Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Lipase Catalyzed Synthesis of D-xylose-based Biosurfactants and their Surface Properties

Author(s): Fatma Loulou* and Chahra Bidjou-Haiour

Volume 27, Issue 15, 2023

Published on: 18 October, 2023

Page: [1357 - 1364] Pages: 8

DOI: 10.2174/0113852728269186231009103910

Price: $65

Abstract

Synthesis of a homologous series of 1-O-acyl xylose esters with long and very long acyl chains derived from fatty acids was performed via enzymatic esterification in one step using Candida antarctica lipase B. The effect of fatty acid chain length on the activity of the lipase was evaluated. Subsequently, the surface properties of the obtained products have been determined such as hydrophilic-lipophilic balance, critical micellar concentration, and surfactant packing parameter. Foaming and emulsifying ability were also measured. The highest conversion was obtained by using docosanoic acid as an acylant agent (67.50%). The surface tension values are between 25 mN.m-1 for 1-O-octadecanoyl-D-xylopyranose and 47,17 mN.m-1 for 1-O-docosanoyl-D-xylopyranose. The emulsifying abilities of all esters exceeded 80%. It was found that the surface properties of the surfactants are greatly affected by the fatty acid chain length. The surface parameters results revealed that the prepared compounds have a good surface activity. Additionally, these bio-surfactants display good emulsifying ability.

Graphical Abstract

[1]
Habulin, M.; Šabeder, S.; Knez, Ž. Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity. J. Supercrit. Fluids, 2008, 45(3), 338-345.
[http://dx.doi.org/10.1016/j.supflu.2008.01.002]
[2]
Zhao, K.H.; Cai, Y.Z.; Lin, X.S.; Xiong, J.; Halling, P.; Yang, Z. Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules, 2016, 21(10), 1294.
[http://dx.doi.org/10.3390/molecules21101294] [PMID: 27689970]
[3]
Lee, S-M.; Wagh, A.; Sandhu, G.; Walsh, M.K. Emulsification properties of lactose fatty acid esters. Food Nutr. Sci., 2018, 9(12), 1341-1357.
[http://dx.doi.org/10.4236/fns.2018.912096]
[4]
Shen, Y.; Sun, Y.; Sang, Z.; Sun, C.; Dai, Y.; Deng, Y. Synthesis, characterization, antibacterial and antifungal evaluation of novel monosaccharide esters. Molecules, 2012, 17(7), 8661-8673.
[http://dx.doi.org/10.3390/molecules17078661] [PMID: 22825619]
[5]
Zhao, L.; Zhang, H.; Hao, T.; Li, S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem., 2015, 187(187), 370-377.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.108] [PMID: 25977039]
[6]
Ferrer, M.; Perez, G.; Plou, F.J.; Castell, J.V.; Ballesteros, A. Antitumour activity of fatty acid maltotriose esters obtained by enzymatic synthesis. Biotechnol. Appl. Biochem., 2005, 42(Pt 1), 35-9.
[7]
Zhang, X.; Song, F.; Taxipalati, M.; Wei, W.; Feng, F. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters. PLoS One, 2014, 9(12), e114845.
[http://dx.doi.org/10.1371/journal.pone.0114845] [PMID: 25531369]
[8]
Ren, K.; Lamsal, B.P. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions. Food Chem., 2017, 214(214), 556-563.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.031] [PMID: 27507510]
[9]
Husband, F.A.; Sarney, D.B.; Barnard, M.J.; Wilde, P.J. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations. Food Hydrocoll., 1998, 12(2), 237-244.
[http://dx.doi.org/10.1016/S0268-005X(98)00036-8]
[10]
Phanuphong, C.; Areeya, J.; Ninnapat, T.; Sarita, S.; Punyawatt, P. Green synthesis optimization of glucose palm oleate and its potential use as natural surfactant in cosmetic emulsion. Cosmetics, 2022, 4(4), 76.
[http://dx.doi.org/10.3390/cosmetics9040076]
[11]
Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed., 2019, 45(12), 6021-6041.
[http://dx.doi.org/10.1007/s11164-019-04017-6]
[12]
Das, B.; Kumar, B.; Begum, W.; Bhattarai, A.; Mondal, M.H.; Saha, B. Comprehensive review on applications of surfactants in vaccine formulation, therapeutic and cosmetic pharmacy and prevention of pulmonary failure due to COVID-19. Chem. Africa, 2022, 5(3), 459-480.
[http://dx.doi.org/10.1007/s42250-022-00345-0]
[13]
Zago, E.; Joly, N.; Chaveriat, L.; Lequart, V.; Martin, P. Enzymatic synthesis of amphiphilic carbohydrate esters: Influence of physicochemical and biochemical parameters. Biotechnol. Rep. (Amst.), 2021, 30(30), e00631.
[http://dx.doi.org/10.1016/j.btre.2021.e00631] [PMID: 34094891]
[14]
Abdulmalek, E.; Hamidon, N.F.; Abdul Rahman, M.B. Optimization and characterization of lipase catalysed synthesis of xylose caproate ester in organic solvents. J. Mol. Catal., B Enzym., 2016, 132(132), 1-4.
[http://dx.doi.org/10.1016/j.molcatb.2016.06.010]
[15]
Woudenberg-van Oosterom, M.; van Rantwijk, F.; Sheldon, R.A. Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol. Bioeng., 1996, 49(3), 328-333.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19960205)49:3<328:AID-BIT11>3.0.CO;2-A] [PMID: 18623584]
[16]
Piao, J.; Takase, K.; Adachi, S. Enzymatic synthesis of myristoyl disaccharides and their surface activity. J. Sci. Food Agric., 2007, 87(9), 1743-1747.
[http://dx.doi.org/10.1002/jsfa.2909]
[17]
Poojari, Y.; Clarson, S.J. Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal. Agric. Biotechnol., 2013, 2(1), 7-11.
[http://dx.doi.org/10.1016/j.bcab.2012.10.002]
[18]
Shin, M.; Seo, J.; Baek, Y.; Lee, T.; Jang, M.; Park, C. Novel and efficient synthesis of phenethyl formate via enzymatic esterification of formic acid. Biomolecules, 2020, 10(1), 70.
[http://dx.doi.org/10.3390/biom10010070] [PMID: 31906270]
[19]
Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Condens. Matter Phys., 2015, 2015, 1-22.
[http://dx.doi.org/10.1155/2015/151683]
[20]
Zhao, S.; Yuan, H.Z.; Yu, J.Y.; Du, Y.R. Hydrocarbon chain packing in the micellar core of surfactants studied by 1 H NMR relaxation. Colloid Polym. Sci., 1998, 276(12), 1125-1130.
[http://dx.doi.org/10.1007/s003960050354]
[21]
Garofalakis, G.; Murray, B.S.; Sarney, D.B. Surface activity and critical aggregation concentration of pure sugar esters with different sugar headgroups. J. Colloid Interface Sci., 2000, 229(2), 391-398.
[http://dx.doi.org/10.1006/jcis.2000.7035] [PMID: 10985817]
[22]
Varga, I.; Mészáros, R.; Stubenrauch, C.; Gilányi, T. Adsorption of sugar surfactants at the air/water interface. J. Colloid Interface Sci., 2012, 379(1), 78-83.
[http://dx.doi.org/10.1016/j.jcis.2012.04.053] [PMID: 22609189]
[23]
Yamashita, Y.; Sakamoto, Y. Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant. In: Encyclopedia of Biocolloid and Biointerface Science 2V Set;; , 2016; pp. 570-574.
[http://dx.doi.org/10.1002/9781119075691.ch45]
[24]
Rodríguez-Abreu, C. On the relationships between the hydrophilic–lipophilic balance and the nanoarchitecture of nonionic surfactant systems. J. Surfactants Deterg., 2019, 22(5), 1001-1010.
[http://dx.doi.org/10.1002/jsde.12258]
[25]
Ricciardi, L.; Verboom, W.; Lange, J.P.; Huskens, J. Selective extraction of xylose from acidic hydrolysate–from fundamentals to process. ACS Sustain. Chem. Eng., 2021, 9(19), 6632-6638.
[http://dx.doi.org/10.1021/acssuschemeng.1c00167]
[26]
Ashby, R.D. Xylose utilization for polyhydroxyalkanoate biosynthesis. sustainability & green polymer chemistry. In: Biocatalysis and Biobased Polymers;; , 2020; 2, pp. 125-143.
[http://dx.doi.org/10.1021/bk-2020-1373.ch007]
[27]
Klai, N. Synthèse des esters et des éthers du D-Xylose amphiphiles. Evaluation physico-chimique de leurs propriétés tensioactives, PhD Thesis, UNIVERSITÉ BADJI MOKHTAR, Annaba,Algérie, , 2016. Available from: https://biblio.univ-annaba.dz/wp-content/uploads/2019/07/These-Klai-Nadia.pdf
[28]
Patil, S.P.; Jadhav, S.N.; Rode, C.V.; Shejwal, R.V.; Kumbhar, A.S. Bio-surfactant: a green and environmentally benign reaction medium for ligand-free Pd-catalyzed Mizoroki–Heck cross-coupling reaction in water. In: Transition Metal Chem; , 2020.
[http://dx.doi.org/10.1007/s11243-020-00392-x]
[29]
Šabeder, S.; Habulin, M.; Knez, Ž. Lipase-catalyzed synthesis of fatty acid fructose esters. J. Food Eng., 2006, 77(4), 880-886.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.08.016]
[30]
Cao, L.; Fischer, A.; Bornscheuer, U.T.; Schmid, R.D. Lipase catalyzed solid phase synthesis of sugar fatty acid ester. Biocatal. Biotransform., 1996, 14(4), 269-283.
[http://dx.doi.org/10.3109/10242429609110280]
[31]
Höck, H.; Engel, S.; Weingarten, S.; Keul, H.; Schwaneberg, U.; Möller, M.; Bocola, M. Comparison of Candida antarctica lipase b variants for conversion of ε-caprolactone in aqueous medium-part 2. Polymers (Basel), 2018, 10(5), 524.
[http://dx.doi.org/10.3390/polym10050524] [PMID: 30966558]
[32]
Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci., 2009, 147-148(147), 237-250.
[http://dx.doi.org/10.1016/j.cis.2008.06.001] [PMID: 18691682]
[33]
Sarda, L.; Desnuelle, P. Action de la lipase pancréatique sur les esters en émulsion. Biochim. Biophys. Acta, 1958, 30(3), 513-521.
[http://dx.doi.org/10.1016/0006-3002(58)90097-0] [PMID: 13618257]
[34]
Marciello, M.; Filice, M.; Palomo, J.M. Different strategies to enhance the activity of lipase catalysts. Catal. Sci. Technol., 2012, 2(8), 1531-1543.
[http://dx.doi.org/10.1039/c2cy20125a]
[35]
Zisis, T.; Freddolino, P.L.; Turunen, P.; van Teeseling, M.C.F.; Rowan, A.E.; Blank, K.G. Interfacial activation of Candida antarctica lipase B: Combined evidence from experiment and simulation. Biochemistry, 2015, 54(38), 5969-5979.
[http://dx.doi.org/10.1021/acs.biochem.5b00586] [PMID: 26346632]
[36]
Bidjou-Haiour, C.; Klai, N. Lipase catalyzed synthesis of fatty acid xylose esters and their surfactant properties. Asian J. Chem., 2013, 25(8), 4347-4350.
[http://dx.doi.org/10.14233/ajchem.2013.13973]
[37]
Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 1959, 14, 1-63.
[http://dx.doi.org/10.1016/S0065-3233(08)60608-7] [PMID: 14404936]
[38]
Sar, P.; Saha, B. Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Adv. Colloid Interface Sci., 2020, 284, 102241.
[http://dx.doi.org/10.1016/j.cis.2020.102241] [PMID: 32927360]
[39]
Soultani, S.; Ognier, S.; Engasser, J.M.; Ghoul, M. Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids Surf. A Physicochem. Eng. Asp., 2003, 227(1-3), 35-44.
[http://dx.doi.org/10.1016/S0927-7757(03)00360-1]
[40]
Smit, B.; Schlijper, A.G.; Rupert, L.A.M.; Van Os, N.M. Effects of chain length of surfactants on the interfacial tension: molecular dynamics simulations and experiments. J. Phys. Chem., 1990, 94(18), 6933-6935.
[http://dx.doi.org/10.1021/j100381a003]
[41]
Groenendijk, D.J.; van Wunnik, J.N.M. The impact of micelle formation on surfactant adsorption–desorption. ACS Omega, 2021, 6(3), 2248-2254.
[http://dx.doi.org/10.1021/acsomega.0c05532] [PMID: 33521464]
[42]
Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. II, 1976, 72(2), 1525.
[http://dx.doi.org/10.1039/f29767201525]
[43]
van Kempen, S.E.H.J.; Schols, H.A.; van der Linden, E.; Sagis, L.M.C. Effect of variations in the fatty acid chain of oligofructose fatty acid esters on their foaming functionality. Food Biophys., 2013, (40), 22-29.
[http://dx.doi.org/10.1007/s11483-013-9324-1]
[44]
Griffin, W.C. Classification of surface-active agents by “HLB”. J. Soc. Cosmet. Chem., 1949, (1), 311-326.
[45]
Setiati, R.; Siregar, S.; Marhaendrajana, T.; Wahyuningrum, D. Challenge sodium lignosulfonate surfactants synthesized from bagasse as an injection fluid based on hydrophil liphophilic balance. IOP Conf. Series Mater. Sci. Eng., 2018, 434(434), 012083.
[http://dx.doi.org/10.1088/1757-899X/434/1/012083]
[46]
Leitgeb, M.; Knez, Ž. The influence of water on the synthesis of n-butyl oleate by immobilized Mucor miehei lipase. J. Am. Oil Chem. Soc., 1990, 67(11), 775-778.
[http://dx.doi.org/10.1007/BF02540490]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy