.
[http://dx.doi.org/10.1016/S0014-2999(02)02581-5] [PMID: 12433591]
[38]
Zhang, Z.; Zhang, W.; Kang, F.; Ip, F.C.F.; Ip, N.Y.; Tong, R. Asymmetric total syntheses of rhynchophylline and isorhynchophylline. J. Org. Chem., 2019, 84(17), 11359-11365.
[http://dx.doi.org/10.1021/acs.joc.9b01977] [PMID: 31416310]
[39]
Suchý, M.; Kutschy, P.; Monde, K.; Goto, H.; Harada, N.; Takasugi, M.; Dzurilla, M.; Balentová, E. Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)-(-)-spirobrassinin, and its oxazoline analog. J. Org. Chem., 2001, 66(11), 3940-3947.
[http://dx.doi.org/10.1021/jo0155052] [PMID: 11375018]
[40]
Budovská, M.; Kutschy, P.; Kožár, T.; Gondová, T.; Petrovaj, J. Synthesis of spiroindoline phytoalexin (S)-(−)-spirobrassinin and its unnatural (R)-(+)-enantiomer. Tetrahedron, 2013, 69(3), 1092-1104.
[http://dx.doi.org/10.1016/j.tet.2012.11.067]
[41]
Yu, Q.; Guo, P.; Jian, J.; Chen, Y.; Xu, J. Nine-step total synthesis of (−)-strychnofoline. Chem. Commun., 2018, 54(9), 1125-1128.
[http://dx.doi.org/10.1039/C7CC08938D] [PMID: 29334094]
[42]
Marti, C.; Carreira, E.M. Total synthesis of (-)-spirotryprostatin B: Synthesis and related studies. J. Am. Chem. Soc., 2005, 127(32), 11505-11515.
[http://dx.doi.org/10.1021/ja0518880] [PMID: 16089481]
[43]
Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev., 2012, 112(7), 3641-3716.
[http://dx.doi.org/10.1021/cr200398y] [PMID: 22575049]
[44]
Reisman, S.E.; Ready, J.M.; Hasuoka, A.; Smith, C.J.; Wood, J.L. Total synthesis of (+/-)-welwitindolinone a isonitrile. J. Am. Chem. Soc., 2006, 128(5), 1448-1449.
[http://dx.doi.org/10.1021/ja057640s] [PMID: 16448105]
[45]
Lerchner, A.; Carreira, E.M. First total synthesis of (+/-)-strychnofoline via a highly selective ring-expansion reaction. J. Am. Chem. Soc., 2002, 124(50), 14826-14827.
[http://dx.doi.org/10.1021/ja027906k] [PMID: 12475306]
[46]
Cui, C.B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron, 1996, 52(39), 12651-12666.
[http://dx.doi.org/10.1016/0040-4020(96)00737-5]
[47]
Cheenpracha, S.; Ritthiwigrom, T.; Laphookhieo, S. Alstoniaphyllines A-C, unusual nitrogenous derivatives from the bark of Alstonia macrophylla. J. Nat. Prod., 2013, 76(4), 723-726.
[http://dx.doi.org/10.1021/np3006937] [PMID: 23806072]
[48]
Wearing, X.Z.; Cook, J.M. Enantiospecific, stereospecific total synthesis of the oxindole alkaloid alstonisine. Org. Lett., 2002, 4(24), 4237-4240.
[http://dx.doi.org/10.1021/ol020170b] [PMID: 12443067]
[49]
Smith, L.I. Aliphatic diazo compounds, nitrones, and structurally analogous compounds. Systems capable of undergoing 1,3-additions. Chem. Rev., 1938, 23(2), 193-285.
[http://dx.doi.org/10.1021/cr60075a001]
[50]
Ball-Jones, N.R.; Badillo, J.J.; Franz, A.K. Strategies for the enantioselective synthesis of spirooxindoles. Org. Biomol. Chem., 2012, 10(27), 5165-5181.
[http://dx.doi.org/10.1039/c2ob25184a] [PMID: 22581310]
[51]
Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Enantioselective michael/cyclization reaction sequence: Scaffold-inspired synthesis of spirooxindoles with multiple stereocenters. Angew. Chem. Int. Ed., 2011, 50(39), 9124-9127.
[http://dx.doi.org/10.1002/anie.201104216] [PMID: 21919145]
[52]
Bharitkar, Y.P.; Das, M.; Kumari, N.; Kumari, M.P.; Hazra, A.; Bhayye, S.S.; Natarajan, R.; Shah, S.; Chatterjee, S.; Mondal, N.B. Synthesis of bis-pyrrolizidine-fused dispiro-oxindole analogues of curcumin via one-pot azomethine ylide cycloaddition: Experimental and computational approach toward regio- and diastereoselection. Org. Lett., 2015, 17(18), 4440-4443.
[http://dx.doi.org/10.1021/acs.orglett.5b02085] [PMID: 26331906]
[53]
Hazra, A.; Bharitkar, Y.P.; Chakraborty, D.; Mondal, S.K.; Singal, N.; Mondal, S.; Maity, A.; Paira, R.; Banerjee, S.; Mondal, N.B. Regio- and stereoselective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides via 1,3-dipolar cycloaddition reaction under microwave irradiation. ACS Comb. Sci., 2013, 15(1), 41-48.
[http://dx.doi.org/10.1021/co3001154] [PMID: 23167870]
[54]
Bharitkar, Y.P.; Kanhar, S.; Suneel, N.; Mondal, S.K.; Hazra, A.; Mondal, N.B. Chemistry of withaferin-A: Chemo, regio, and stereoselective synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A via one-pot three-component [3+2] azomethine ylide cycloaddition and their cytotoxicity evaluation. Mol. Divers., 2015, 19(2), 251-261.
[http://dx.doi.org/10.1007/s11030-015-9574-6] [PMID: 25749788]
[55]
Singh, M.; Amrutha Krishnan, A.V.; Mandal, R.; Samanta, J.; Ravichandiran, V.; Natarajan, R.; Bharitkar, Y.P.; Hazra, A. Azomethine ylide cycloaddition: A versatile tool for preparing novel pyrrolizidino-spiro-oxindolo hybrids of the doubly conjugated alkamide piperine. Mol. Divers., 2020, 24(3), 627-639.
[http://dx.doi.org/10.1007/s11030-019-09969-w] [PMID: 31183672]
[56]
Singh, M. Hirlekar, B.U.; Mondal, S.; and, S.; Dhaked, D.K.; Ravichandran, V.; Hazra, A.; Bharitkar, Y.P. Isolation of phytochemicals from Dolichandrone atrovirens followed by semi-synthetic modification of inside via azomethine ylide cycloaddition; computational approach towards chemo-selection. Nat. Prod. Res., 2022, 37(13), 2215-2224.
[http://dx.doi.org/10.1080/14786419.2022.2037084] [PMID: 35129017]
[57]
Sharma, Y.B.; Singh, R.; Singh, C.P.; Bharitkar, Y.P.; Hazra, A. Design, synthesis and cytotoxicity evaluation of tetrahydro β‐carboline‐attached spiroin-dolones/spiroacenapthylene by using lemon juice as a green biocatalyst system. ChemistrySelect, 2022, 7(14), e202200707.
[http://dx.doi.org/10.1002/slct.202200707]
[58]
Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C.F. III Organocatalytic asymmetric assembly reactions: Synthesis of spirooxindoles via organocascade strategies. ACS Catal., 2014, 4(3), 743-762.
[http://dx.doi.org/10.1021/cs401172r]
[59]
Xia, M.; Ma, R.Z. Recent progress on routes to spirooxindole systems derived from isatin. J. Heterocycl. Chem., 2014, 51(3), 539-554.
[http://dx.doi.org/10.1002/jhet.1114]
[60]
Sakla, A.P.; Kansal, P.; Shankaraiah, N. Syntheses and applications of spirocyclopropyl oxindoles: A decade review. Eur. J. Org. Chem., 2021, 2021(5), 757-772.
[http://dx.doi.org/10.1002/ejoc.202001261]
[61]
Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Advances, 2021, 11(13), 7146-7179.
[http://dx.doi.org/10.1039/D1RA00139F] [PMID: 35423236]
[62]
Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A versatile biologically active heterocyclic scaffold. Molecules, 2023, 28(2), 618.
[http://dx.doi.org/10.3390/molecules28020618] [PMID: 36677676]
[63]
Silva, L.F., Jr Construction of cyclopentyl units by ring contraction reactions. Tetrahedron, 2002, 58(45), 9137-9161.
[http://dx.doi.org/10.1016/S0040-4020(02)00990-0]
[64]
Chen, P.; Yang, H.; Zhang, H.; Chen, W.; Zhang, Z.; Zhang, J.; Li, H.; Wang, X.; Xie, X.; She, X. Total synthesis of (−)-gardmultimine A. Org. Lett., 2020, 22(5), 2022-2025.
[http://dx.doi.org/10.1021/acs.orglett.0c00399] [PMID: 32096647]
[65]
Cushing, T.D.; Sanz-Cervera, J.F.; Williams, R.M. Stereocontrolled total synthesis of (+)-paraherquamide B. J. Am. Chem. Soc., 1996, 118(3), 557-579.
[http://dx.doi.org/10.1021/ja952666c]
[66]
Yu, P.; Cook, J.M. Diastereospecific synthesis of ketooxindoles. Potential intermediates for the synthesis of alstonisine as well as for Voachalotine related oxindole alkaloids. Tetrahedron Lett., 1997, 38(51), 8799-8802.
[http://dx.doi.org/10.1016/S0040-4039(97)10420-8]
[67]
Artman, G.D., III; Grubbs, A.W.; Williams, R.M. Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J. Am. Chem. Soc., 2007, 129(19), 6336-6342.
[http://dx.doi.org/10.1021/ja070259i] [PMID: 17455936]
[68]
Greshock, T.J.; Williams, R.M. Improved biomimetic total synthesis of D,L-stephacidin A. Org. Lett., 2007, 9(21), 4255-4258.
[http://dx.doi.org/10.1021/ol701845t] [PMID: 17854197]
[69]
Zhang, B.; Zheng, W.; Wang, X.; Sun, D.; Li, C. Total synthesis of notoamides F, I, and R and sclerotiamide. Angew. Chem. Int. Ed., 2016, 55(35), 10435-10438.
[http://dx.doi.org/10.1002/anie.201604754] [PMID: 27443750]
[70]
Whyte, A.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Sclerotiamide: A new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J. Nat. Prod., 1996, 59(11), 1093-1095.
[http://dx.doi.org/10.1021/np960607m] [PMID: 8946752]
[71]
Khusnutdinova, E.F.; Kazakova, O.B.; Lobov, A.N.; Kukovinets, O.S.; Suponitsky, K.Y.; Meyers, C.B.; Prichard, M.N. Synthesis of A-ring quinolones, nine-membered oxolactams and spiroindoles by oxidative transformations of 2,3-indolotriterpenoids. Org. Biomol. Chem., 2019, 17(3), 585-597.
[http://dx.doi.org/10.1039/C8OB02624F] [PMID: 30574983]
[72]
Adam, W.; Ahrweiler, M.; Peters, K.; Schmiedeskamp, B. Oxidation of N-Acylindoles by dimethyldioxirane and singlet oxygen: Substituent effects on thermally persistent indole epoxides and dioxetanes. J. Org. Chem., 1994, 59(10), 2733-2739.
[http://dx.doi.org/10.1021/jo00089a016]
[73]
Zhang, X.; Foote, C.S. Dimethyldioxirane oxidation of indole derivatives. Formation of novel indole-2,3-epoxides and a versatile synthetic route to indolinones and indolines. J. Am. Chem. Soc., 1993, 115(19), 8867-8868.
[http://dx.doi.org/10.1021/ja00072a061]
[74]
Mercado-Marin, E.V.; Sarpong, R. Unified approach to prenylated indole alkaloids: Total syntheses of (−)-17-hydroxy-citrinalin B, (+)-stephacidin A, and (+)-notoamide I. Chem. Sci., 2015, 6(8), 5048-5052.
[http://dx.doi.org/10.1039/C5SC01977J] [PMID: 26417428]
[75]
Mercado-Marin, E.V.; Garcia-Reynaga, P.; Romminger, S.; Pimenta, E.F.; Romney, D.K.; Lodewyk, M.W.; Williams, D.E.; Andersen, R.J.; Miller, S.J.; Tantillo, D.J.; Berlinck, R.G.S.; Sarpong, R. Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature, 2014, 509(7500), 318-324.
[http://dx.doi.org/10.1038/nature13273] [PMID: 24828190]
[76]
Yoshida, K.; Goto, J.; Ban, Y. Oxidation of cycloalkan[b]indoles with iodine pentoxide(I2O5). Chem. Pharm. Bull., 1987, 35(12), 4700-4704.
[http://dx.doi.org/10.1248/cpb.35.4700]
[77]
Dobler, M.; Borschberg, H.J.; Azerad, R. Microbial hydroxylation of some synthetic aristotelia alkaloids. Tetrahedron Asymmetry, 1995, 6(1), 213-220.
[http://dx.doi.org/10.1016/0957-4166(94)00377-N]
[78]
Pellegrini, C.; Strässler, C.; Weber, M.; Borschberg, H.J. Synthesis of the oxindole alkaloid (−)-horsfiline. Tetrahedron Asymmetry, 1994, 5(10), 1979-1992.
[http://dx.doi.org/10.1016/S0957-4166(00)86273-4]
[79]
Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total synthesis of spirotryprostatin A, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc., 1999, 121(10), 2147-2155.
[http://dx.doi.org/10.1021/ja983788i]
[80]
Hati, S.; Tripathy, S.; Dutta, P.K.; Agarwal, R.; Srinivasan, R.; Singh, A.; Singh, S.; Sen, S. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification. Sci. Rep., 2016, 6(1), 32213.
[http://dx.doi.org/10.1038/srep32213] [PMID: 27573798]
[81]
Jossang, A.; Jossang, P.; Hadi, H.A.; Sevenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from Horsfieldia superba. J. Org. Chem., 1991, 56(23), 6527-6530.
[http://dx.doi.org/10.1021/jo00023a016]
[82]
Peterson, A.C.; Cook, J.M. Studies on the enantiospecific synthesis of oxindole alkaloids. Tetrahedron Lett., 1994, 35(17), 2651-2654.
[http://dx.doi.org/10.1016/S0040-4039(00)76997-8]
[83]
Sathish, M.; Sakla, A.P.; Nachtigall, F.M.; Santos, L.S.; Shankaraiah, N. TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: Facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline. RSC Adv., 2021, 11(27), 16537-16546.
[http://dx.doi.org/10.1039/D1RA02381K] [PMID: 35479130]
[84]
Zheng, Y.; Cheung, Y.T.; Liang, L.; Qiu, H.; Zhang, L.; Tsang, A.; Chen, Q.; Tong, R. Electrochemical oxidative rearrangement of tetrahydro-β-carbolines in a zero-gap flow cell. Chem. Sci., 2022, 13(35), 10479-10485.
[http://dx.doi.org/10.1039/D2SC03951F] [PMID: 36277623]
[85]
Liu, D.; Xu, H.C. Electrochemical rearrangement of indoles to spirooxindoles in continuous flow. Eur. J. Org. Chem., 2023, 26(1), e202200987.
[http://dx.doi.org/10.1002/ejoc.202200987]
[86]
Zhao, G.; Liang, L.; Wang, E.; Lou, S.; Qi, R.; Tong, R. Fenton chemistry enables the catalytic oxidative rearrangement of indoles using hydrogen peroxide. Green Chem., 2021, 23(6), 2300-2307.
[http://dx.doi.org/10.1039/D1GC00297J]
[87]
Wang, J.; Chen, Y.; Du, W.; Chen, N.; Fu, K.; He, Q.; Shao, L. Green oxidative rearrangement of indoles using halide catalyst and hydrogen peroxide. Tetrahedron, 2022, 127, 133101.
[http://dx.doi.org/10.1016/j.tet.2022.133101]
[88]
Shi, J.; Wang, R.A.; Wu, W.; Song, J.R.; Chi, Q.; Pan, W.D.; Ren, H. Copper-catalyzed aerobic selective oxidation of tetrahydrocarbolines. Org. Lett., 2022, 24(18), 3358-3362.
[http://dx.doi.org/10.1021/acs.orglett.2c01059] [PMID: 35503733]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy