Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Identification of Key Genes in Angiogenesis of Breast and Prostate Cancers in the Context of Different Cell Types

Author(s): Abbas Jariani, Setareh Talebi Kakroodi, Masoud Arabfard, Tannaz Jamialahmadi, Maryam Rahimi* and Amirhossein Sahebkar*

Volume 31, Issue 12, 2024

Published on: 12 May, 2023

Page: [1595 - 1605] Pages: 11

DOI: 10.2174/0929867330666230331101458

Price: $65

Abstract

Introduction: Angiogenesis involves the development of new blood vessels. Biochemical signals start this process in the body, which is followed by migration, growth, and differentiation of endothelial cells that line the inside wall of blood vessels. This process is vital for the growth of cancer cells and tumors.

Materials and Methods: We started our analysis by composing a list of genes that have a validated impact in humans with respect to angiogenesis-related phenotypes. Here, we have investigated the expression patterns of angiogenesis-related genes in the context of previously published single-cell RNA-Seq data from prostate and breast cancer samples.

Results: Using a protein-protein interaction network, we showed how different modules of angiogenesis-related genes are overexpressed in different cell types. In our results, genes, such as ACKR1, AQP1, and EGR1, showed a strong cell type-dependent overexpression pattern in the two investigated cancer types, which can potentially be helpful in the diagnosis and follow-up of patients with prostate and breast cancer.

Conclusion: Our work demonstrates how different biological processes in distinct cell types contribute to the angiogenesis process, which can provide clues regarding the potential application of targeted inhibition of the angiogenesis process.

« Previous
[1]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[2]
Mousavi, S.M.; Montazeri, A.; Mohagheghi, M.A.; Jarrahi, A.M.; Harirchi, I.; Najafi, M.; Ebrahimi, M. Breast cancer in Iran: An epidemiological review. Breast J., 2007, 13(4), 383-391.
[http://dx.doi.org/10.1111/j.1524-4741.2007.00446.x] [PMID: 17593043]
[3]
Rahimi, M.; Behjati, F.; Khorram Khorshid, H.R.; Karimlou, M.; Keyhani, E. The relationship between KIT copy number variation, protein expression, and angiogenesis in sporadic breast cancer. Rep. Biochem. Mol. Biol., 2020, 9(1), 40-49.
[http://dx.doi.org/10.29252/rbmb.9.1.40] [PMID: 32821750]
[4]
De Jong, J.S.; Van Diest, P.J.; A Baak Hot spot microvessel density and the mitotic activity index are strong additional prognostic indicators in invasive breast cancer. Histopathology, 2000, 36(4), 306-312.
[http://dx.doi.org/10.1046/j.1365-2559.2000.00850.x] [PMID: 10759944]
[5]
Folkman, J.; Hanahan. D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp., 1991, 22(339-347).
[PMID: 1726933]
[6]
Jászai, J.; Schmidt, M. Trends and challenges in tumor anti-angiogenic therapies. Cells, 2019, 8(9), 1102.
[http://dx.doi.org/10.3390/cells8091102] [PMID: 31540455]
[7]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[8]
Wu, S.Z.; Roden, D.L.; Al-Eryani, G.; Bartonicek, N.; Harvey, K.; Cazet, A.S.; Chan, C.L.; Junankar, S.; Hui, M.N.; Millar, E.A.; Beretov, J.; Horvath, L.; Joshua, A.M.; Stricker, P.; Wilmott, J.S.; Quek, C.; Long, G.V.; Scolyer, R.A.; Yeung, B.Z.; Segara, D.; Mak, C.; Warrier, S.; Powell, J.E.; O’Toole, S.; Lim, E.; Swarbrick, A. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Med., 2021, 13(1), 81.
[http://dx.doi.org/10.1186/s13073-021-00885-z] [PMID: 33971952]
[9]
Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell, 2019, 177(7), 1888-1902.e21.
[http://dx.doi.org/10.1016/j.cell.2019.05.031] [PMID: 31178118]
[10]
Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 2009, 10(1), 48.
[http://dx.doi.org/10.1186/1471-2105-10-48] [PMID: 19192299]
[11]
Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011, 6(7), e21800.
[http://dx.doi.org/10.1371/journal.pone.0021800] [PMID: 21789182]
[12]
Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Suppl. 1), D412-D416.
[http://dx.doi.org/10.1093/nar/gkn760] [PMID: 18940858]
[13]
Solimando, A.G.; Summa, S.D.; Vacca, A.; Ribatti, D. Cancer-associated angiogenesis: The endothelial cell as a checkpoint for immunological patrolling. Cancers, 2020, 12(11), 3380.
[http://dx.doi.org/10.3390/cancers12113380] [PMID: 33203154]
[14]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[15]
Bhome, R.; Bullock, M.D.; Al Saihati, H.A.; Goh, R.W.; Primrose, J.N.; Sayan, A.E.; Mirnezami, A.H. A top-down view of the tumor microenvironment: Structure, cells and signaling. Front. Cell Dev. Biol., 2015, 3, 33.
[http://dx.doi.org/10.3389/fcell.2015.00033] [PMID: 26075202]
[16]
Eyerich, K.; Dimartino, V.; Cavani, A. IL-17 and IL-22 in immunity: Driving protection and pathology. Eur. J. Immunol., 2017, 47(4), 607-614.
[http://dx.doi.org/10.1002/eji.201646723] [PMID: 28295238]
[17]
Queen, D.; Ediriweera, C.; Liu, L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front. Cell Dev. Biol., 2019, 7, 317.
[http://dx.doi.org/10.3389/fcell.2019.00317] [PMID: 31867327]
[18]
Lu, T.; Ramakrishnan, R.; Altiok, S.; Youn, J.I.; Cheng, P.; Celis, E.; Pisarev, V.; Sherman, S.; Sporn, M.B.; Gabrilovich, D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest., 2011, 121(10), 4015-4029.
[http://dx.doi.org/10.1172/JCI45862] [PMID: 21911941]
[19]
Sarhan, D.; Hippen, K.L.; Lemire, A.; Hying, S.; Luo, X.; Lenvik, T.; Curtsinger, J.; Davis, Z.; Zhang, B.; Cooley, S.; Cichocki, F.; Blazar, B.R.; Miller, J.S. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res., 2018, 6(7), 766-775.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0498] [PMID: 29784636]
[20]
Ren, D.; Hua, Y.; Yu, B.; Ye, X.; He, Z.; Li, C. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer, 2020, 19(1), 1-19.
[PMID: 31901224]
[21]
Duan, S.; Guo, W.; Xu, Z.; He, Y.; Liang, C.; Mo, Y.; Wang, Y.; Xiong, F.; Guo, C.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Wang, F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol. Cancer, 2019, 18(1), 29.
[http://dx.doi.org/10.1186/s12943-019-0956-8] [PMID: 30813924]
[22]
Aktaş, O.N.; Öztürk, A.B.; Erman, B.; Erus, S.; Tanju, S.; Dilege, Ş. Role of natural killer cells in lung cancer. J. Cancer Res. Clin. Oncol., 2018, 144(6), 997-1003.
[http://dx.doi.org/10.1007/s00432-018-2635-3] [PMID: 29616326]
[23]
Butt, A.Q.; Mills, K.H.G. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33(38), 4623-4631.
[http://dx.doi.org/10.1038/onc.2013.432] [PMID: 24141774]
[24]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[25]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[26]
Barsky, S.H.; Karlin, N.J. Myoepithelial cells: Autocrine and paracrine suppressors of breast cancer progression. J. Mammary Gland Biol. Neoplasia, 2005, 10(3), 249-260.
[http://dx.doi.org/10.1007/s10911-005-9585-5] [PMID: 16807804]
[27]
Liang, Y.; Hyder, S.M. Proliferation of endothelial and tumor epithelial cells by progestin-induced vascular endothelial growth factor from human breast cancer cells: Paracrine and autocrine effects. Endocrinology, 2005, 146(8), 3632-3641.
[http://dx.doi.org/10.1210/en.2005-0103] [PMID: 15845615]
[28]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[29]
Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454.
[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386]
[30]
Yu, D.; Ye, T.; Xiang, Y.; Shi, Z.; Zhang, J.; Lou, B.; Zhang, F.; Chen, B.; Zhou, M. Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. OncoTargets Ther., 2017, 10, 4719-4729.
[http://dx.doi.org/10.2147/OTT.S136840] [PMID: 29026320]
[31]
Horejs, C.M. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur. J. Cell Biol., 2016, 95(11), 427-440.
[http://dx.doi.org/10.1016/j.ejcb.2016.06.002] [PMID: 27397693]
[32]
Wang, F.T.; Sun, W.; Zhang, J.T.; Fan, Y.Z. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer (Review). Oncol. Lett., 2019, 17(3), 3055-3065.
[http://dx.doi.org/10.3892/ol.2019.9973] [PMID: 30867734]
[33]
Wu, S.Z.; Roden, D.L.; Wang, C.; Holliday, H.; Harvey, K.; Cazet, A.S.; Murphy, K.J.; Pereira, B.; Al-Eryani, G.; Bartonicek, N.; Hou, R.; Torpy, J.R.; Junankar, S.; Chan, C.L.; Lam, C.E.; Hui, M.N.; Gluch, L.; Beith, J.; Parker, A.; Robbins, E.; Segara, D.; Mak, C.; Cooper, C.; Warrier, S.; Forrest, A.; Powell, J.; O’Toole, S.; Cox, T.R.; Timpson, P.; Lim, E.; Liu, X.S.; Swarbrick, A. Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer. EMBO J., 2020, 39(19), e104063.
[http://dx.doi.org/10.15252/embj.2019104063] [PMID: 32790115]
[34]
Massara, M.; Bonavita, O.; Mantovani, A.; Locati, M.; Bonecchi, R. Atypical chemokine receptors in cancer: Friends or foes? J. Leukoc. Biol., 2016, 99(6), 927-933.
[http://dx.doi.org/10.1189/jlb.3MR0915-431RR] [PMID: 26908826]
[35]
Tomita, Y.; Dorward, H.; Yool, A.; Smith, E.; Townsend, A.; Price, T.; Hardingham, J. Role of aquaporin 1 signalling in cancer development and progression. Int. J. Mol. Sci., 2017, 18(2), 299.
[http://dx.doi.org/10.3390/ijms18020299] [PMID: 28146084]
[36]
Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The role of the transcription factor EGR1 in cancer. Front. Oncol., 2021, 11, 642547.
[http://dx.doi.org/10.3389/fonc.2021.642547] [PMID: 33842351]
[37]
Sikder, H.A.; Devlin, M.K.; Dunlap, S.; Ryu, B.; Alani, R.M. Id proteins in cell growth and tumorigenesis. Cancer Cell, 2003, 3(6), 525-530.
[http://dx.doi.org/10.1016/S1535-6108(03)00141-7] [PMID: 12842081]
[38]
Lin, Y-W.; Weng, X-F.; Huang, B-L.; Guo, H-P.; Xu, Y-W.; Peng, Y-H. IGFBP-1 in cancer: Expression, molecular mechanisms, and potential clinical implications. Am. J. Transl. Res., 2021, 13(3), 813-832.
[PMID: 33841624]
[39]
Baxter, R.C. Signalling pathways involved in antiproliferative effects of IGFBP-3: A review. Mol. Pathol., 2001, 54(3), 145-148.
[http://dx.doi.org/10.1136/mp.54.3.145] [PMID: 11376125]
[40]
Park, S.; Sorenson, C.M.; Sheibani, N. PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis. Clin. Sci., 2015, 129(3), 217-234.
[http://dx.doi.org/10.1042/CS20140714] [PMID: 25976664]
[41]
He, Z.; Bateman, A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med., 2003, 81(10), 600-612.
[http://dx.doi.org/10.1007/s00109-003-0474-3] [PMID: 12928786]
[42]
Vlaicu, S.I.; Tatomir, A.; Rus, V.; Rus, H. Role of C5b-9 and RGC-32 in cancer. Front. Immunol., 2019, 10, 1054.
[http://dx.doi.org/10.3389/fimmu.2019.01054] [PMID: 31156630]
[43]
Xing, Y.; Ye, Y.; Zuo, H.; Li, Y. Progress on the function and application of thymosin β4. Front. Endocrinol., 2021, 12, 767785.
[http://dx.doi.org/10.3389/fendo.2021.767785]
[44]
Elamin, Y.Y.; Rafee, S.; Osman, N.; O Byrne, K.J.; Gately, K. Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron., 2016, 9(1), 33-43.
[http://dx.doi.org/10.1007/s12307-015-0173-y] [PMID: 26298314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy