Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Identifying a Novel Eight-NK Cell-related Gene Signature for Ovarian Cancer Prognosis Prediction

Author(s): Nan Li, Kai Yu, Delun Huang, Hui Zhou* and Dingyuan Zeng*

Volume 31, Issue 12, 2024

Published on: 06 September, 2023

Page: [1578 - 1594] Pages: 17

DOI: 10.2174/0929867331666230831101847

Price: $65

Abstract

Background: Ovarian cancer (OVC) is the most common and costly tumor in the world with unfavorable overall survival and prognosis. This study is aimed to explore the prognostic value of natural killer cells related genes for OVC treatment.

Methods: RNA-seq and clinical information were acquired from the TCGA-OVC dataset (training dataset) and the GSE51800 dataset (validation dataset). Genes linked to NK cells were obtained from the immPort dataset. Moreover, ConsensusClusterPlus facilitated the screening of molecular subtypes. Following this, the risk model was established by LASSO analysis, and immune infiltration and immunotherapy were then detected by CIBERSORT, ssGSEA, ESTIMATE, and TIDE algorithms.

Results: Based on 23 NK cell-related genes with prognosis, TCGA-OVC samples were classified into two clusters, namely C1 and C2. Of these, C1 had better survival outcomes as well as enhanced immune infiltration and tumor stem cells. Additionally, it was more suitable for immunotherapy and was also sensitive to traditional chemotherapy drugs. The eight-gene prognosis model was constructed and verified via the GSE51800 dataset. Additionally, a high infiltration level of immune cells was observed in low-risk patients. Low-risk samples also benefited from immunotherapy and chemotherapy drugs. Finally, a nomogram and ROC curves were applied to validate model accuracy.

Conclusion: The present study identified a RiskScore signature, which could stratify patients with different infiltration levels, immunotherapy, and chemotherapy drugs. Our study provided a basis for precisely evaluating OVC therapy and prognosis.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet, 2019, 393(10177), 1240-1253.
[http://dx.doi.org/10.1016/S0140-6736(18)32552-2] [PMID: 30910306]
[3]
Giampaolino, P.; Foreste, V.; Della Corte, L.; Di Filippo, C.; Iorio, G.; Bifulco, G. Role of biomarkers for early detection of ovarian cancer recurrence. Gland Surg., 2020, 9(4), 1102-1111.
[http://dx.doi.org/10.21037/gs-20-544] [PMID: 32953625]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol., 2018, 18(11), 671-688.
[http://dx.doi.org/10.1038/s41577-018-0061-z] [PMID: 30209347]
[6]
Hoogstad-van Evert, J.S.; Maas, R.J.; van der Meer, J.; Cany, J.; van der Steen, S.; Jansen, J.H.; Miller, J.S.; Bekkers, R.; Hobo, W.; Massuger, L.; Dolstra, H. Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients. Oncotarget, 2018, 9(78), 34810-34820.
[http://dx.doi.org/10.18632/oncotarget.26199] [PMID: 30410679]
[7]
Lukesova, S.; Vroblova, V.; Tosner, J.; Kopecky, J.; Sedlakova, I.; Čermáková, E.; Vokurkova, D.; Kopecky, O. Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma. Contemp. Oncol., 2015, 4(4), 290-299.
[http://dx.doi.org/10.5114/wo.2015.54388] [PMID: 26557777]
[8]
Lai, P.; Rabinowich, H.; Crowley-Nowick, P.A.; Bell, M.C.; Mantovani, G.; Whiteside, T.L. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin. Cancer Res., 1996, 2(1), 161-173.
[PMID: 9816103]
[9]
Pinto, M.P.; Balmaceda, C.; Bravo, M.L.; Kato, S.; Villarroel, A.; Owen, G.I.; Roa, J.C.; Cuello, M.A.; Ibañez, C. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. Gynecol. Oncol., 2018, 151(1), 10-17.
[http://dx.doi.org/10.1016/j.ygyno.2018.07.025] [PMID: 30078505]
[10]
Mariya, T.; Hirohashi, Y.; Torigoe, T.; Asano, T.; Kuroda, T.; Yasuda, K.; Mizuuchi, M.; Sonoda, T.; Saito, T.; Sato, N. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol. Res., 2014, 2(12), 1220-1229.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0101] [PMID: 25324403]
[11]
Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[12]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[13]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[14]
Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123.
[http://dx.doi.org/10.1186/s13148-019-0730-1] [PMID: 31443682]
[15]
Yang, P.; Chen, W.; Xu, H.; Yang, J.; Jiang, J.; Jiang, Y.; Xu, G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: Potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int., 2021, 21(1), 635.
[http://dx.doi.org/10.1186/s12935-021-02350-8] [PMID: 34844613]
[16]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[17]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[18]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[19]
Oberg, H.H.; Kellner, C.; Gonnermann, D.; Sebens, S.; Bauerschlag, D.; Gramatzki, M.; Kabelitz, D.; Peipp, M.; Wesch, D. Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing γδ t cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol., 2018, 9, 814.
[http://dx.doi.org/10.3389/fimmu.2018.00814] [PMID: 29725336]
[20]
Guzzo, F.; Bellone, S.; Buza, N.; Hui, P.; Carrara, L.; Varughese, J.; Cocco, E.; Betti, M.; Todeschini, P.; Gasparrini, S.; Schwartz, P. E.; Rutherford, T. J.; Angioli, R.; Pecorelli, S.; Santin, A. D. HER2/neu as a potential target for immunotherapy in gynecologic carcinosarcomas. Int. J. Gynecol. Pathol., 2012, 31(3), 211-221.
[21]
Smyth, M.J.; Hayakawa, Y.; Takeda, K.; Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer, 2002, 2(11), 850-861.
[http://dx.doi.org/10.1038/nrc928] [PMID: 12415255]
[22]
Kaur, K.; Nanut, M.P.; Ko, M.W.; Safaie, T.; Kos, J.; Jewett, A. Natural killer cells target and differentiate cancer stem-like cells/undifferentiated tumors: Strategies to optimize their growth and expansion for effective cancer immunotherapy. Curr. Opin. Immunol., 2018, 51, 170-180.
[http://dx.doi.org/10.1016/j.coi.2018.03.022] [PMID: 29653339]
[23]
Uppendahl, L.D.; Felices, M.; Bendzick, L.; Ryan, C.; Kodal, B.; Hinderlie, P.; Boylan, K.L.M.; Skubitz, A.P.N.; Miller, J.S.; Geller, M.A. Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells. Gynecol. Oncol., 2019, 153(1), 149-157.
[http://dx.doi.org/10.1016/j.ygyno.2019.01.006] [PMID: 30658847]
[24]
Yahata, T.; Mizoguchi, M.; Kimura, A.; Orimo, T.; Toujima, S.; Kuninaka, Y.; Nosaka, M.; Ishida, Y.; Sasaki, I.; Fukuda-Ohta, Y.; Hemmi, H.; Iwahashi, N.; Noguchi, T.; Kaisho, T.; Kondo, T.; Ino, K. Programmed cell death ligand 1 d isruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci., 2019, 110(4), 1279-1292.
[http://dx.doi.org/10.1111/cas.13958] [PMID: 30702189]
[25]
Dong, W.; Wu, X.; Ma, S.; Wang, Y.; Nalin, A.P.; Zhu, Z.; Zhang, J.; Benson, D.M.; He, K.; Caligiuri, M.A.; Yu, J. The mechanism of Anti–PD-L1 antibody efficacy against PD-L1–negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov., 2019, 9(10), 1422-1437.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1259] [PMID: 31340937]
[26]
Klapdor, R.; Wang, S.; Morgan, M.; Dörk, T.; Hacker, U.; Hillemanns, P.; Büning, H.; Schambach, A. Characterization of a novel third-generation anti-CD24-CAR against ovarian cancer. Int. J. Mol. Sci., 2019, 20(3), 660.
[http://dx.doi.org/10.3390/ijms20030660] [PMID: 30717444]
[27]
Hung, C.F.; Xu, X.; Li, L.; Ma, Y.; Jin, Q.; Viley, A.; Allen, C.; Natarajan, P.; Shivakumar, R.; Peshwa, M.V.; Emens, L.A. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA–transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum. Gene Ther., 2018, 29(5), 614-625.
[http://dx.doi.org/10.1089/hum.2017.080] [PMID: 29334771]
[28]
Travers, M.; Brown, S.M.; Dunworth, M.; Holbert, C.E.; Wiehagen, K.R.; Bachman, K.E.; Foley, J.R.; Stone, M.L.; Baylin, S.B.; Casero, R.A., Jr; Zahnow, C.A. DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer. Cancer Res., 2019, 79(13), 3445-3454.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-4018] [PMID: 31088836]
[29]
Siew, Y.Y.; Neo, S.Y.; Yew, H.C.; Lim, S.W.; Ng, Y.C.; Lew, S.M.; Seetoh, W.G.; Seow, S.V.; Koh, H.L. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int. Immunol., 2015, 27(12), 621-632.
[http://dx.doi.org/10.1093/intimm/dxv041] [PMID: 26138671]
[30]
Gordon, D.J.; Resio, B.; Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet., 2012, 13(3), 189-203.
[http://dx.doi.org/10.1038/nrg3123] [PMID: 22269907]
[31]
Pietragalla, A.; Arcieri, M.; Marchetti, C.; Scambia, G.; Fagotti, A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer, 2020, 30(11), 1803-1810.
[http://dx.doi.org/10.1136/ijgc-2020-001556] [PMID: 32895312]
[32]
Gomes, F.C.; Figueiredo, E.R.L.; Araújo, E.N.D.; Andrade, E.M.D.; Carneiro, C.D.L.; Almeida, G.M.D.; Dias, H.A.A.L.; Teixeira, L.I.B.; Almeida, M.T.; Farias, M.F.D.; Linhares, N.A.; Fonseca, N.L.D.; Pereira, Y.D.S.; Melo-Neto, J.S. Social, genetics and histopathological factors related to Titin (TTN) gene mutation and survival in women with ovarian serous cystadenocarcinoma: Bioinformatics analysis. Genes., 2023, 14(5), 1092.
[http://dx.doi.org/10.3390/genes14051092] [PMID: 37239452]
[33]
Lu, N.; Liu, J.; Xu, M.; Liang, J.; Wang, Y.; Wu, Z.; Xing, Y.; Diao, F. CSMD3 is associated with tumor mutation burden and immune infiltration in ovarian cancer patients. Int. J. Gen. Med., 2021, 14, 7647-7657.
[http://dx.doi.org/10.2147/IJGM.S335592] [PMID: 34764678]
[34]
Akbarzadeh, M.; Akbarzadeh, S.; Majidinia, M. Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer. Pathol. Res. Pract., 2020, 216(11), 153158.
[http://dx.doi.org/10.1016/j.prp.2020.153158] [PMID: 32829107]
[35]
Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Invest., 2022, 132(11), e159839.
[http://dx.doi.org/10.1172/JCI159839] [PMID: 35642641]
[36]
Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104.
[http://dx.doi.org/10.1186/s12943-022-01569-x] [PMID: 35461253]
[37]
Tauriello, D.V.F.; Sancho, E.; Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer, 2022, 22(1), 25-44.
[http://dx.doi.org/10.1038/s41568-021-00413-6] [PMID: 34671117]
[38]
Wang, K.; Guan, C.; Shang, X.; Ying, X.; Mei, S.; Zhu, H.; Xia, L.; Chai, Z. A bioinformatic analysis: The overexpression and clinical significance of FCGBP in ovarian cancer. Aging., 2021, 13(5), 7416-7429.
[http://dx.doi.org/10.18632/aging.202601] [PMID: 33686968]
[39]
Jiang, E.; He, X.; Chen, X.; Sun, G.; Wu, H.; Wei, Y.; Zhao, X. Expression of CD40 in ovarian cancer and adenovirus-mediated CD40 ligand therapy on ovarian cancer in vitro. Tumori, 2008, 94(3), 356-361.
[http://dx.doi.org/10.1177/030089160809400312] [PMID: 18705404]
[40]
Zong, S.; Xu, P.; Xu, Y.; Guo, Y. A bioinformatics analysis: ZFHX4 is associated with metastasis and poor survival in ovarian cancer. J. Ovarian Res., 2022, 15(1), 90.
[http://dx.doi.org/10.1186/s13048-022-01024-x] [PMID: 35915456]
[41]
Singh, S.K.; Mishra, M.K.; Singh, R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J. Ovarian Res., 2019, 12(1), 42.
[http://dx.doi.org/10.1186/s13048-019-0517-1] [PMID: 31077234]
[42]
Wang, H.; Wang, D.; Gu, T.; Zhu, M.; Cheng, L.; Dai, W. AADAC promotes therapeutic activity of cisplatin and imatinib against ovarian cancer cells. Histol. Histopathol., 2022, 37(9), 899-907.
[PMID: 35451495]
[43]
Zhou, S.; Wang, R.; Xiao, H. Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol. Rep., 2020, 44(3), 927-938.
[http://dx.doi.org/10.3892/or.2020.7647] [PMID: 32705217]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy