Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Heterogeneity of Lipid Metabolism and its Clinical and Immune Correlation in Lung Adenocarcinoma

Author(s): Xugang Zhang, Weiqing Li, Taorui Liu, Huiqin Guo, Qianqian Sun and Baozhong Li*

Volume 31, Issue 12, 2024

Published on: 04 October, 2023

Page: [1561 - 1577] Pages: 17

DOI: 10.2174/0929867331666230818144416

Price: $65

Abstract

Introduction: The role of lipid metabolism in lung adenocarcinoma (LUAD) is not completely researched. Lipid metabolism reprogramming is a characteristic of malignancies and contributes to carcinogenesis and progression. The transcriptome and scRNA- seq data and clinical information were downloaded from the public databases.

Methods: Lipid metabolism pathways were collected from the MSigDB database, and molecular subtypes were classified based on lipid metabolism features via consensus clustering. The bidirectional crosstalk between immune cells and malignant cells was analyzed. Differences in lipid metabolism at the single-cell level and their correlation with the tumor microenvironment (TME) were also studied. LUAD patients were classified into two subtypes, showing distinct mutation and lipid metabolism features based on lipid metabolism characteristics. Meanwhile, significant differences in the overall survival, clinical characteristics, and immune landscape were observed between the two subtypes. We also found that clust1 had higher oxidative stress status. There were 116 differentially expressed genes between the two subtypes, which were significantly associated with cell cycle progression. We identified 4001 immune cells, including 483 malignant cells and 3518 normal cells, and found active intercellular communication and significant differences in lipid metabolism characteristics between the malignant cells and normal cells. Furthermore, several lipid metabolism pathways were found to be associated with TME factors, including hypoxia and angiogenesis.

Result: The current findings indicated that lipid metabolism was involved in the development and cellular heterogeneity of LUAD and revealed widespread reprogramming across multiple cellular elements in the TME of LUAD.

Conclusion: This characterization improved the current understanding of tumor biology and enabled the identification of novel targets for immunotherapy.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Testa, U.; Castelli, G.; Pelosi, E. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers., 2018, 10(8), 248.
[http://dx.doi.org/10.3390/cancers10080248] [PMID: 30060526]
[3]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[5]
Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol., 2011, 6(2), 244-285.
[6]
Peck, B.; Schulze, A. Lipid desaturation - the next step in targeting lipogenesis in cancer? FEBS J., 2016, 283(15), 2767-2778.
[http://dx.doi.org/10.1111/febs.13681] [PMID: 26881388]
[7]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[8]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., J.r Cellular fatty acid metabolism and cancer. Cell Metab., 2013, 18(2), 153-161.
[http://dx.doi.org/10.1016/j.cmet.2013.05.017] [PMID: 23791484]
[9]
Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2011, 1811(11), 637-647.
[http://dx.doi.org/10.1016/j.bbalip.2011.06.009] [PMID: 21704189]
[10]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5(1), e189.
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
[11]
Peng, X.; Chen, Z.; Farshidfar, F.; Xu, X.; Lorenzi, P.L.; Wang, Y.; Cheng, F.; Tan, L.; Mojumdar, K.; Du, D.; Ge, Z.; Li, J.; Thomas, G.V.; Birsoy, K.; Liu, L.; Zhang, H.; Zhao, Z.; Marchand, C.; Weinstein, J.N.; Bathe, O.F.; Liang, H.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep., 2018, 23(1), 255-269.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.03.077] [PMID: 29617665]
[12]
Wu, F.; Zhao, Z.; Chai, R.C.; Liu, Y.Q.; Li, G.Z.; Jiang, H.Y.; Jiang, T. Prognostic power of a lipid metabolism gene panel for diffuse gliomas. J. Cell. Mol. Med., 2019, 23(11), 7741-7748.
[http://dx.doi.org/10.1111/jcmm.14647] [PMID: 31475440]
[13]
Yu, W.; Lei, Q.; Yang, L.; Qin, G.; Liu, S.; Wang, D.; Ping, Y.; Zhang, Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 187.
[http://dx.doi.org/10.1186/s13045-021-01200-4] [PMID: 34742349]
[14]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[15]
Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol., 2011, 12(4), R41.
[http://dx.doi.org/10.1186/gb-2011-12-4-r41] [PMID: 21527027]
[16]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[17]
Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420.
[http://dx.doi.org/10.1038/nbt.4096] [PMID: 29608179]
[18]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[19]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[20]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[21]
Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc., 2020, 15(4), 1484-1506.
[http://dx.doi.org/10.1038/s41596-020-0292-x] [PMID: 32103204]
[22]
Li, J.; Li, Q.; Su, Z.; Sun, Q.; Zhao, Y.; Feng, T.; Jiang, J.; Zhang, F.; Ma, H. Lipid metabolism gene-wide profile and survival signature of lung adenocarcinoma. Lipids Health Dis., 2020, 19(1), 222.
[http://dx.doi.org/10.1186/s12944-020-01390-9] [PMID: 33050938]
[23]
Li, T.; Chen, J.; Liu, J.; Chen, Q.; Nie, W.; Xu, M.D. A lipid metabolism-based seven-gene signature correlates with the clinical outcome of lung adenocarcinoma. J. Oncol., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/9913206] [PMID: 35186082]
[24]
Garcia, K.A.; Costa, M.L.; Lacunza, E.; Martinez, M.E.; Corsico, B.; Scaglia, N. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci., 2022, 301, 120621.
[http://dx.doi.org/10.1016/j.lfs.2022.120621] [PMID: 35545133]
[25]
Liang, C.; Wang, X.; Zhang, Z.; Xiao, F.; Feng, H.; Ma, Q.; Huang, J.; Qiang, G.; Zhong, D.; Liu, D. ACOT11 promotes cell proliferation, migration and invasion in lung adenocarcinoma. Transl. Lung Cancer Res., 2020, 9(5), 1885-1903.
[http://dx.doi.org/10.21037/tlcr-19-509] [PMID: 33209610]
[26]
Von Bank, H.; Kirsh, C.; Simcox, J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res. Rev., 2021, 67, 101259.
[http://dx.doi.org/10.1016/j.arr.2021.101259] [PMID: 33515751]
[27]
Bergers, G.; Fendt, S.M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer, 2021, 21(3), 162-180.
[http://dx.doi.org/10.1038/s41568-020-00320-2] [PMID: 33462499]
[28]
Schwartz, A.G.; Cote, M.L. Epidemiology of lung cancer. Adv. Exp. Med. Biol., 2016, 893, 21-41.
[http://dx.doi.org/10.1007/978-3-319-24223-1_2] [PMID: 26667337]
[29]
Sheikh, M.; Mukeriya, A.; Shangina, O.; Brennan, P.; Zaridze, D. Postdiagnosis smoking cessation and reduced risk for lung cancer progression and mortality. Ann. Intern. Med., 2021, 174(9), 1232-1239.
[http://dx.doi.org/10.7326/M21-0252] [PMID: 34310171]
[30]
Gastaldelli, A.; Folli, F.; Maffei, S. Impact of tobacco smoking on lipid metabolism, body weight and cardiometabolic risk. Curr. Pharm. Des., 2010, 16(23), 2526-2530.
[http://dx.doi.org/10.2174/138161210792062858] [PMID: 20550509]
[31]
Li, F.; Huang, Q.; Luster, T.A.; Hu, H.; Zhang, H.; Ng, W.L.; Khodadadi-Jamayran, A.; Wang, W.; Chen, T.; Deng, J.; Ranieri, M.; Fang, Z.; Pyon, V.; Dowling, C.M.; Bagdatlioglu, E.; Almonte, C.; Labbe, K.; Silver, H.; Rabin, A.R.; Jani, K.; Tsirigos, A.; Papagiannakopoulos, T.; Hammerman, P.S.; Velcheti, V.; Freeman, G.J.; Qi, J.; Miller, G.; Wong, K.K. In vivo epigenetic crispr screen identifies asf1a as an immunotherapeutic target in kras -mutant lung adenocarcinoma. Cancer Discov., 2020, 10(2), 270-287.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0780] [PMID: 31744829]
[32]
Wang, S.; Liu, W.; Ly, D.; Xu, H.; Qu, L.; Zhang, L. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol., 2019, 16(1), 6-18.
[http://dx.doi.org/10.1038/s41423-018-0027-x] [PMID: 29628498]
[33]
Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; Gopalakrishnan, V.; Xi, Y.; Zhao, H.; Amaria, R.N.; Tawbi, H.A.; Cogdill, A.P.; Liu, W.; LeBleu, V.S.; Kugeratski, F.G.; Patel, S.; Davies, M.A.; Hwu, P.; Lee, J.E.; Gershenwald, J.E.; Lucci, A.; Arora, R.; Woodman, S.; Keung, E.Z.; Gaudreau, P.O.; Reuben, A.; Spencer, C.N.; Burton, E.M.; Haydu, L.E.; Lazar, A.J.; Zapassodi, R.; Hudgens, C.W.; Ledesma, D.A.; Ong, S.; Bailey, M.; Warren, S.; Rao, D.; Krijgsman, O.; Rozeman, E.A.; Peeper, D.; Blank, C.U.; Schumacher, T.N.; Butterfield, L.H.; Zelazowska, M.A.; McBride, K.M.; Kalluri, R.; Allison, J.; Petitprez, F.; Fridman, W.H.; Sautès-Fridman, C.; Hacohen, N.; Rezvani, K.; Sharma, P.; Tetzlaff, M.T.; Wang, L.; Wargo, J.A. B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 2020, 577(7791), 549-555.
[http://dx.doi.org/10.1038/s41586-019-1922-8] [PMID: 31942075]
[34]
Xia, Y.; Rao, L.; Yao, H.; Wang, Z.; Ning, P.; Chen, X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater., 2020, 32(40), e2002054.
[http://dx.doi.org/10.1002/adma.202002054]
[35]
Kishton, R.J.; Sukumar, M.; Restifo, N.P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab., 2017, 26(1), 94-109.
[http://dx.doi.org/10.1016/j.cmet.2017.06.016] [PMID: 28683298]
[36]
Mylonis, I.; Simos, G.; Paraskeva, E. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells, 2019, 8(3), 214.
[http://dx.doi.org/10.3390/cells8030214] [PMID: 30832409]
[37]
Husain, M.; Irshad, R.; Tabassum, S. Aberrant lipid metabolism in cancer: Current status and emerging therapeutic perspectives. Curr. Top. Med. Chem., 2023, 23(12), 1090-1103.
[http://dx.doi.org/10.2174/1568026623666230522103321] [PMID: 37218199]
[38]
Fernández, L.P.; Gómez de, C.M.; Ramírez de, M.A. Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Front. Oncol., 2020, 10, 577420.
[http://dx.doi.org/10.3389/fonc.2020.577420] [PMID: 33194695]
[39]
Afik, R.; Zigmond, E.; Vugman, M.; Klepfish, M.; Shimshoni, E.; Pasmanik-Chor, M.; Shenoy, A.; Bassat, E.; Halpern, Z.; Geiger, T.; Sagi, I.; Varol, C. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med., 2016, 213(11), 2315-2331.
[http://dx.doi.org/10.1084/jem.20151193] [PMID: 27697834]
[40]
Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344(6186), 921-925.
[http://dx.doi.org/10.1126/science.1252510] [PMID: 24812208]
[41]
Ma, R.Y.; Zhang, H.; Li, X.F.; Zhang, C.B.; Selli, C.; Tagliavini, G.; Lam, A.D.; Prost, S.; Sims, A.H.; Hu, H.Y.; Ying, T.; Wang, Z.; Ye, Z.; Pollard, J.W.; Qian, B.Z. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med., 2020, 217(11), e20191820.
[http://dx.doi.org/10.1084/jem.20191820] [PMID: 32780802]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy