Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Developmental Neuroendocrinology of Early-Life Stress: Impact on Child Development and Behavior

Author(s): Nicolas C. Nicolaides, Christina Kanaka-Gantenbein and Panagiota Pervanidou*

Volume 22, Issue 3, 2024

Published on: 15 August, 2023

Page: [461 - 474] Pages: 14

DOI: 10.2174/1570159X21666230810162344

Price: $65

Abstract

Our internal balance, or homeostasis, is threatened or perceived as threatened by stressful stimuli, the stressors. The stress system is a highly conserved system that adjusts homeostasis to the resting state. Through the concurrent activation of the hypothalamic-pituitary-adrenal axis and the locus coeruleus/norepinephrine-autonomic nervous systems, the stress system provides the appropriate physical and behavioral responses, collectively termed as “stress response”, to restore homeostasis. If the stress response is prolonged, excessive or even inadequate, several acute or chronic stress-related pathologic conditions may develop in childhood, adolescence and adult life. On the other hand, earlylife exposure to stressors has been recognized as a major contributing factor underlying the pathogenesis of non-communicable disorders, including neurodevelopmental disorders. Accumulating evidence suggests that early-life stress has been associated with an increased risk for attention deficit hyperactivity disorder and autism spectrum disorder in the offspring, although findings are still controversial. Nevertheless, at the molecular level, early-life stressors alter the chemical structure of cytosines located in the regulatory regions of genes, mostly through the addition of methyl groups. These epigenetic modifications result in the suppression of gene expression without changing the DNA sequence. In addition to DNA methylation, several lines of evidence support the role of non-coding RNAs in the evolving field of epigenetics. In this review article, we present the anatomical and functional components of the stress system, discuss the proper, in terms of quality and quantity, stress response, and provide an update on the impact of early-life stress on child development and behavior.

Graphical Abstract

[1]
Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[2]
Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252.
[http://dx.doi.org/10.1001/jama.1992.03480090092034] [PMID: 1538563]
[3]
Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation, 2015, 22(1-2), 6-19.
[http://dx.doi.org/10.1159/000362736] [PMID: 25227402]
[4]
Stavrou, S.; Nicolaides, N.C.; Critselis, E.; Darviri, C.; Charmandari, E.; Chrousos, G.P. Paediatric stress: From neuroendocrinology to contemporary disorders. Eur. J. Clin. Invest., 2017, 47(3), 262-269.
[http://dx.doi.org/10.1111/eci.12724]
[5]
Nicolaides, N.C.; Charmandari, E.; Kino, T.; Chrousos, G.P. Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on health. Front. Endocrinol., 2017, 8, 70.
[http://dx.doi.org/10.3389/fendo.2017.00070] [PMID: 28503165]
[6]
Nicolaides, N.C.; Galata, Z.; Kino, T.; Chrousos, G.P.; Charmandari, E. The human glucocorticoid receptor: Molecular basis of biologic function. Steroids, 2010, 75(1), 1-12.
[http://dx.doi.org/10.1016/j.steroids.2009.09.002] [PMID: 19818358]
[7]
Nicolaides, N.C.; Chrousos, G.; Kino, T. Endotext; MDText.comIn: Inc.: South Dartmouth (MA),; , 2000.
[8]
Nicolaides, N.C.; Charmandari, E. Primary generalized glucocorticoid resistance and hypersensitivity syndromes: A 2021 update. Int. J. Mol. Sci., 2021, 22(19), 10839.
[http://dx.doi.org/10.3390/ijms221910839] [PMID: 34639183]
[9]
Agorastos, A.; Nicolaides, N.C.; Bozikas, V.P.; Chrousos, G.P.; Pervanidou, P. Multilevel interactions of stress and circadian system: Implications for traumatic stress. Front. Psychiatry, 2020, 10, 1003.
[http://dx.doi.org/10.3389/fpsyt.2019.01003] [PMID: 32047446]
[10]
Charmandari, E.; Kino, T.; Souvatzoglou, E.; Chrousos, G.P. Pediatric stress: Hormonal mediators and human development. Horm. Res., 2003, 59(4), 161-179.
[PMID: 12649570]
[11]
Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol., 2005, 67(1), 259-284.
[http://dx.doi.org/10.1146/annurev.physiol.67.040403.120816] [PMID: 15709959]
[12]
Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med., 1995, 332(20), 1351-1363.
[http://dx.doi.org/10.1056/NEJM199505183322008] [PMID: 7715646]
[13]
Chrousos, G.P.; Calabrese, J.R.; Avgerinos, P.; Kling, M.A.; Rubinow, D.; Oldfield, E.H.; Schuermeyer, T.; Kellner, C.H.; Cutler, G.B., Jr; Loriaux, D.L.; Gold, P.W. Corticotropin releasing factor: Basic studies and clinical applications. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1985, 9(4), 349-359.
[http://dx.doi.org/10.1016/0278-5846(85)90187-3] [PMID: 2999871]
[14]
Calogero, A.E.; Bernardini, R.; Gold, P.W.; Chrousos, G.P. Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: Potential clinical implications. Adv. Exp. Med. Biol., 1988, 245, 167-181.
[http://dx.doi.org/10.1007/978-1-4899-2064-5_13] [PMID: 2906518]
[15]
Smith, M.A.; Kling, M.A.; Whitfield, H.J.; Brandt, H.A.; Demitrack, M.A.; Geracioti, T.D.; Chrousos, G.P.; Gold, P.W. Corticotropin-releasing hormone: From endocrinology to psychobiology. Horm. Res., 1989, 31(1-2), 66-71.
[http://dx.doi.org/10.1159/000181089] [PMID: 2656470]
[16]
Bornstein, S.R.; Chrousos, G.P. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J. Clin. Endocrinol. Metab., 1999, 84(5), 1729-1736.
[http://dx.doi.org/10.1210/jcem.84.5.5631] [PMID: 10323408]
[17]
Nicolaides, N.C.; Chrousos, G.P. Adrenal Cortex Hormones.In:Hormonal Signaling in Biology and Medicine: Comprehensive Modern Endocrinology; Litwack, G., Ed.; Academic Press, 2020, pp. 619-633.
[http://dx.doi.org/10.1016/B978-0-12-813814-4.00028-6]
[18]
Chrousos, G.P.; Kino, T. Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Sci. STKE, 2005, 2005(304), pe48.
[http://dx.doi.org/10.1126/stke.3042005pe48] [PMID: 16204701]
[19]
Nicolaides, N.C. The human glucocorticoid receptor beta: From molecular mechanisms to clinical implications. Endocrinology, 2022, 163(11), bqac150.
[http://dx.doi.org/10.1210/endocr/bqac150] [PMID: 36059139]
[20]
Lu, N.Z.; Cidlowski, J.A. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell, 2005, 18(3), 331-342.
[http://dx.doi.org/10.1016/j.molcel.2005.03.025] [PMID: 15866175]
[21]
Nader, N.; Chrousos, G.P.; Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J., 2009, 23(5), 1572-1583.
[http://dx.doi.org/10.1096/fj.08-117697] [PMID: 19141540]
[22]
Charmandari, E.; Chrousos, G.P.; Lambrou, G.I.; Pavlaki, A.; Koide, H.; Ng, S.S.M.; Kino, T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One, 2011, 6(9), e25612.
[http://dx.doi.org/10.1371/journal.pone.0025612] [PMID: 21980503]
[23]
Song, I.H.; Buttgereit, F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol. Cell. Endocrinol., 2006, 246(1-2), 142-146.
[http://dx.doi.org/10.1016/j.mce.2005.11.012] [PMID: 16388891]
[24]
Hinz, B.; Hirschelmann, R. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm. Res., 2000, 17(10), 1273-1277.
[http://dx.doi.org/10.1023/A:1026499604848] [PMID: 11145234]
[25]
Karst, H.; Berger, S.; Turiault, M.; Tronche, F.; Schütz, G.; Joëls, M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl. Acad. Sci. USA, 2005, 102(52), 19204-19207.
[http://dx.doi.org/10.1073/pnas.0507572102] [PMID: 16361444]
[26]
Hafezi-Moghadam, A.; Simoncini, T.; Yang, Z.; Limbourg, F.P.; Plumier, J.C.; Rebsamen, M.C.; Hsieh, C.M.; Chui, D.S.; Thomas, K.L.; Prorock, A.J.; Laubach, V.E.; Moskowitz, M.A.; French, B.A.; Ley, K.; Liao, J.K. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med., 2002, 8(5), 473-479.
[http://dx.doi.org/10.1038/nm0502-473] [PMID: 11984591]
[27]
Löwenberg, M.; Verhaar, A.P.; Bilderbeek, J.; van Marle, J.; Buttgereit, F.; Peppelenbosch, M.P.; van Deventer, S.J.; Hommes, D.W. Glucocorticoids cause rapid dissociation of a T‐cell‐receptor‐associated protein complex containing LCK and FYN. EMBO Rep., 2006, 7(10), 1023-1029.
[http://dx.doi.org/10.1038/sj.embor.7400775] [PMID: 16888650]
[28]
Nicolaides, N.C.; Kino, T.; Roberts, M.L.; Katsantoni, E.; Sertedaki, A.; Moutsatsou, P.; Psarra, A.G.; Chrousos, G.P.; Charmandari, E. The role of S-palmitoylation of the human glucocorticoid receptor (hGR) in mediating the nongenomic glucocorticoid actions. J. Mol. Biochem., 2017, 6(1), 3-12.
[PMID: 28775968]
[29]
Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1), 55-89.
[PMID: 10696570]
[30]
Galon, J.; Franchimont, D.; Hiroi, N.; Frey, G.; Boettner, A.; Ehrhart-Bornstein, M.; O’shea, J.J.; Chrousos, G.P.; Bornstein, S.R. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J., 2002, 16(1), 61-71.
[http://dx.doi.org/10.1096/fj.01-0245com] [PMID: 11772937]
[31]
Groeneweg, F.L.; Karst, H.; de Kloet, E.R.; Joëls, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol., 2011, 209(2), 153-167.
[http://dx.doi.org/10.1530/JOE-10-0472] [PMID: 21357682]
[32]
Prager, E.M.; Johnson, L.R. Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci. Signal., 2009, 2(86), re5.
[http://dx.doi.org/10.1126/scisignal.286re5] [PMID: 19724063]
[33]
Tasker, J.G.; Di, S.; Malcher-Lopes, R. Minireview: Rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology, 2006, 147(12), 5549-5556.
[http://dx.doi.org/10.1210/en.2006-0981] [PMID: 16946006]
[34]
Nicolaides, N.C.; Makridakis, M.; Stroggilos, R.; Lygirou, V.; Koniari, E.; Papageorgiou, I.; Sertedaki, A.; Zoidakis, J.; Charmandari, E. Plasma proteomics in healthy subjects with differences in tissue glucocorticoid sensitivity identifies a novel proteomic signature. Biomedicines, 2022, 10(1), 184.
[http://dx.doi.org/10.3390/biomedicines10010184] [PMID: 35052863]
[35]
Manzari, N.; Matvienko-Sikar, K.; Baldoni, F.; O’Keeffe, G.W.; Khashan, A.S. Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol., 2019, 54(11), 1299-1309.
[http://dx.doi.org/10.1007/s00127-019-01745-3] [PMID: 31324962]
[36]
Charil, A.; Laplante, D.P.; Vaillancourt, C.; King, S. Prenatal stress and brain development. Brain Res. Brain Res. Rev., 2010, 65(1), 56-79.
[http://dx.doi.org/10.1016/j.brainresrev.2010.06.002] [PMID: 20550950]
[37]
Davis, E.P.; Sandman, C.A.; Buss, C.; Wing, D.A.; Head, K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol. Psychiatry, 2013, 74(9), 647-655.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.009] [PMID: 23611262]
[38]
Kassotaki, I.; Valsamakis, G.; Mastorakos, G.; Grammatopoulos, D.K. Placental CRH as a signal of pregnancy adversity and impact on fetal neurodevelopment. Front. Endocrinol., 2021, 12(August), 714214.
[http://dx.doi.org/10.3389/fendo.2021.714214] [PMID: 34408727]
[39]
Anifantaki, F.; Pervanidou, P.; Lambrinoudaki, I.; Panoulis, K.; Vlahos, N.; Eleftheriades, M. Maternal prenatal stress, thyroid function and neurodevelopment of the offspring: A mini review of the literature. Front. Neurosci., 2021, 15, 692446.
[http://dx.doi.org/10.3389/fnins.2021.692446] [PMID: 34566560]
[40]
Davis, E.P.; Sandman, C.A. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev., 2010, 81(1), 131-148.
[http://dx.doi.org/10.1111/j.1467-8624.2009.01385.x] [PMID: 20331658]
[41]
Bomysoad, R.N.; Francis, L.A. Adverse childhood experiences and mental health conditions among adolescents. J. Adolesc. Health, 2020, 67(6), 868-870.
[http://dx.doi.org/10.1016/j.jadohealth.2020.04.013] [PMID: 32576484]
[42]
Li, J.; Olsen, J.; Vestergaard, M.; Obel, C. Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal bereavement: A nationwide follow-up study in Denmark. Eur. Child Adolesc. Psychiatry, 2010, 19(10), 747-753.
[http://dx.doi.org/10.1007/s00787-010-0113-9] [PMID: 20495989]
[43]
Class, Q.A.; Abel, K.M.; Khashan, A.S.; Rickert, M.E.; Dalman, C.; Larsson, H.; Hultman, C.M.; Långström, N.; Lichtenstein, P.; D’Onofrio, B.M. Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychol. Med., 2014, 44(1), 71-84.
[http://dx.doi.org/10.1017/S0033291713000780] [PMID: 23591021]
[44]
Say, G.N. Karabekiroğlu, K.; Babadağı Z.; Yüce, M. Maternal stress and perinatal features in autism and attention deficit/hyperactivity disorder. Pediatr. Int., 2016, 58(4), 265-269.
[http://dx.doi.org/10.1111/ped.12822] [PMID: 26338105]
[45]
Rodriguez, A.; Bohlin, G. Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? J. Child Psychol. Psychiatry, 2005, 46(3), 246-254.
[http://dx.doi.org/10.1111/j.1469-7610.2004.00359.x] [PMID: 15755301]
[46]
Shao, S.; Wang, J.; Huang, K.; Wang, S.; Liu, H.; Wan, S.; Yan, S.; Hao, J.; Zhu, P.; Tao, F. Prenatal pregnancy-related anxiety predicts boys’ ADHD symptoms via placental C-reactive protein. Psychoneuroendocrinology, 2020, 120, 104797.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104797] [PMID: 32682173]
[47]
Grizenko, N.; Shayan, Y.R.; Polotskaia, A.; Ter-Stepanian, M.; Joober, R. Relation of maternal stress during pregnancy to symptom severity and response to treatment in children with ADHD. J. Psychiatry Neurosci., 2008, 33(1), 10-16.
[PMID: 18197267]
[48]
Brown, N.M.; Brown, S.N.; Briggs, R.D.; Germán, M.; Belamarich, P.F.; Oyeku, S.O. Associations between adverse childhood experiences and ADHD diagnosis and severity. Acad. Pediatr., 2017, 17(4), 349-355.
[http://dx.doi.org/10.1016/j.acap.2016.08.013] [PMID: 28477799]
[49]
Walker, C.S.; Walker, B.H.; Brown, D.C.; Buttross, S.; Sarver, D.E. Defining the role of exposure to ACEs in ADHD: Examination in a national sample of US children. Child Abuse Negl., 2021, 112, 104884.
[http://dx.doi.org/10.1016/j.chiabu.2020.104884] [PMID: 33360863]
[50]
Windle, M.; Haardörfer, R.; Getachew, B.; Shah, J.; Payne, J.; Pillai, D.; Berg, C.J. A multivariate analysis of adverse childhood experiences and health behaviors and outcomes among college students. J. Am. Coll. Health, 2018, 66(4), 246-251.
[http://dx.doi.org/10.1080/07448481.2018.1431892] [PMID: 29405856]
[51]
Hunt, T.K.A.; Slack, K.S.; Berger, L.M. Adverse childhood experiences and behavioral problems in middle childhood. Child Abuse Negl., 2017, 67(12), 391-402.
[http://dx.doi.org/10.1016/j.chiabu.2016.11.005] [PMID: 27884508]
[52]
Jimenez, M.E.; Wade, R., Jr; Schwartz-Soicher, O.; Lin, Y.; Reichman, N.E. Adverse childhood experiences and ADHD diagnosis at age 9 years in a national urban sample. Acad. Pediatr., 2017, 17(4), 356-361.
[http://dx.doi.org/10.1016/j.acap.2016.12.009] [PMID: 28003143]
[53]
González, R.A.; Vélez-Pastrana, M.C.; McCrory, E.; Kallis, C.; Aguila, J.; Canino, G.; Bird, H. Evidence of concurrent and prospective associations between early maltreatment and ADHD through childhood and adolescence. Soc. Psychiatry Psychiatr. Epidemiol., 2019, 54(6), 671-682.
[http://dx.doi.org/10.1007/s00127-019-01659-0] [PMID: 30903235]
[54]
Roberts, A.L.; Lyall, K.; Rich-Edwards, J.W.; Ascherio, A.; Weisskopf, M.G. Maternal exposure to childhood abuse is associated with elevated risk of autism. JAMA Psychiatry, 2013, 70(5), 508-515.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.447] [PMID: 23553149]
[55]
Kinney, D.K.; Miller, A.M.; Crowley, D.J.; Huang, E.; Gerber, E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J. Autism Dev. Disord., 2008, 38(3), 481-488.
[http://dx.doi.org/10.1007/s10803-007-0414-0] [PMID: 17619130]
[56]
Roberts, A.L.; Lyall, K.; Rich-Edwards, J.W.; Ascherio, A.; Weisskopf, M.G. Maternal exposure to intimate partner abuse before birth is associated with autism spectrum disorder in offspring. Autism, 2016, 20(1), 26-36.
[http://dx.doi.org/10.1177/1362361314566049] [PMID: 25662292]
[57]
Rai, D.; Golding, J.; Magnusson, C.; Steer, C.; Lewis, G.; Dalman, C. Prenatal and early life exposure to stressful life events and risk of autism spectrum disorders: Population-based studies in Sweden and England. PLoS One, 2012, 7(6), e38893.
[http://dx.doi.org/10.1371/journal.pone.0038893] [PMID: 22719977]
[58]
Cattane, N.; Richetto, J.; Cattaneo, A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci. Biobehav. Rev., 2020, 117, 253-278.
[http://dx.doi.org/10.1016/j.neubiorev.2018.07.001] [PMID: 29981347]
[59]
Beversdorf, D.Q.; Manning, S.E.; Hillier, A.; Anderson, S.L.; Nordgren, R.E.; Walters, S.E.; Nagaraja, H.N.; Cooley, W.C.; Gaelic, S.E.; Bauman, M.L. Timing of prenatal stressors and autism. J. Autism Dev. Disord., 2005, 35(4), 471-478.
[http://dx.doi.org/10.1007/s10803-005-5037-8] [PMID: 16134032]
[60]
Kerns, C.M.; Newschaffer, C.J.; Berkowitz, S.J. Traumatic childhood events and autism spectrum disorder. J. Autism Dev. Disord., 2015, 45(11), 3475-3486.
[http://dx.doi.org/10.1007/s10803-015-2392-y] [PMID: 25711547]
[61]
Kerns, C.M.; Newschaffer, C.J.; Berkowitz, S.; Lee, B.K. Examining the association of autism and adverse childhood experiences in the National Survey of Children’s Health: the important role of income and co-occurring mental health conditions. J. Autism Dev. Disord., 2017, 47(7), 2275-2281.
[http://dx.doi.org/10.1007/s10803-017-3111-7] [PMID: 28378271]
[62]
Stack, A.; Lucyshyn, J. Autism spectrum disorder and the experience of traumatic events: Review of the current literature to inform modifications to a treatment model for children with autism. J. Autism Dev. Disord., 2019, 49(4), 1613-1625.
[http://dx.doi.org/10.1007/s10803-018-3854-9] [PMID: 30539370]
[63]
Hoover, D.W.; Kaufman, J. Adverse childhood experiences in children with autism spectrum disorder. Curr. Opin. Psychiatry, 2018, 31(2), 128-132.
[http://dx.doi.org/10.1097/YCO.0000000000000390] [PMID: 29206686]
[64]
Makris, G.; Eleftheriades, A.; Pervanidou, P. Early life stress, hormones and neurodevelopmental disorders. Horm. Res. Paediatr., 2022.
[PMID: 35259742]
[65]
Makris, G.; Agorastos, A.; Chrousos, G.P.; Pervanidou, P. Stress system activation in children and adolescents with autism spectrum disorder. Front. Neurosci., 2022, 15, 756628.
[http://dx.doi.org/10.3389/fnins.2021.756628] [PMID: 35095389]
[66]
Anesiadou, S.; Makris, G.; Michou, M.; Bali, P.; Papassotiriou, I.; Apostolakou, F.; Korkoliakou, P.; Papageorgiou, C.; Chrousos, G.; Pervanidou, P. Salivary cortisol and alpha‐amylase daily profiles and stress responses to an academic performance test and a moral cognition task in children with neurodevelopmental disorders. Stress Health, 2021, 37(1), 45-59.
[http://dx.doi.org/10.1002/smi.2971] [PMID: 32608561]
[67]
Angeli, E.; Korpa, T.; Johnson, E.O.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G.P.; Pervanidou, P. Salivary cortisol and alpha-amylase diurnal profiles and stress reactivity in children with Attention Deficit Hyperactivity Disorder. Psychoneuroendocrinology, 2018, 90, 174-181.
[http://dx.doi.org/10.1016/j.psyneuen.2018.02.026] [PMID: 29501948]
[68]
Korpa, T.; Pervanidou, P.; Angeli, E.; Apostolakou, F.; Papanikolaou, K.; Papassotiriou, I.; Chrousos, G.P.; Kolaitis, G. Mothers’ parenting stress is associated with salivary cortisol profiles in children with attention deficit hyperactivity disorder. Stress, 2017, 20(2), 149-158.
[http://dx.doi.org/10.1080/10253890.2017.1303472] [PMID: 28264636]
[69]
Pervanidou, P.; Agorastos, A.; Chrousos, G.P. Editorial: Stress and neurodevelopment. Front. Neurosci., 2022, 16, 898872.
[http://dx.doi.org/10.3389/fnins.2022.898872] [PMID: 35495052]
[70]
Khoury, L.; Tang, Y.L.; Bradley, B.; Cubells, J.F.; Ressler, K.J. Substance use, childhood traumatic experience, and Posttraumatic Stress Disorder in an urban civilian population. Depress. Anxiety, 2010, 27(12), 1077-1086.
[http://dx.doi.org/10.1002/da.20751] [PMID: 21049532]
[71]
Pervanidou, P. Biology of post-traumatic stress disorder in childhood and adolescence. J. Neuroendocrinol., 2008, 20(5), 632-638.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01701.x] [PMID: 18363804]
[72]
Pervanidou, P.; Chrousos, G.P. Neuroendocrinology of post-traumatic stress disorder., Prog. Brain Res., 2010, 182, 149-16.
[http://dx.doi.org/10.1016/S0079-6123(10)82005-9] [PMID: 20541663]
[73]
Pervanidou, P.; Makris, G.; Chrousos, G.; Agorastos, A. Early life stress and pediatric posttraumatic stress disorder. Brain Sci., 2020, 10(3), 169.
[http://dx.doi.org/10.3390/brainsci10030169] [PMID: 32183256]
[74]
Copeland, W.E.; Keeler, G.; Angold, A.; Costello, E.J. Traumatic events and posttraumatic stress in childhood. Arch. Gen. Psychiatry, 2007, 64(5), 577-584.
[http://dx.doi.org/10.1001/archpsyc.64.5.577] [PMID: 17485609]
[75]
Weems, C.F.; Russell, J.D.; Neill, E.L.; McCurdy, B.H. Annual Research Review: Pediatric posttraumatic stress disorder from a neurodevelopmental network perspective. J. Child Psychol. Psychiatry, 2019, 60(4), 395-408.
[http://dx.doi.org/10.1111/jcpp.12996] [PMID: 30357832]
[76]
McLaughlin, K.A.; Koenen, K.C.; Hill, E.D.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Kessler, R.C. Trauma exposure and posttraumatic stress disorder in a national sample of adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 2013, 52(8), 815-830.e14.
[http://dx.doi.org/10.1016/j.jaac.2013.05.011] [PMID: 23880492]
[77]
Merikangas, K.R. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication-Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry, 2010, 49(10), 980-989.
[78]
American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed; , 2013.
[79]
Baker, D.G.; Buxbaum, J.D.; Russo, S.J.; Yehuda, R. New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Exp Neurol, 2016, 84((Pt B)), 133-140.
[80]
Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Front. Psychiatry, 2019, 10, 118.
[http://dx.doi.org/10.3389/fpsyt.2019.00118] [PMID: 30914979]
[81]
Pan, X.; Wang, Z.; Wu, X.; Wen, S.W.; Liu, A. Salivary cortisol in post-traumatic stress disorder: A systematic review and meta-analysis. BMC Psychiatry, 2018, 18(1), 324.
[http://dx.doi.org/10.1186/s12888-018-1910-9] [PMID: 30290789]
[82]
Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Catecholamines in post-traumatic stress disorder: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 450.
[http://dx.doi.org/10.3389/fnmol.2018.00450] [PMID: 30564100]
[83]
De Bellis, M.D.; Lefter, L.; Trickett, P.K.; Putnam, F.W., Jr Urinary catecholamine excretion in sexually abused girls. J. Am. Acad. Child Adolesc. Psychiatry, 1994, 33(3), 320-327.
[http://dx.doi.org/10.1097/00004583-199403000-00004] [PMID: 8169176]
[84]
Cicchetti, D.; Rogosch, F.A. Diverse patterns of neuroendocrine activity in maltreated children. Dev. Psychopathol., 2001, 13(3), 677-693.
[http://dx.doi.org/10.1017/S0954579401003145] [PMID: 11523854]
[85]
Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Salivary alpha amylase–cortisol asymmetry in maltreated youth. Horm. Behav., 2008, 53(1), 96-103.
[http://dx.doi.org/10.1016/j.yhbeh.2007.09.002] [PMID: 17945232]
[86]
MacMillan, H.L.; Georgiades, K.; Duku, E.K.; Shea, A.; Steiner, M.; Niec, A.; Tanaka, M.; Gensey, S.; Spree, S.; Vella, E.; Walsh, C.A.; De Bellis, M.D.; Van der Meulen, J.; Boyle, M.H.; Schmidt, L.A. Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the youth mood project. Biol. Psychiatry, 2009, 66(1), 62-68.
[http://dx.doi.org/10.1016/j.biopsych.2008.12.014] [PMID: 19217075]
[87]
Trickett, P.K.; Noll, J.G.; Susman, E.J.; Shenk, C.E.; Putnam, F.W. Attenuation of cortisol across development for victims of sexual abuse. Dev. Psychopathol., 2010, 22(1), 165-175.
[http://dx.doi.org/10.1017/S0954579409990332] [PMID: 20102654]
[88]
Goenjian, A.K.; Yehuda, R.; Pynoos, R.S.; Steinberg, A.M.; Tashjian, M.; Yang, R.K.; Najarian, L.M.; Fairbanks, L.A. Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. Am. J. Psychiatry, 1996, 153(7), 929-934.
[http://dx.doi.org/10.1176/ajp.153.7.929] [PMID: 8659616]
[89]
Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Margeli, A.; Ferentinos, S.; Bakoula, C.; Lazaropoulou, C.; Papassotiriou, I.; Tsiantis, J.; Chrousos, G.P. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology, 2007, 32(8-10), 991-999.
[http://dx.doi.org/10.1016/j.psyneuen.2007.07.001] [PMID: 17825995]
[90]
Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Lazaropoulou, C.; Papassotiriou, I.; Hindmarsh, P.; Bakoula, C.; Tsiantis, J.; Chrousos, G.P. The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: Progressive divergence of noradrenaline and cortisol concentrations over time. Biol. Psychiatry, 2007, 62(10), 1095-1102.
[http://dx.doi.org/10.1016/j.biopsych.2007.02.008] [PMID: 17624319]
[91]
Pervanidou, P.; Chrousos, G.P. Early-life stress: From neuroendocrine mechanisms to stress-related disorders. Horm. Res. Paediatr., 2018, 89(5), 372-379.
[http://dx.doi.org/10.1159/000488468] [PMID: 29886495]
[92]
Marchetti, D.; Musso, P.; Verrocchio, M.C.; Manna, G.; Kopala-Sibley, D.C.; De Berardis, D.; De Santis, S.; Falgares, G. Childhood maltreatment, personality vulnerability profiles, and borderline personality disorder symptoms in adolescents. Dev. Psychopathol., 2022, 34(3), 1163-1176.
[http://dx.doi.org/10.1017/S0954579420002151] [PMID: 33494855]
[93]
Caldirola, D.; Torti, T.; Cuniberti, F.; Daccò, S.; Alciati, A.; Schruers, K.; Martinotti, G.; De Berardis, D.; Perna, G. No sex differences in self-reported childhood maltreatment in major depressive and bipolar disorders: A retrospective study. Brain Sci., 2022, 12(6), 804.
[http://dx.doi.org/10.3390/brainsci12060804] [PMID: 35741691]
[94]
Perna, G.; Daccò, S.; Alciati, A.; Cuniberti, F.; De Berardis, D.; Caldirola, D. Childhood maltreatment history for guiding personalized antidepressant choice in major depressive disorder: Preliminary results from a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 107, 110208.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110208] [PMID: 33338557]
[95]
Gkesoglou, T.; Pervanidou, P.; Bozikas, V.P.; Agorastos, A. Neurobiology of early life traumatic stress and trauma: Prolonged neuroendocrine dysregulation as a neurodevelopmental risk factor. Psychiatriki, 2022, 34(2)
[http://dx.doi.org/10.22365/jpsych.2022.059] [PMID: 35255464]
[96]
Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol. Psychiatry, 2022, 27(1), 502-513.
[http://dx.doi.org/10.1038/s41380-021-01224-9] [PMID: 34290370]
[97]
Kazakou, P.; Nicolaides, N.C.; Chrousos, G.P. Basic concepts and hormonal regulators of the stress system. Horm. Res. Paediatr., 2022.
[PMID: 35272295]
[98]
Murgatroyd, C.; Wu, Y.; Bockmühl, Y.; Spengler, D. Genes learn from stress: How infantile trauma programs us for depression. Epigenetics, 2010, 5(3), 194-199.
[http://dx.doi.org/10.4161/epi.5.3.11375] [PMID: 20339319]
[99]
Meaney, M.J.; Aitken, D.H.; Bodnoff, S.R.; Iny, L.J.; Tatarewicz, J.E.; Sapolsky, R.M. Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behav. Neurosci., 1985, 99(4), 765-770.
[http://dx.doi.org/10.1037/0735-7044.99.4.765] [PMID: 3843740]
[100]
Meaney, M.J.; Aitken, D.H.; Sapolsky, R.M. Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: A mechanism for the effects of postnatal handling on the development of the adrenocortical stress response. Neuroendocrinology, 1987, 45(4), 278-283.
[http://dx.doi.org/10.1159/000124741] [PMID: 3574606]
[101]
Mitchell, J.B.; Iny, L.J.; Meaney, M.J. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Brain Res. Dev. Brain Res., 1990, 55(2), 231-235.
[http://dx.doi.org/10.1016/0165-3806(90)90204-C] [PMID: 1701365]
[102]
Champagne, F.A. Early environments, glucocorticoid receptors, and behavioral epigenetics. Behav. Neurosci., 2013, 127(5), 628-636.
[http://dx.doi.org/10.1037/a0034186] [PMID: 24128352]
[103]
Liu, D.; Diorio, J.; Tannenbaum, B.; Caldji, C.; Francis, D.; Freedman, A.; Sharma, S.; Pearson, D.; Plotsky, P.M.; Meaney, M.J. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 1997, 277(5332), 1659-1662.
[http://dx.doi.org/10.1126/science.277.5332.1659] [PMID: 9287218]
[104]
Hellstrom, I.C.; Dhir, S.K.; Diorio, J.C.; Meaney, M.J. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone–serotonin–NGFI-A signalling cascade. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1601), 2495-2510.
[http://dx.doi.org/10.1098/rstb.2012.0223] [PMID: 22826348]
[105]
Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci., 2004, 7(8), 847-854.
[http://dx.doi.org/10.1038/nn1276] [PMID: 15220929]
[106]
Rahman, M.F.; McGowan, P.O. Cell-type-specific epigenetic effects of early life stress on the brain. Transl. Psychiatry, 2022, 12(1), 326.
[http://dx.doi.org/10.1038/s41398-022-02076-9] [PMID: 35948532]
[107]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[108]
Weaver, I.C.G.; Champagne, F.A.; Brown, S.E.; Dymov, S.; Sharma, S.; Meaney, M.J.; Szyf, M. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. J. Neurosci., 2005, 25(47), 11045-11054.
[http://dx.doi.org/10.1523/JNEUROSCI.3652-05.2005] [PMID: 16306417]
[109]
Meaney, M.J. Nature, nurture, and the disunity of knowledge. Ann. N. Y. Acad. Sci., 2001, 935(1), 50-61.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03470.x] [PMID: 11411175]
[110]
Eleftheriades, M.; Vousoura, E.; Eleftheriades, A.; Pervanidou, P.; Zervas, I.M.; Chrousos, G.; Vlahos, N.F.; Sotiriadis, A. Physical health, media use, stress, and mental health in pregnant women during the COVID-19 pandemic. Diagnostics, 2022, 12(5), 1125.
[http://dx.doi.org/10.3390/diagnostics12051125] [PMID: 35626281]
[111]
De Berardis, D.; Di Carlo, F.; Di Giannantonio, M.; Pettorruso, M. Legacy of neuropsychiatric symptoms associated with past COVID-19 infection: A cause of concern. World J. Psychiatry, 2022, 12(6), 773-778.
[http://dx.doi.org/10.5498/wjp.v12.i6.773] [PMID: 35978974]
[112]
De Berardis, D.; Fornaro, M.; Orsolini, L.; Ventriglio, A.; Vellante, F.; Di Giannantonio, M. Emotional dysregulation in adolescents: Implications for the development of severe psychiatric disorders, substance abuse, and suicidal ideation and behaviors. Brain Sci., 2020, 10(9), 591.
[http://dx.doi.org/10.3390/brainsci10090591] [PMID: 32858969]
[113]
Korpa, T.; Pappa, T.; Chouliaras, G.; Sfinari, A.; Eleftheriades, A.; Katsounas, M.; Kanaka-Gantenbein, C.; Pervanidou, P. Daily behaviors, worries and emotions in children and adolescents with ADHD and learning difficulties during the COVID-19 pandemic. Children, 2021, 8(11), 995.
[http://dx.doi.org/10.3390/children8110995] [PMID: 34828708]
[114]
Sfinari, A.; Pervanidou, P.; Chouliaras, G.; Zoumakis, E.; Vasilakis, I.A.; Nicolaides, N.C.; Kanaka-Gantenbein, C. Perceived changes in emotions, worries and everyday behaviors in children and adolescents aged 5-18 years with Type 1 Diabetes during the COVID-19 pandemic. Children, 2022, 9(5), 736.
[http://dx.doi.org/10.3390/children9050736] [PMID: 35626913]
[115]
Zisopoulou, T.; Varvogli, L. Stress management methods in children and adolescents - past, present, and future. Horm. Res. Paediatr., 2023, 96(1), 97-107.
[http://dx.doi.org/10.1159/000526946] [PMID: 36096110]
[116]
Scott, S.R.; O’Daffer, A.G.; Bradford, M.C.; Fladeboe, K.; Lau, N.; Steineck, A.; Taylor, M.; Yi-Frazier, J.P.; Rosenberg, A.R. Adverse childhood experiences (ACEs) and medically traumatic events (TEs) in adolescents and young adults (AYAs) with cancer: A report from the Promoting Resilience in Stress Management (PRISM) randomized controlled trial. Support. Care Cancer, 2021, 29(7), 3773-3781.
[http://dx.doi.org/10.1007/s00520-020-05888-x] [PMID: 33219407]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy