Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Sex Differences in Stress Response: Classical Mechanisms and Beyond

Author(s): Georgia E. Hodes, Debra Bangasser, Ioannis Sotiropoulos, Nikolaos Kokras and Christina Dalla*

Volume 22, Issue 3, 2024

Published on: 05 October, 2023

Page: [475 - 494] Pages: 20

DOI: 10.2174/1570159X22666231005090134

Price: $65

Abstract

Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer’s disease.

Graphical Abstract

[1]
Munck, A.; Guyre, P.M.; Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev., 1984, 5(1), 25-44.
[http://dx.doi.org/10.1210/edrv-5-1-25] [PMID: 6368214]
[2]
McEwen, B.S.; Gianaros, P.J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med., 2011, 62(1), 431-445.
[http://dx.doi.org/10.1146/annurev-med-052209-100430] [PMID: 20707675]
[3]
Lyons, D.M.; Parker, K.J.; Schatzberg, A.F. Animal models of early life stress: Implications for understanding resilience. Dev. Psychobiol., 2010, 52(7), 616-624.
[http://dx.doi.org/10.1002/dev.20500] [PMID: 20957724]
[4]
Masten, A.S. Ordinary magic: Resilience processes in development. Am. Psychol., 2001, 56(3), 227-238.
[http://dx.doi.org/10.1037/0003-066X.56.3.227] [PMID: 11315249]
[5]
De Berardis, D.; Fornaro, M.; Orsolini, L. Editorial: “No Words for Feelings, Yet!” exploring alexithymia, disorder of affect regulation, and the “Mind-Body” connection. Front. Psychiatry, 2020, 11, 593462.
[http://dx.doi.org/10.3389/fpsyt.2020.593462] [PMID: 33061929]
[6]
Grandinetti, P.; Gooney, M.; Scheibein, F.; Testa, R.; Ruggieri, G.; Tondo, P.; Corona, A.; Boi, G.; Floris, L.; Profeta, V.F.; G. Wells, J.S.; De Berardis, D. Stress and maladaptive coping of italians health care professionals during the first wave of the pandemic. Brain Sci., 2021, 11(12), 1586.
[http://dx.doi.org/10.3390/brainsci11121586] [PMID: 34942888]
[7]
Wilson, R.S.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Tang, Y.; Bennett, D.A. Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology, 2006, 27(3), 143-153.
[http://dx.doi.org/10.1159/000095761] [PMID: 16974109]
[8]
Riboni, F.V.; Belzung, C. Stress and psychiatric disorders: From categorical to dimensional approaches. Curr. Opin. Behav. Sci., 2017, 14, 72-77.
[http://dx.doi.org/10.1016/j.cobeha.2016.12.011]
[9]
Newman, S.C.; Bland, R.C. Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr. Psychiatry, 1994, 35(1), 76-82.
[http://dx.doi.org/10.1016/0010-440X(94)90173-2] [PMID: 8149733]
[10]
Altemus, M.; Sarvaiya, N.; Epperson, N.C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol., 2014, 35(3), 320-330.
[http://dx.doi.org/10.1016/j.yfrne.2014.05.004] [PMID: 24887405]
[11]
Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184.
[http://dx.doi.org/10.1002/mpr.1359] [PMID: 22865617]
[12]
Marcus, S.M.; Young, E.A.; Kerber, K.B.; Kornstein, S.; Farabaugh, A.H.; Mitchell, J.; Wisniewski, S.R.; Balasubramani, G.K.; Trivedi, M.H.; Rush, A.J. Gender differences in depression: Findings from the STAR*D study. J. Affect. Disord., 2005, 87(2-3), 141-150.
[http://dx.doi.org/10.1016/j.jad.2004.09.008] [PMID: 15982748]
[13]
McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res., 2011, 45(8), 1027-1035.
[http://dx.doi.org/10.1016/j.jpsychires.2011.03.006] [PMID: 21439576]
[14]
Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Chatterji, S.; Lee, S.; Ormel, J.; Üstün, T.B.; Wang, P.S. The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiol. Psichiatr. Soc., 2009, 18(1), 23-33.
[http://dx.doi.org/10.1017/S1121189X00001421] [PMID: 19378696]
[15]
Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull., 2006, 132(6), 959-992.
[http://dx.doi.org/10.1037/0033-2909.132.6.959] [PMID: 17073529]
[16]
Lydiard, R.B. Irritable bowel syndrome, anxiety, and depression: what are the links? J. Clin. Psychiatry, 2001, 62(S8), 38-45.
[PMID: 12108820]
[17]
Beghi, E.; Allais, G.; Cortelli, P.; D’Amico, D.; De Simone, R.; d’Onofrio, F.; Genco, S.; Manzoni, G.C.; Moschiano, F.; Tonini, M.C.; Torelli, P.; Quartaroli, M.; Roncolato, M.; Salvi, S.; Bussone, G. Headache and anxiety-depressive disorder comorbidity: The HADAS study. Neurol. Sci., 2007, 28(S2), S217-S219.
[http://dx.doi.org/10.1007/s10072-007-0780-6] [PMID: 17508174]
[18]
van Mill, J.G.; Hoogendijk, W.J.G.; Vogelzangs, N.; van Dyck, R.; Penninx, B.W.J.H. Insomnia and sleep duration in a large cohort of patients with major depressive disorder and anxiety disorders. J. Clin. Psychiatry, 2010, 71(3), 239-246.
[http://dx.doi.org/10.4088/JCP.09m05218gry] [PMID: 20331928]
[19]
Lipton, R.B.; Stewart, W.F.; Diamond, S.; Diamond, M.L.; Reed, M. Prevalence and burden of migraine in the United States: Data from the American Migraine Study II. Headache, 2001, 41(7), 646-657.
[http://dx.doi.org/10.1046/j.1526-4610.2001.041007646.x] [PMID: 11554952]
[20]
Singareddy, R.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Liao, D.; Calhoun, S.; Shaffer, M.L.; Bixler, E.O. Risk factors for incident chronic insomnia: A general population prospective study. Sleep Med., 2012, 13(4), 346-353.
[http://dx.doi.org/10.1016/j.sleep.2011.10.033] [PMID: 22425576]
[21]
Drossman, D.A.; Thompson, W.G.; Talley, N.J.; Funch-Jensen, P.; Janssens, J.; Whitehead, W.E. Identification of sub-groups of functional gastrointestinal disorders. Gastroenterol. Intl., 1990, 3(4), 159-172.
[22]
Gao, S.; Hendrie, H.C.; Hall, K.S.; Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Arch. Gen. Psychiatry, 1998, 55(9), 809-815.
[http://dx.doi.org/10.1001/archpsyc.55.9.809] [PMID: 9736007]
[23]
Medeiros, A.M.; Silva, R.H. Sex differences in Alzheimer’s Disease: Where do we stand? J. Alzheimers Dis., 2019, 67(1), 35-60.
[http://dx.doi.org/10.3233/JAD-180213] [PMID: 30530972]
[24]
Novais, F.; Starkstein, S. Phenomenology of depression in Alzheimer’s Disease. J. Alzheimers Dis., 2015, 47(4), 845-855.
[http://dx.doi.org/10.3233/JAD-148004] [PMID: 26401763]
[25]
Kouzoupis, A.V.; Lyrakos, D.; Kokras, N.; Panagiotarakou, M.; Syrigos, K.N.; Papadimitriou, G.N. Dysfunctional remembered parenting in oncology outpatients affects psychological distress symptoms in a gender‐specific manner. Stress Health, 2012, 28(5), 381-388.
[http://dx.doi.org/10.1002/smi.2460] [PMID: 23023836]
[26]
Riecher-Rössler, A.; Butler, S.; Kulkarni, J. Sex and gender differences in schizophrenic psychoses-a critical review. Arch. Women Ment. Health, 2018, 21(6), 627-648.
[http://dx.doi.org/10.1007/s00737-018-0847-9] [PMID: 29766281]
[27]
McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[28]
Green, M.J.; Girshkin, L.; Teroganova, N.; Quidé, Y. Stress,Schizophrenia and Bipolar Disorder; In: Behavioral Neurobiology of Stress-related Disorders, SpringerLink; , 2014, pp. 217-235.
[29]
Martin, L.A.; Neighbors, H.W.; Griffith, D.M. The experience of symptoms of depression in men vs. women: Analysis of the national comorbidity survey replication. JAMA Psychiatry, 2013, 70(10), 1100-1106.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.1985] [PMID: 23986338]
[30]
Gururajan, A.; Reif, A.; Cryan, J.F.; Slattery, D.A. The future of rodent models in depression research. Nat. Rev. Neurosci., 2019, 20(11), 686-701.
[http://dx.doi.org/10.1038/s41583-019-0221-6] [PMID: 31578460]
[31]
Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev., 2011, 35(3), 565-572.
[http://dx.doi.org/10.1016/j.neubiorev.2010.07.002] [PMID: 20620164]
[32]
Tannenbaum, C.; Schwarz, J.M.; Clayton, J.A.; de Vries, G.J.; Sullivan, C. Evaluating sex as a biological variable in preclinical research: The devil in the details. Biol. Sex Differ., 2016, 7(1), 13.
[http://dx.doi.org/10.1186/s13293-016-0066-x] [PMID: 26870316]
[33]
Mamlouk, G.M.; Dorris, D.M.; Barrett, L.R.; Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol., 2020, 57, 100835.
[http://dx.doi.org/10.1016/j.yfrne.2020.100835] [PMID: 32070715]
[34]
Rechlin, R.K.; Splinter, T.F.L.; Hodges, T.E.; Albert, A.Y.; Galea, L.A.M. An analysis of neuroscience and psychiatry papers published from 2009 and 2019 outlines opportunities for increasing discovery of sex differences. Nat. Commun., 2022, 13(1), 2137.
[http://dx.doi.org/10.1038/s41467-022-29903-3] [PMID: 35440664]
[35]
Dalla, C. Integrating sex and gender in mental health research: Enhanced funding for better treatments. Nat. Mental Health, 2023, 1(6), 383-384.
[http://dx.doi.org/10.1038/s44220-023-00076-2]
[36]
Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol., 2019, 176(21), 4090-4106.
[http://dx.doi.org/10.1111/bph.14710] [PMID: 31093959]
[37]
Atkinson, H.C.; Waddell, B.J. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology, 1997, 138(9), 3842-3848.
[http://dx.doi.org/10.1210/endo.138.9.5395] [PMID: 9275073]
[38]
Weinstock, M.; Razin, M.; Schorer-apelbaum, D.; Men, D.; McCarty, R. Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci., 1998, 16(3-4), 289-295.
[http://dx.doi.org/10.1016/S0736-5748(98)00021-5] [PMID: 9785125]
[39]
Kokras, N.; Pastromas, N.; Papasava, D.; de Bournonville, C.; Cornil, C.A.; Dalla, C. Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology, 2018, 87, 93-107.
[http://dx.doi.org/10.1016/j.psyneuen.2017.10.007] [PMID: 29054014]
[40]
Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic mild stress impact: Are females more vulnerable? Neuroscience, 2005, 135(3), 703-714.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.068] [PMID: 16125862]
[41]
Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol., 2014, 35(3), 303-319.
[http://dx.doi.org/10.1016/j.yfrne.2014.03.008] [PMID: 24726661]
[42]
Kokras, N.; Sotiropoulos, I.; Pitychoutis, P.M.; Almeida, O.F.X.; Papadopoulou-Daifoti, Z. Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience, 2011, 194, 62-71.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.077] [PMID: 21839808]
[43]
Gala, R.R.; Westphal, U. Further studies on the corticosteroid-binding globulin in the rat: Proposed endocrine control. Endocrinology, 1966, 79(1), 67-76.
[http://dx.doi.org/10.1210/endo-79-1-67] [PMID: 5917132]
[44]
Oyola, M.G.; Handa, R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress, 2017, 20(5), 476-494.
[http://dx.doi.org/10.1080/10253890.2017.1369523] [PMID: 28859530]
[45]
Kokras, N.; Dalla, C.; Sideris, A.C.; Dendi, A.; Mikail, H.G.; Antoniou, K.; Papadopoulou-Daifoti, Z. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology, 2012, 62(1), 436-445.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.025] [PMID: 21884710]
[46]
Kokras, N.; Krokida, S.; Varoudaki, T.Z.; Dalla, C. Do corticosterone levels predict female depressive‐like behavior in rodents? J. Neurosci. Res., 2021, 99(1), 324-331.
[http://dx.doi.org/10.1002/jnr.24686] [PMID: 32640495]
[47]
Rivier, C. Gender, sex steroids, corticotropin-releasing factor, nitric oxide, and the HPA response to stress. Pharmacol. Biochem. Behav., 1999, 64(4), 737-751.
[http://dx.doi.org/10.1016/S0091-3057(99)00148-3] [PMID: 10593197]
[48]
Viau, V.; Bingham, B.; Davis, J.; Lee, P.; Wong, M. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology, 2005, 146(1), 137-146.
[http://dx.doi.org/10.1210/en.2004-0846] [PMID: 15375029]
[49]
Wood, G.E.; Beylin, A.V.; Shors, T.J. The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning males versus females. Behav. Neurosci., 2001, 115(1), 175-187.
[http://dx.doi.org/10.1037/0735-7044.115.1.175] [PMID: 11256441]
[50]
Bangasser, D.A.; Shors, T.J. The hippocampus is necessary for enhancements and impairments of learning following stress. Nat. Neurosci., 2007, 10(11), 1401-1403.
[http://dx.doi.org/10.1038/nn1973] [PMID: 17906620]
[51]
Dalla, C.; Shors, T.J. Sex differences in learning processes of classical and operant conditioning. Physiol. Behav., 2009, 97(2), 229-238.
[http://dx.doi.org/10.1016/j.physbeh.2009.02.035] [PMID: 19272397]
[52]
Dalla, C.; Whetstone, A.S.; Hodes, G.E.; Shors, T.J. Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci. Lett., 2009, 449(1), 52-56.
[http://dx.doi.org/10.1016/j.neulet.2008.10.051] [PMID: 18952150]
[53]
Shors, T.J.; Chua, C.; Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci., 2001, 21(16), 6292-6297.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-06292.2001] [PMID: 11487652]
[54]
Leuner, B.; Shors, T.J. New spines, new memories. Mol. Neurobiol., 2004, 29(2), 117-130.
[http://dx.doi.org/10.1385/MN:29:2:117] [PMID: 15126680]
[55]
Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in response to stress and expression of depressive-like behaviours in the rat. Curr. Top. Behav. Neurosci., 2011, 8, 97-118.
[56]
Kokras, N.; Antoniou, K.; Dalla, C.; Bekris, S.; Xagoraris, M.; Ovestreet, D.H.; Papadopoulou-Daifoti, Z. Sex-related differential response to clomipramine treatment in a rat model of depression. J. Psychopharmacol., 2009, 23(8), 945-956.
[http://dx.doi.org/10.1177/0269881108095914] [PMID: 18755816]
[57]
Mikail, H.G.; Dalla, C.; Kokras, N.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z. Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress. Physiol. Behav., 2012, 107(2), 201-206.
[http://dx.doi.org/10.1016/j.physbeh.2012.06.016] [PMID: 22771833]
[58]
Dalla, C.; Antoniou, K.; Kokras, N.; Drossopoulou, G.; Papathanasiou, G.; Bekris, S.; Daskas, S.; Papadopoulou-Daifoti, Z. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav., 2008, 93(3), 595-605.
[http://dx.doi.org/10.1016/j.physbeh.2007.10.020] [PMID: 18031771]
[59]
Kokras, N.; Antoniou, K.; Polissidis, A.; Papadopoulou-Daifoti, Z. Antidepressants induce regionally discrete, sex-dependent changes in brain’s glutamate content. Neurosci. Lett., 2009, 464(2), 98-102.
[http://dx.doi.org/10.1016/j.neulet.2009.08.011] [PMID: 19666087]
[60]
Shors, T.J.; Falduto, J.; Leuner, B. The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur. J. Neurosci., 2004, 19(1), 145-150.
[http://dx.doi.org/10.1046/j.1460-9568.2003.03065.x] [PMID: 14750972]
[61]
Kokras, N.; Sotiropoulos, I.; Besinis, D.; Tzouveka, E.L.; Almeida, O.F.X.; Sousa, N.; Dalla, C. Neuroplasticity-related correlates of environmental enrichment combined with physical activity differ between the sexes. Eur. Neuropsychopharmacol., 2019, 29(1), 1-15.
[http://dx.doi.org/10.1016/j.euroneuro.2018.11.1107] [PMID: 30497839]
[62]
Andolina, D.; Maran, D.; Viscomi, M.T.; Puglisi-Allegra, S. Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Int. J. Neuropsychopharmacol., 2015, 18(3), pyu074.
[http://dx.doi.org/10.1093/ijnp/pyu074] [PMID: 25522413]
[63]
Treccani, G.; Musazzi, L.; Perego, C.; Milanese, M.; Nava, N.; Bonifacino, T.; Lamanna, J.; Malgaroli, A.; Drago, F.; Racagni, G.; Nyengaard, J.R.; Wegener, G.; Bonanno, G.; Popoli, M. Acute stress rapidly increases the readily releasable pool of glutamate vesicles in prefrontal and frontal cortex through non-genomic action of corticosterone. Mol. Psychiatry, 2014, 19(4), 401.
[http://dx.doi.org/10.1038/mp.2014.20] [PMID: 24658610]
[64]
Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry, 1997, 154(5), 624-629.
[http://dx.doi.org/10.1176/ajp.154.5.624] [PMID: 9137116]
[65]
Banki, C.M.; Karmacsi, L.; Bissette, G.; Nemeroff, C.B. CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. Eur. Neuropsychopharmacol., 1992, 2(2), 107-113.
[http://dx.doi.org/10.1016/0924-977X(92)90019-5] [PMID: 1352999]
[66]
Heuser, I.; Bissette, G.; Dettling, M.; Schweiger, U.; Gotthardt, U.; Schmider, J.; Lammers, C.H.; Nemeroff, C.B.; Holsboer, F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: Response to amitriptyline treatment. Depress. Anxiety, 1998, 8(2), 71-79.
[http://dx.doi.org/10.1002/(SICI)1520-6394(1998)8:2<71:AID-DA5>3.0.CO;2-N] [PMID: 9784981]
[67]
Austin, M.C.; Janosky, J.E.; Murphy, H.A. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol. Psychiatry, 2003, 8(3), 324-332.
[http://dx.doi.org/10.1038/sj.mp.4001250] [PMID: 12660805]
[68]
Bissette, G.; Klimek, V.; Pan, J.; Stockmeier, C.; Ordway, G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology, 2003, 28(7), 1328-1335.
[http://dx.doi.org/10.1038/sj.npp.1300191] [PMID: 12784115]
[69]
Vandael, D.; Gounko, N.V. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer’s disease and stress disorders. Transl. Psychiatry, 2019, 9(1), 272.
[http://dx.doi.org/10.1038/s41398-019-0581-8] [PMID: 31641098]
[70]
Pomara, N.; Greenberg, W.M.; Branford, M.D.; Doraiswamy, P.M. Therapeutic implications of HPA axis abnormalities in Alzheimer’s disease: Review and update. Psychopharmacol. Bull., 2003, 37(2), 120-134.
[PMID: 14674372]
[71]
Whitehouse, P.J.; Vale, W.W.; Zweig, R.M.; Singer, H.S.; Mayeux, R.; Kuhar, M.J.; Price, D.L.; De Souza, E.B. Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer’s disease, Parkinson’s disease, and progressive supranuclear palsy. Neurology, 1987, 37(6), 905-909.
[http://dx.doi.org/10.1212/WNL.37.6.905] [PMID: 3495748]
[72]
Souza, E.B.D. CRH defects in Alzheimer’s and other neurologic diseases. Hosp. Pract., 1988, 23(9), 59-71.
[http://dx.doi.org/10.1080/21548331.1988.11703535] [PMID: 2901426]
[73]
Gallucci, W.T.; Baum, A.; Laue, L.; Rabin, D.S.; Chrousos, G.P.; Gold, P.W.; Kling, M.A. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol., 1993, 12(5), 420-425.
[http://dx.doi.org/10.1037/0278-6133.12.5.420] [PMID: 8223368]
[74]
Bangasser, D.A.; Wiersielis, K.R. Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones, 2018, 17(1), 5-13.
[http://dx.doi.org/10.1007/s42000-018-0002-z] [PMID: 29858858]
[75]
Dunčko, R.; Kiss, A.; Škultétyová, I.; Rusnák, M.; Ježová, D. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology, 2001, 26(1), 77-89.
[http://dx.doi.org/10.1016/S0306-4530(00)00040-8] [PMID: 11070336]
[76]
Speert, D.B.; McClennen, S.J.; Seasholtz, A.F. Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology, 2002, 143(12), 4730-4741.
[http://dx.doi.org/10.1210/en.2002-220556] [PMID: 12446601]
[77]
Wiersielis, K.R.; Ceretti, A.; Hall, A.; Famularo, S.T.; Salvatore, M.; Ellis, A.S.; Jang, H.; Wimmer, M.E.; Bangasser, D.A. Sex differences in corticotropin releasing factor regulation of medial septum-mediated memory formation. Neurobiol. Stress, 2019, 10, 100150.
[http://dx.doi.org/10.1016/j.ynstr.2019.100150] [PMID: 30937355]
[78]
Bale, T.L.; Vale, W.W. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J. Neurosci., 2003, 23(12), 5295-5301.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05295.2003] [PMID: 12832554]
[79]
Bale, T.L.; Picetti, R.; Contarino, A.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci., 2002, 22(1), 193-199.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00193.2002] [PMID: 11756502]
[80]
Bale, T.L. Sensitivity to stress: Dysregulation of CRF pathways and disease development. Horm. Behav., 2005, 48(1), 1-10.
[http://dx.doi.org/10.1016/j.yhbeh.2005.01.009] [PMID: 15919381]
[81]
Weathington, J.M.; Hamki, A.; Cooke, B.M. Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat. J. Comp. Neurol., 2014, 522(6), 1284-1298.
[http://dx.doi.org/10.1002/cne.23475] [PMID: 24115088]
[82]
Rosinger, Z.J.; Jacobskind, J.S.; Park, S.G.; Justice, N.J.; Zuloaga, D.G. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience, 2017, 361, 167-178.
[http://dx.doi.org/10.1016/j.neuroscience.2017.08.016] [PMID: 28823817]
[83]
Rosinger, Z.J.; De Guzman, R.M.; Jacobskind, J.S.; Saglimbeni, B.; Malone, M.; Fico, D.; Justice, N.J.; Forni, P.E.; Zuloaga, D.G. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol. Behav., 2020, 219, 112847.
[http://dx.doi.org/10.1016/j.physbeh.2020.112847] [PMID: 32081812]
[84]
Howerton, A.R.; Roland, A.V.; Fluharty, J.M.; Marshall, A.; Chen, A.; Daniels, D.; Beck, S.G.; Bale, T.L. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry, 2014, 75(11), 873-883.
[http://dx.doi.org/10.1016/j.biopsych.2013.10.013] [PMID: 24289884]
[85]
Williams, T.J.; Akama, K.T.; Knudsen, M.G.; McEwen, B.S.; Milner, T.A. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp. Neurol., 2011, 230(2), 186-196.
[http://dx.doi.org/10.1016/j.expneurol.2011.04.012] [PMID: 21549703]
[86]
Hauger, R.L.; Risbrough, V.; Oakley, R.H.; Olivares-Reyes, J.A.; Dautzenberg, F.M. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann. N. Y. Acad. Sci., 2009, 1179(1), 120-143.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05011.x] [PMID: 19906236]
[87]
Hillhouse, E.W.; Grammatopoulos, D.K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr. Rev., 2006, 27(3), 260-286.
[http://dx.doi.org/10.1210/er.2005-0034] [PMID: 16484629]
[88]
Berridge, C.W.; Foote, S.L. Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci., 1991, 11(10), 3135-3145.
[http://dx.doi.org/10.1523/JNEUROSCI.11-10-03135.1991] [PMID: 1682425]
[89]
Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev., 2003, 42(1), 33-84.
[http://dx.doi.org/10.1016/S0165-0173(03)00143-7] [PMID: 12668290]
[90]
Gary, Aston-Jones. M.G. Role of the locus coeruleusnorepinephrine system in arousal and circadian regulation of the sleep-wake cycle. In: Brain norepinephrine: Neurobiology and therapeutics; Ordway, G.A; Frazer, A, Eds.; Cambridge University Press,, 2007, pp. 157-195.
[91]
Bangasser, D.A.; Curtis, A.; Reyes, B.A.; Bethea, T.T.; Parastatidis, I.; Ischiropoulos, H.; Van Bockstaele, E.J.; Valentino, R.J. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry, 2010, 15(9), 877-896-904.
[http://dx.doi.org/10.1038/mp.2010.89] [PMID: 20548297]
[92]
Bates, M.L.S.; Arner, J.R.; Curtis, A.L.; Valentino, R.; Bhatnagar, S. Sex-specific alterations in corticotropin-releasing factor regulation of coerulear-cortical network activity. Neuropharmacology, 2023, 223, 109317.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109317] [PMID: 36334761]
[93]
Coker, A.L.; Weston, R.; Creson, D.L.; Justice, B.; Blakeney, P. PTSD symptoms among men and women survivors of intimate partner violence: the role of risk and protective factors. Violence Vict., 2005, 20(6), 625-643.
[http://dx.doi.org/10.1891/0886-6708.20.6.625] [PMID: 16468442]
[94]
Breslau, N.; Chilcoat, H.D.; Kessler, R.C.; Peterson, E.L.; Lucia, V.C. Vulnerability to assaultive violence: further specification of the sex difference in post-traumatic stress disorder. Psychol. Med., 1999, 29(4), 813-821.
[http://dx.doi.org/10.1017/S0033291799008612] [PMID: 10473308]
[95]
Plante, D.T.; Landsness, E.C.; Peterson, M.J.; Goldstein, M.R.; Riedner, B.A.; Wanger, T.; Guokas, J.J.; Tononi, G.; Benca, R.M. Sex-related differences in sleep slow wave activity in major depressive disorder: A high-density EEG investigation. BMC Psychiatry, 2012, 12(1), 146.
[http://dx.doi.org/10.1186/1471-244X-12-146] [PMID: 22989072]
[96]
Nolen-Hoeksema, S.; Larson, J.; Grayson, C. Explaining the gender difference in depressive symptoms. J. Pers. Soc. Psychol., 1999, 77(5), 1061-1072.
[http://dx.doi.org/10.1037/0022-3514.77.5.1061] [PMID: 10573880]
[97]
Lefkowitz, R.J.; Shenoy, S.K. Transduction of receptor signals by beta-arrestins. Science, 2005, 308(5721), 512-517.
[http://dx.doi.org/10.1126/science.1109237] [PMID: 15845844]
[98]
Violin, J.D. Lefkowitz, R.J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci., 2007, 28(8), 416-422.
[http://dx.doi.org/10.1016/j.tips.2007.06.006] [PMID: 17644195]
[99]
Bangasser, D.A.; Dong, H.; Carroll, J.; Plona, Z.; Ding, H.; Rodriguez, L.; McKennan, C.; Csernansky, J.G.; Seeholzer, S.H.; Valentino, R.J. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Mol. Psychiatry, 2017, 22(8), 1126-1133.
[http://dx.doi.org/10.1038/mp.2016.185] [PMID: 27752081]
[100]
Valentino, R.J.; Van Bockstaele, E.; Bangasser, D. Sex-specific cell signaling: The corticotropin-releasing factor receptor model. Trends Pharmacol. Sci., 2013, 34(8), 437-444.
[http://dx.doi.org/10.1016/j.tips.2013.06.004] [PMID: 23849813]
[101]
Murrough, J.W.; Charney, D.S. Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: Time to call it quits? Biol. Psychiatry, 2017, 82(12), 858-860.
[http://dx.doi.org/10.1016/j.biopsych.2017.10.012] [PMID: 29129198]
[102]
Mansbach, R.S.; Brooks, E.N.; Chen, Y.L. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol., 1997, 323(1), 21-26.
[http://dx.doi.org/10.1016/S0014-2999(97)00025-3] [PMID: 9105872]
[103]
Schulz, D.W.; Mansbach, R.S.; Sprouse, J.; Braselton, J.P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.; Schmidt, A.W.; Seeger, T.; Seymour, P.; Tingley, F.D., III; Winston, E.N.; Chen, Y.L.; Heym, J. CP-154,526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc. Natl. Acad. Sci. , 1996, 93(19), 10477-10482.
[http://dx.doi.org/10.1073/pnas.93.19.10477] [PMID: 8816826]
[104]
Deak, T.; Nguyen, K.T.; Ehrlich, A.L.; Watkins, L.R.; Spencer, R.L.; Maier, S.F.; Licinio, J.; Wong, M.L.; Chrousos, G.P.; Webster, E.; Gold, P.W. The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology, 1999, 140(1), 79-86.
[http://dx.doi.org/10.1210/endo.140.1.6415] [PMID: 9886810]
[105]
Zorrilla, E.P.; Valdez, G.R.; Nozulak, J.; Koob, G.F.; Markou, A. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res., 2002, 952(2), 188-199.
[http://dx.doi.org/10.1016/S0006-8993(02)03189-X] [PMID: 12376179]
[106]
Chaki, S.; Nakazato, A.; Kennis, L.; Nakamura, M.; Mackie, C.; Sugiura, M.; Vinken, P.; Ashton, D.; Langlois, X.; Steckler, T. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur. J. Pharmacol., 2004, 485(1-3), 145-158.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.032] [PMID: 14757135]
[107]
Ising, M.; Zimmermann, U.S.; Künzel, H.E.; Uhr, M.; Foster, A.C.; Learned-Coughlin, S.M.; Holsboer, F.; Grigoriadis, D.E. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology, 2007, 32(9), 1941-1949.
[http://dx.doi.org/10.1038/sj.npp.1301328] [PMID: 17287823]
[108]
Caruso, A.; Nicoletti, F.; Gaetano, A.; Scaccianoce, S. Risk factors for Alzheimer’s disease: Focus on stress. Front. Pharmacol., 2019, 10, 976.
[http://dx.doi.org/10.3389/fphar.2019.00976] [PMID: 31551781]
[109]
Ouanes, S.; Popp, J. High cortisol and the risk of dementia and alzheimer’s disease: A review of the literature. Front. Aging Neurosci., 2019, 11, 43.
[http://dx.doi.org/10.3389/fnagi.2019.00043] [PMID: 30881301]
[110]
Csernansky, J.G.; Dong, H.; Fagan, A.M.; Wang, L.; Xiong, C.; Holtzman, D.M.; Morris, J.C. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry, 2006, 163(12), 2164-2169.
[http://dx.doi.org/10.1176/ajp.2006.163.12.2164] [PMID: 17151169]
[111]
Elgh, E.; Lindqvist Åstot, A.; Fagerlund, M.; Eriksson, S.; Olsson, T.; Näsman, B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol. Psychiatry, 2006, 59(2), 155-161.
[http://dx.doi.org/10.1016/j.biopsych.2005.06.017] [PMID: 16125145]
[112]
Vyas, S.; Rodrigues, A.J.; Silva, J.M.; Tronche, F.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration. Neural Plast., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/6391686] [PMID: 27034847]
[113]
Hatzinger, M. Z’Brun, A.; Hemmeter, U.; Seifritz, E.; Baumann, F.; Holsboer-Trachsler, E.; Heuser, I.J. Hypothalamic-pituitary-adrenal system function in patients with alzheimer’s disease. Neurobiol. Aging, 1995, 16(2), 205-209.
[http://dx.doi.org/10.1016/0197-4580(94)00159-6] [PMID: 7777138]
[114]
Peskind, E.R.; Wilkinson, C.W.; Petrie, E.C.; Schellenberg, G.D.; Raskind, M.A. Increased CSF cortisol in AD is a function of APOE genotype. Neurology, 2001, 56(8), 1094-1098.
[http://dx.doi.org/10.1212/WNL.56.8.1094] [PMID: 11320185]
[115]
Greenwald, B.S.; Mathé, A.A.; Mohs, R.C.; Levy, M.I.; Johns, C.A.; Davis, K.L. Cortisol and Alzheimer’s disease, II: Dexamethasone suppression, dementia severity, and affective symptoms. Am. J. Psychiatry, 1986, 143(4), 442-446.
[http://dx.doi.org/10.1176/ajp.143.4.442] [PMID: 3953887]
[116]
Hartmann, A.; Veldhuis, J.D.; Deuschle, M.; Standhardt, H.; Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging, 1997, 18(3), 285-289.
[http://dx.doi.org/10.1016/S0197-4580(97)80309-0] [PMID: 9263193]
[117]
Rasmuson, S.; Näsman, B.; Olsson, T. Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimer’s disease. Int. Psychogeriatr., 2011, 23(9), 1386-1392.
[http://dx.doi.org/10.1017/S1041610211000810] [PMID: 21729423]
[118]
Toledo, J.B.; Toledo, E.; Weiner, M.W.; Jack, C.R., Jr; Jagust, W.; Lee, V.M.Y.; Shaw, L.M.; Trojanowski, J.Q. Cardiovascular risk factors, cortisol, and amyloid‐β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement., 2012, 8(6), 483-489.
[http://dx.doi.org/10.1016/j.jalz.2011.08.008] [PMID: 23102118]
[119]
Catania, C.; Sotiropoulos, I.; Silva, R.; Onofri, C.; Breen, K.C.; Sousa, N.; Almeida, O F X. The amyloidogenic potential and behavioral correlates of stress. Mol. Psychiatry, 2009, 14(1), 95-105.
[http://dx.doi.org/10.1038/sj.mp.4002101] [PMID: 17912249]
[120]
Green, K.N.; Billings, L.M.; Roozendaal, B.; McGaugh, J.L.; LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J. Neurosci., 2006, 26(35), 9047-9056.
[http://dx.doi.org/10.1523/JNEUROSCI.2797-06.2006] [PMID: 16943563]
[121]
Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: The function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3), 365-379.
[http://dx.doi.org/10.1007/s00213-016-4473-9] [PMID: 27837334]
[122]
Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Sex- and brain region-specific acceleration of β-amyloidogenesis following behavioral stress in a mouse model of Alzheimer’s disease. Mol. Brain, 2010, 3(1), 34.
[http://dx.doi.org/10.1186/1756-6606-3-34] [PMID: 21059265]
[123]
Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci., 2011, 31(21), 7840-7847.
[http://dx.doi.org/10.1523/JNEUROSCI.0730-11.2011] [PMID: 21613497]
[124]
Sotiropoulos, I.; Silva, J.; Kimura, T.; Rodrigues, A.J.; Costa, P.; Almeida, O.F.X.; Sousa, N.; Takashima, A. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. J. Alzheimers Dis., 2014, 43(3), 763-774.
[http://dx.doi.org/10.3233/JAD-140693] [PMID: 25159665]
[125]
Lopes, S.; Vaz-Silva, J.; Pinto, V.; Dalla, C.; Kokras, N.; Bedenk, B.; Mack, N.; Czisch, M.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Tau protein is essential for stress-induced brain pathology. Proc. Natl. Acad. Sci., 2016, 113(26), E3755-E3763.
[http://dx.doi.org/10.1073/pnas.1600953113] [PMID: 27274066]
[126]
Silva, J.M.; Rodrigues, S.; Sampaio-Marques, B.; Gomes, P.; Neves-Carvalho, A.; Dioli, C.; Soares-Cunha, C.; Mazuik, B.F.; Takashima, A.; Ludovico, P.; Wolozin, B.; Sousa, N.; Sotiropoulos, I. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ., 2019, 26(8), 1411-1427.
[http://dx.doi.org/10.1038/s41418-018-0217-1] [PMID: 30442948]
[127]
Vaz-Silva, J.; Gomes, P.; Jin, Q.; Zhu, M.; Zhuravleva, V.; Quintremil, S.; Meira, T.; Silva, J.; Dioli, C.; Soares-Cunha, C.; Daskalakis, N.P.; Sousa, N.; Sotiropoulos, I.; Waites, C.L. Endolysosomal degradation of Tau and its role in glucocorticoid‐driven hippocampal malfunction. EMBO J., 2018, 37(20), e99084.
[http://dx.doi.org/10.15252/embj.201899084] [PMID: 30166454]
[128]
Pinheiro, S.; Silva, J.; Mota, C.; Vaz-Silva, J.; Veloso, A.; Pinto, V.; Sousa, N.; Cerqueira, J.; Sotiropoulos, I. Tau mislocation in glucocorticoid-triggered hippocampal pathology. Mol. Neurobiol., 2016, 53(7), 4745-4753.
[http://dx.doi.org/10.1007/s12035-015-9356-2] [PMID: 26328538]
[129]
Sotiropoulos, I.; Silva, J.M.; Gomes, P.; Sousa, N.; Almeida, O.F.X. Stress and the etiopathogenesis of alzheimer’s disease and depression. Adv. Exp. Med. Biol., 2019, 1184, 241-257.
[http://dx.doi.org/10.1007/978-981-32-9358-8_20] [PMID: 32096043]
[130]
Rissman, R.A.; Lee, K.F.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J. Neurosci., 2007, 27(24), 6552-6562.
[http://dx.doi.org/10.1523/JNEUROSCI.5173-06.2007] [PMID: 17567816]
[131]
Rissman, R.A.; Staup, M.A.; Lee, A.R.; Justice, N.J.; Rice, K.C.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 6277-6282.
[http://dx.doi.org/10.1073/pnas.1203140109] [PMID: 22451915]
[132]
Gandy, S.; Duff, K. Post-menopausal estrogen deprivation and Alzheimer’s disease. Exp. Gerontol., 2000, 35(4), 503-511.
[http://dx.doi.org/10.1016/S0531-5565(00)00116-9] [PMID: 10959038]
[133]
Carroll, J.C.; Rosario, E.R.; Kreimer, S.; Villamagna, A.; Gentzschein, E.; Stanczyk, F.Z.; Pike, C.J. Sex differences in β-amyloid accumulation in 3xTg-AD mice: Role of neonatal sex steroid hormone exposure. Brain Res., 2010, 1366, 233-245.
[http://dx.doi.org/10.1016/j.brainres.2010.10.009] [PMID: 20934413]
[134]
Monteiro-Fernandes, D.; Sousa, N.; Almeida, O.F.X.; Sotiropoulos, I. Sex hormone depletion augments glucocorticoid induction of tau hyperphosphorylation in male rat brain. Neuroscience, 2021, 454, 140-150.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.049] [PMID: 32512138]
[135]
Panizzon, M.S.; Hauger, R.L.; Xian, H.; Jacobson, K.; Lyons, M.J.; Franz, C.E.; Kremen, W.S. Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men. Psychoneuroendocrinology, 2018, 91, 115-122.
[http://dx.doi.org/10.1016/j.psyneuen.2018.03.003] [PMID: 29547742]
[136]
Fiacco, S.; Walther, A.; Ehlert, U. Steroid secretion in healthy aging. Psychoneuroendocrinology, 2019, 105, 64-78.
[http://dx.doi.org/10.1016/j.psyneuen.2018.09.035] [PMID: 30314729]
[137]
Italia, M.; Forastieri, C.; Longaretti, A.; Battaglioli, E.; Rusconi, F. Rationale, relevance, and limits of stress-induced psychopathology in rodents as models for psychiatry research: An introductory overview. Int. J. Mol. Sci., 2020, 21(20), 7455.
[http://dx.doi.org/10.3390/ijms21207455] [PMID: 33050350]
[138]
Kokras, N.; Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol., 2014, 171(20), 4595-4619.
[http://dx.doi.org/10.1111/bph.12710] [PMID: 24697577]
[139]
Hodes, G.E. A primer on sex differences in the behavioral response to stress. Curr. Opin. Behav. Sci., 2018, 23, 75-83.
[http://dx.doi.org/10.1016/j.cobeha.2018.03.012]
[140]
Hodes, G.E.; Pfau, M.L.; Purushothaman, I.; Ahn, H.F.; Golden, S.A.; Christoffel, D.J.; Magida, J.; Brancato, A.; Takahashi, A.; Flanigan, M.E.; Ménard, C.; Aleyasin, H.; Koo, J.W.; Lorsch, Z.S.; Feng, J.; Heshmati, M.; Wang, M.; Turecki, G.; Neve, R.; Zhang, B.; Shen, L.; Nestler, E.J.; Russo, S.J. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci., 2015, 35(50), 16362-16376.
[http://dx.doi.org/10.1523/JNEUROSCI.1392-15.2015] [PMID: 26674863]
[141]
van der Zee, Y.Y.; Lardner, C.K.; Parise, E.M.; Mews, P.; Ramakrishnan, A.; Patel, V.; Teague, C.D.; Salery, M.; Walker, D.M.; Browne, C.J.; Labonté, B.; Parise, L.F.; Kronman, H.; Penã, C.J.; Torres-Berrío, A.; Duffy, J.E.; de Nijs, L.; Eijssen, L.M.T.; Shen, L.; Rutten, B.; Issler, O.; Nestler, E.J. Sex-specific role for SLIT1 in regulating stress susceptibility. Biol. Psychiatry, 2022, 91(1), 81-91.
[http://dx.doi.org/10.1016/j.biopsych.2021.01.019] [PMID: 33896623]
[142]
Lorsch, Z.S.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Parise, E.M.; Salery, M.; Cahill, M.E.; Hodes, G.E.; Pfau, M.L.; Kronman, H.; Hamilton, P.J.; Issler, O.; Labonté, B.; Symonds, A.E.; Zucker, M.; Zhang, T.Y.; Meaney, M.J.; Russo, S.J.; Shen, L.; Bagot, R.C.; Nestler, E.J. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat. Commun., 2018, 9(1), 1116.
[http://dx.doi.org/10.1038/s41467-018-03567-4] [PMID: 29549264]
[143]
Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Xia, S.; Zinsmaier, A.K.; Tan, C.; Li, W.; Browne, C.J.; Walker, D.M.; Salery, M.; Torres-Berrío, A.; Futamura, R.; Duffy, J.E.; Labonte, B.; Girgenti, M.J.; Tamminga, C.A.; Dupree, J.L.; Dong, Y.; Murrough, J.W.; Shen, L.; Nestler, E.J. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. Sci. Adv., 2022, 8(48), eabn9494.
[http://dx.doi.org/10.1126/sciadv.abn9494] [PMID: 36449610]
[144]
Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Wang, J.; Tan, C.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Lorsch, Z.S.; Hamilton, P.J.; Peña, C.J.; Flaherty, E.; Hartley, B.J.; Torres-Berrío, A.; Parise, E.M.; Kronman, H.; Duffy, J.E.; Estill, M.S.; Calipari, E.S.; Labonté, B.; Neve, R.L.; Tamminga, C.A.; Brennand, K.J.; Dong, Y.; Shen, L.; Nestler, E.J. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron, 2020, 106(6), 912-926.e5.
[http://dx.doi.org/10.1016/j.neuron.2020.03.023] [PMID: 32304628]
[145]
Labonté, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.H.E.; Cahill, M.; Lorsch, Z.S.; Hamilton, P.J.; Calipari, E.S.; Hodes, G.E.; Issler, O.; Kronman, H.; Pfau, M.; Obradovic, A.L.J.; Dong, Y.; Neve, R.L.; Russo, S.; Kasarskis, A.; Tamminga, C.; Mechawar, N.; Turecki, G.; Zhang, B.; Shen, L.; Nestler, E.J. Sex-specific transcriptional signatures in human depression. Nat. Med., 2017, 23(9), 1102-1111.
[http://dx.doi.org/10.1038/nm.4386] [PMID: 28825715]
[146]
Seney, M.L.; Chang, L.C.; Oh, H.; Wang, X.; Tseng, G.C.; Lewis, D.A.; Sibille, E. The role of genetic sex in affect regulation and expression of gaba-related genes across species. Front. Psychiatry, 2013, 4, 104.
[http://dx.doi.org/10.3389/fpsyt.2013.00104] [PMID: 24062698]
[147]
Seney, M.L.; Huo, Z.; Cahill, K.; French, L.; Puralewski, R.; Zhang, J.; Logan, R.W.; Tseng, G.; Lewis, D.A.; Sibille, E. Opposite molecular signatures of depression in men and women. Biol. Psychiatry, 2018, 84(1), 18-27.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.017] [PMID: 29548746]
[148]
Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9(16), 2395-2402.
[http://dx.doi.org/10.1093/hmg/9.16.2395] [PMID: 11005794]
[149]
Feng, J.; Fan, G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol., 2009, 89, 67-84.
[http://dx.doi.org/10.1016/S0074-7742(09)89004-1] [PMID: 19900616]
[150]
Nugent, B.M.; Wright, C.L.; Shetty, A.C.; Hodes, G.E.; Lenz, K.M.; Mahurkar, A.; Russo, S.J.; Devine, S.E.; McCarthy, M.M. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci., 2015, 18(5), 690-697.
[http://dx.doi.org/10.1038/nn.3988] [PMID: 25821913]
[151]
LaPlant, Q.; Vialou, V.; Covington, H.E., III; Dumitriu, D.; Feng, J.; Warren, B.L.; Maze, I.; Dietz, D.M.; Watts, E.L.; Iñiguez, S.D.; Koo, J.W.; Mouzon, E.; Renthal, W.; Hollis, F.; Wang, H.; Noonan, M.A.; Ren, Y.; Eisch, A.J.; Bolaños, C.A.; Kabbaj, M.; Xiao, G.; Neve, R.L.; Hurd, Y.L.; Oosting, R.S.; Fan, G.; Morrison, J.H.; Nestler, E.J. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci., 2010, 13(9), 1137-1143.
[http://dx.doi.org/10.1038/nn.2619] [PMID: 20729844]
[152]
Christoffel, D.J. Golden, S.A.; Dumitriu, D.; Robison, A.J.; Janssen, W.G.; Ahn, H.F.; Krishnan, V.; Reyes, C.M.; Han, M.H.; Ables, J.L.; Eisch, A.J.; Dietz, D.M.; Ferguson, D.; Neve, R.L.; Greengard, P.; Kim, Y.; Morrison, J.H.; Russo, S.J. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci., 2011, 31(1), 314-321.
[http://dx.doi.org/10.1523/JNEUROSCI.4763-10.2011] [PMID: 21209217]
[153]
Wang, J.; Hodes, G.E.; Zhang, H.; Zhang, S.; Zhao, W.; Golden, S.A.; Bi, W.; Menard, C.; Kana, V.; Leboeuf, M.; Xie, M.; Bregman, D.; Pfau, M.L.; Flanigan, M.E.; Esteban-Fernández, A.; Yemul, S.; Sharma, A.; Ho, L.; Dixon, R.; Merad, M.; Han, M.H.; Russo, S.J.; Pasinetti, G.M. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun., 2018, 9(1), 477.
[http://dx.doi.org/10.1038/s41467-017-02794-5] [PMID: 29396460]
[154]
Deonaraine, K.K.; Wang, Q.; Cheng, H.; Chan, K.L.; Lin, H.Y.; Liu, K.; Parise, L.F.; Cathomas, F.; Leclair, K.B.; Flanigan, M.E.; Li, L.; Aleyasin, H.; Guevara, C.; Hao, K.; Zhang, B.; Russo, S.J.; Wang, J. Sex‐specific peripheral and central responses to stres induced depression and treatment in a mouse model. J. Neurosci. Res., 2020, 98(12), 2541-2553.
[http://dx.doi.org/10.1002/jnr.24724] [PMID: 32918293]
[155]
Peña, C.J.; Bagot, R.C.; Labonté, B.; Nestler, E.J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol., 2014, 426(20), 3389-3412.
[http://dx.doi.org/10.1016/j.jmb.2014.03.016] [PMID: 24709417]
[156]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[157]
Sun, H.; Kennedy, P.J.; Nestler, E.J. Epigenetics of the depressed brain: Role of histone acetylation and methylation. Neuropsychopharmacology, 2013, 38(1), 124-137.
[http://dx.doi.org/10.1038/npp.2012.73] [PMID: 22692567]
[158]
Fischle, W.; Wang, Y.; Allis, D.C. Binary switches and modification cassettes in histone biology and beyond. Nature, 2003, 425(6957), 475-479.
[http://dx.doi.org/10.1038/nature02017] [PMID: 14523437]
[159]
Vialou, V.; Feng, J.; Robison, A.J.; Nestler, E.J. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 59-87.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134540] [PMID: 23020296]
[160]
Iizuka, M.; Smith, M.M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev., 2003, 13(2), 154-160.
[http://dx.doi.org/10.1016/S0959-437X(03)00020-0] [PMID: 12672492]
[161]
Murray, E.K.; Hien, A.; de Vries, G.J.; Forger, N.G. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology, 2009, 150(9), 4241-4247.
[http://dx.doi.org/10.1210/en.2009-0458] [PMID: 19497973]
[162]
Bangasser, D.A.; Shors, T.J. The bed nucleus of the stria terminalis modulates learning after stress in masculinized but not cycling females. J. Neurosci., 2008, 28(25), 6383-6387.
[http://dx.doi.org/10.1523/JNEUROSCI.0831-08.2008] [PMID: 18562608]
[163]
Bangasser, D.A.; Santollo, J.; Shors, T.J. The bed nucleus of the stria terminalis is critically involved in enhancing associative learning after stressful experience. Behav. Neurosci., 2005, 119(6), 1459-1466.
[http://dx.doi.org/10.1037/0735-7044.119.6.1459] [PMID: 16420150]
[164]
Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[165]
Sase, A.S.; Lombroso, S.I.; Santhumayor, B.A.; Wood, R.R.; Lim, C.J.; Neve, R.L.; Heller, E.A. Sex-specific regulation of fear memory by targeted epigenetic editing of Cdk5. Biol. Psychiatry, 2019, 85(8), 623-634.
[http://dx.doi.org/10.1016/j.biopsych.2018.11.022] [PMID: 30661667]
[166]
O’Carroll, D.; Schaefer, A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology, 2013, 38(1), 39-54.
[http://dx.doi.org/10.1038/npp.2012.87] [PMID: 22669168]
[167]
Pfau, M.L.; Purushothaman, I.; Feng, J.; Golden, S.A.; Aleyasin, H.; Lorsch, Z.S.; Cates, H.M.; Flanigan, M.E.; Menard, C.; Heshmati, M.; Wang, Z.; Ma’ayan, A.; Shen, L.; Hodes, G.E.; Russo, S.J. Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens. Front. Mol. Neurosci., 2016, 9, 144.
[http://dx.doi.org/10.3389/fnmol.2016.00144] [PMID: 28066174]
[168]
Pfau, M.L.; Menard, C.; Cathomas, F.; Desland, F.; Kana, V.; Chan, K.L.; Shimo, Y.; LeClair, K.; Flanigan, M.E.; Aleyasin, H.; Walker, D.M.; Bouchard, S.; Mack, M.; Hodes, G.E.; Merad, M.M.; Russo, S.J. Role of monocyte-derived microRNA106b∼25 in resilience to social stress. Biol. Psychiatry, 2019, 86(6), 474-482.
[http://dx.doi.org/10.1016/j.biopsych.2019.02.023] [PMID: 31101319]
[169]
van der Zee, Y.Y.; Eijssen, L.M.T.; Mews, P.; Ramakrishnan, A.; Alvarez, K.; Lardner, C.K.; Cates, H.M.; Walker, D.M.; Torres-Berrío, A.; Browne, C.J.; Cunningham, A.; Cathomas, F.; Kronman, H.; Parise, E.M.; de Nijs, L.; Shen, L.; Murrough, J.W.; Rutten, B.P.F.; Nestler, E.J.; Issler, O. Blood miR-144-3p: A novel diagnostic and therapeutic tool for depression. Mol. Psychiatry, 2022, 27(11), 4536-4549.
[http://dx.doi.org/10.1038/s41380-022-01712-6] [PMID: 35902629]
[170]
Rodgers, A.B.; Morgan, C.P.; Leu, N.A.; Bale, T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. , 2015, 112(44), 13699-13704.
[http://dx.doi.org/10.1073/pnas.1508347112] [PMID: 26483456]
[171]
Dietz, D.M.; LaPlant, Q.; Watts, E.L.; Hodes, G.E.; Russo, S.J.; Feng, J.; Oosting, R.S.; Vialou, V.; Nestler, E.J. Paternal transmission of stress-induced pathologies. Biol. Psychiatry, 2011, 70(5), 408-414.
[http://dx.doi.org/10.1016/j.biopsych.2011.05.005] [PMID: 21679926]
[172]
Cunningham, A.M.; Walker, D.M.; Ramakrishnan, A.; Doyle, M.A.; Bagot, R.C.; Cates, H.M.; Peña, C.J.; Issler, O.; Lardner, C.K.; Browne, C.; Russo, S.J.; Shen, L.; Nestler, E.J. Sperm transcriptional state associated with paternal transmission of stress phenotypes. J. Neurosci., 2021, 41(29), 6202-6216.
[http://dx.doi.org/10.1523/JNEUROSCI.3192-20.2021] [PMID: 34099514]
[173]
Bianchi, I.; Lleo, A.; Gershwin, M.E.; Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun., 2012, 38(2-3), J187-J192.
[http://dx.doi.org/10.1016/j.jaut.2011.11.012] [PMID: 22178198]
[174]
Youness, A.; Miquel, C.H.; Guéry, J.C. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int. J. Mol. Sci., 2021, 22(3), 1114.
[http://dx.doi.org/10.3390/ijms22031114] [PMID: 33498655]
[175]
Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[176]
Maes, M.; Kubera, M.; Leunis, J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124.
[PMID: 18283240]
[177]
Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[178]
Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_1] [PMID: 24997027]
[179]
Cruz-Pereira, J.S.; Rea, K.; Nolan, Y.M.; O’Leary, O.F.; Dinan, T.G.; Cryan, J.F. Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol., 2020, 71(1), 49-78.
[http://dx.doi.org/10.1146/annurev-psych-122216-011613] [PMID: 31567042]
[180]
Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[181]
Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex differences in gut microbiota. World J. Mens Health, 2020, 38(1), 48-60.
[http://dx.doi.org/10.5534/wjmh.190009] [PMID: 30929328]
[182]
Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013, 339(6123), 1084-1088.
[http://dx.doi.org/10.1126/science.1233521] [PMID: 23328391]
[183]
Dalla, C.; Pavlidi, P.; Sakelliadou, D.G.; Grammatikopoulou, T.; Kokras, N. Sex differences in blood-brain barrier transport of psychotropic drugs. Front. Behav. Neurosci., 2022, 16, 844916.
[http://dx.doi.org/10.3389/fnbeh.2022.844916] [PMID: 35677576]
[184]
Kumar, M.; Rainville, J.R.; Williams, K.; Lile, J.A.; Hodes, G.E.; Vassoler, F.M.; Turner, J.R. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology, 2021, 186, 108469.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108469] [PMID: 33485944]
[185]
Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; LeClair, K.B.; Janssen, W.G.; Labonté, B.; Parise, E.M.; Lorsch, Z.S.; Golden, S.A.; Heshmati, M.; Tamminga, C.; Turecki, G.; Campbell, M.; Fayad, Z.A.; Tang, C.Y.; Merad, M.; Russo, S.J. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci., 2017, 20(12), 1752-1760.
[http://dx.doi.org/10.1038/s41593-017-0010-3] [PMID: 29184215]
[186]
Dion-Albert, L.; Bandeira Binder, L.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood-brain barrier: Implications for mental health. Front. Neuroendocrinol., 2022, 65, 100989.
[http://dx.doi.org/10.1016/j.yfrne.2022.100989] [PMID: 35271863]
[187]
Dion-Albert, L.; Cadoret, A.; Doney, E.; Kaufmann, F.N.; Dudek, K.A.; Daigle, B.; Parise, L.F.; Cathomas, F.; Samba, N.; Hudson, N.; Lebel, M.; Aardema, F.; Ait Bentaleb, L.; Beauchamp, J.; Bendahmane, H.; Benoit, E.; Bergeron, L.; Bertone, A.; Bertrand, N.; Berube, F-A.; Blanchet, P.; Boissonneault, J.; Bolduc, C.J.; Bonin, J-P.; Borgeat, F.; Boyer, R.; Breault, C.; Breton, J-J.; Briand, C.; Brodeur, J.; Brule, K.; Brunet, L.; Carriere, S.; Chartrand, C.; Chenard-Soucy, R.; Chevrette, T.; Cloutier, E.; Cloutier, R.; Cormier, H.; Cote, G.; Cyr, J.; David, P.; De Benedictis, L.; Delisle, M-C.; Deschenes, P.; Desjardins, C.D.; Desmarais, G.; Dubreucq, J-L.; Dumont, M.; Dumais, A.; Ethier, G.; Feltrin, C.; Felx, A.; Findlay, H.; Fortier, L.; Fortin, D.; Fortin, L.; Francois, N.; Gagne, V.; Gagnon, M-P.; Gignac-Hens, M-C.; Giguere, C-E.; Godbout, R.; Grou, C.; Guay, S.; Guillem, F.; Hachimi-Idrissi, N.; Herry, C.; Hodgins, S.; Homayoun, S.; Jemel, B.; Joyal, C.; Kouassi, E.; Labelle, R.; Lafortune, D.; Lahaie, M.; Lahlafi, S.; Lalonde, P.; Landry, P.; Lapaige, V.; Larocque, G.; Larue, C.; Lavoie, M.; Leclerc, J-J.; Lecomte, T.; Lecours, C.; Leduc, L.; Lelan, M-F.; Lemieux, A.; Lesage, A.; Letarte, A.; Lepage, J.; Levesque, A.; Lipp, O.; Luck, D.; Lupien, S.; Lusignan, F-A.; Lusignan, R.; Luyet, A.J.; Lynhiavu, A.; Melun, J-P.; Morin, C.; Nicole, L.; Noel, F.; Normandeau, L.; O’Connor, K.; Ouellette, C.; Parent, V.; Parizeau, M-H.; Pelletier, J-F.; Pelletier, J.; Pelletier, M.; Plusquellec, P.; Poirier, D.; Potvin, S.; Prevost, G.; Prevost, M-J.; Racicot, P.; Racine-Gagne, M-F.; Renaud, P.; Ricard, N.; Rivet, S.; Rolland, M.; Sasseville, M.; Safadi, G.; Smith, S.; Smolla, N.; Stip, E.; Teitelbaum, J.; Thibault, A.; Thibault, L.; Thibault, S.; Thomas, F.; Todorov, C.; Tourjman, V.; Tranulis, C.; Trudeau, S.; Trudel, G.; Vacri, N.; Valiquette, L.; Vanier, C.; Villeneuve, K.; Villeneuve, M.; Vincent, P.; Wolfe, M.; Xiong, L.; Zizzi, A.; Campbell, M.; Turecki, G.; Mechawar, N.; Menard, C. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun., 2022, 13(1), 164.
[http://dx.doi.org/10.1038/s41467-021-27604-x] [PMID: 35013188]
[188]
Bollinger, J.L.; Salinas, I.; Fender, E.; Sengelaub, D.R.; Wellman, C.L. Gonadal hormones differentially regulate sex‐specific stress effects on glia in the medial prefrontal cortex. J. Neuroendocrinol., 2019, 31(8), e12762.
[http://dx.doi.org/10.1111/jne.12762] [PMID: 31228875]
[189]
Van Camp, N.; Lavisse, S.; Roost, P.; Gubinelli, F.; Hillmer, A.; Boutin, H. TSPO imaging in animal models of brain diseases. Eur. J. Nucl. Med. Mol. Imaging, 2021, 49(1), 77-109.
[http://dx.doi.org/10.1007/s00259-021-05379-z] [PMID: 34245328]
[190]
Tsyglakova, M.; Huskey, A.M.; Hurst, E.H.; Telep, N.M.; Wilding, M.C.; Babington, M.E.; Rainville, J.R.; Hodes, G.E. Sex and region-specific effects of variable stress on microglia morphology. Brain, Behav. Immun. Health, 2021, 18, 100378.
[http://dx.doi.org/10.1016/j.bbih.2021.100378] [PMID: 34820640]
[191]
Keselman, A.; Heller, N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front. Immunol., 2015, 6, 568.
[http://dx.doi.org/10.3389/fimmu.2015.00568] [PMID: 26635789]
[192]
Molero, L.; García-Durán, M.; Diaz-Recasens, J.; Rico, L.; Casado, S.; López-Farré, A. Expression of estrogen receptor subtypes and neuronal nitric oxide synthase in neutrophils from women and men Regulation by estrogen. Cardiovasc. Res., 2002, 56(1), 43-51.
[http://dx.doi.org/10.1016/S0008-6363(02)00505-9] [PMID: 12237165]
[193]
Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol., 2012, 3, 169.
[http://dx.doi.org/10.3389/fimmu.2012.00169] [PMID: 22723800]
[194]
Rainville, J.R.; Tsyglakova, M.; Hodes, G.E. Deciphering sex differences in the immune system and depression. Front. Neuroendocrinol., 2018, 50, 67-90.
[http://dx.doi.org/10.1016/j.yfrne.2017.12.004] [PMID: 29288680]
[195]
Finnell, J.E.; Muniz, B.L.; Padi, A.R.; Lombard, C.M.; Moffitt, C.M.; Wood, C.S.; Wilson, L.B.; Reagan, L.P.; Wilson, M.A.; Wood, S.K. Essential role of ovarian hormones in susceptibility to the consequences of witnessing social defeat in female rats. Biol. Psychiatry, 2018, 84(5), 372-382.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.013] [PMID: 29544773]
[196]
Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci., 2014, 111(2), 869-874.
[http://dx.doi.org/10.1073/pnas.1321060111] [PMID: 24367114]
[197]
McMurray, R.W.; Suwannaroj, S.; Ndebele, K.; Jenkins, J.K. Differential effects of sex steroids on T and B cells: modulation of cell cycle phase distribution, apoptosis and bcl-2 protein levels. Pathobiology, 2001, 69(1), 44-58.
[http://dx.doi.org/10.1159/000048757] [PMID: 11641617]
[198]
Trigunaite, A.; Dimo, J.; Jørgensen, T.N. Suppressive effects of androgens on the immune system. Cell. Immunol., 2015, 294(2), 87-94.
[http://dx.doi.org/10.1016/j.cellimm.2015.02.004] [PMID: 25708485]
[199]
Gaillard, R.C.; Spinedi, E. Sex- and stress-steroids interactions and the immune system: Evidence for a neuroendocrine-immunological sexual dimorphism. Domest. Anim. Endocrinol., 1998, 15(5), 345-352.
[http://dx.doi.org/10.1016/S0739-7240(98)00028-9] [PMID: 9785038]
[200]
Dantzer, R.; Kelley, K.W. Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci., 1989, 44(26), 1995-2008.
[http://dx.doi.org/10.1016/0024-3205(89)90345-7] [PMID: 2568569]
[201]
Engler, H.; Benson, S.; Wegner, A.; Spreitzer, I.; Schedlowski, M.; Elsenbruch, S. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms. Brain Behav. Immun., 2016, 52, 18-26.
[http://dx.doi.org/10.1016/j.bbi.2015.08.013] [PMID: 26291403]
[202]
Harden, K.P.; Wrzus, C.; Luong, G.; Grotzinger, A.; Bajbouj, M.; Rauers, A.; Wagner, G.G.; Riediger, M. Diurnal coupling between testosterone and cortisol from adolescence to older adulthood. Psychoneuroendocrinology, 2016, 73, 79-90.
[http://dx.doi.org/10.1016/j.psyneuen.2016.07.216] [PMID: 27474909]
[203]
Andrews, G.; Bell, C.; Boyce, P.; Gale, C.; Lampe, L.; Marwat, O.; Rapee, R.; Wilkins, G. Royal australian and new zealand college of psychiatrists clinical practice guidelines for the treatment of panic disorder, social anxiety disorder and generalised anxiety disorder. Aust. N. Z. J. Psychiatry, 2018, 52(12), 1109-1172.
[http://dx.doi.org/10.1177/0004867418799453]
[204]
Zohar, J.; Stahl, S.; Moller, H.J.; Blier, P.; Kupfer, D.; Yamawaki, S.; Uchida, H.; Spedding, M.; Goodwin, G.M.; Nutt, D. A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-based Nomenclature. Eur. Neuropsychopharmacol., 2015, 25(12), 2318-2325.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.019] [PMID: 26527055]
[205]
Khan, A.; Brodhead, A.E.; Schwartz, K.A.; Kolts, R.L.; Brown, W.A. Sex differences in antidepressant response in recent antidepressant clinical trials. J. Clin. Psychopharmacol., 2005, 25(4), 318-324.
[http://dx.doi.org/10.1097/01.jcp.0000168879.03169.ce] [PMID: 16012273]
[206]
Kokras, N.; Dalla, C.; Papadopoulou-Daifoti, Z. Sex differences in pharmacokinetics of antidepressants. Expert Opin. Drug Metab. Toxicol., 2011, 7(2), 213-226.
[http://dx.doi.org/10.1517/17425255.2011.544250] [PMID: 21192772]
[207]
Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci., 2016, 18(4), 447-457.
[http://dx.doi.org/10.31887/DCNS.2016.18.4/ncutler] [PMID: 28179816]
[208]
Hutson, W.R.; Roehrkasse, R.L.; Wald, A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology, 1989, 96(1), 11-17.
[http://dx.doi.org/10.1016/0016-5085(89)90758-0] [PMID: 2909416]
[209]
Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Carlini, M.; Vatteroni, E.; Falaschi, V.; Lombardi, A.; Dell’Osso, L. Pharmacokinetics and pharmacodinamics of psychotropic drugs: Effect of sex. CNS Spectr., 2013, 18(3), 118-127.
[http://dx.doi.org/10.1017/S1092852912001010] [PMID: 23374978]
[210]
Nicolas, J.M.; Espie, P.; Molimard, M. Gender and interindividual variability in pharmacokinetics. Drug Metab. Rev., 2009, 41(3), 408-421.
[http://dx.doi.org/10.1080/10837450902891485] [PMID: 19601720]
[211]
Kristensen, C.B. Imipramine serum protein binding in healthy subjects. Clin. Pharmacol. Ther., 1983, 34(5), 689-694.
[http://dx.doi.org/10.1038/clpt.1983.233] [PMID: 6627829]
[212]
Anderson, G.D. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J. Womens Health, 2005, 14(1), 19-29.
[http://dx.doi.org/10.1089/jwh.2005.14.19] [PMID: 15692274]
[213]
Schwartz, J.B. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin. Pharmacol. Ther., 2007, 82(1), 87-96.
[http://dx.doi.org/10.1038/sj.clpt.6100226] [PMID: 17495875]
[214]
Farkas, R.H.; Unger, E.F.; Temple, R. Zolpidem and driving impairment-identifying persons at risk. N. Engl. J. Med., 2013, 369(8), 689-691.
[http://dx.doi.org/10.1056/NEJMp1307972] [PMID: 23923991]
[215]
Bigos, K.L.; Pollock, B.G.; Stankevich, B.A.; Bies, R.R. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: An updated review. Gend. Med., 2009, 6(4), 522-543.
[http://dx.doi.org/10.1016/j.genm.2009.12.004] [PMID: 20114004]
[216]
Berlanga, C.; Flores-Ramos, M. Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine. J. Affect. Disord., 2006, 95(1-3), 119-123.
[http://dx.doi.org/10.1016/j.jad.2006.04.029] [PMID: 16782204]
[217]
Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry, 2000, 157(9), 1445-1452.
[http://dx.doi.org/10.1176/appi.ajp.157.9.1445] [PMID: 10964861]
[218]
Young, E.A.; Kornstein, S.G.; Marcus, S.M.; Harvey, A.T.; Warden, D.; Wisniewski, S.R.; Balasubramani, G.K.; Fava, M.; Trivedi, M.H.; John Rush, A. Sex differences in response to citalopram: A STAR∗D report. J. Psychiatr. Res., 2009, 43(5), 503-511.
[http://dx.doi.org/10.1016/j.jpsychires.2008.07.002] [PMID: 18752809]
[219]
Parker, G.; Parker, K.; Austin, M.P.; Mitchell, P.; Brotchie, H. Gender differences in response to differing antidepressant drug classes: Two negative studies. Psychol. Med., 2003, 33(8), 1473-1477.
[http://dx.doi.org/10.1017/S0033291703007918] [PMID: 14672256]
[220]
Kornstein, S.G.; Pedersen, R.D.; Holland, P.J.; Nemeroff, C.B.; Rothschild, A.J.; Thase, M.E.; Trivedi, M.H.; Ninan, P.T.; Keller, M.B. Influence of sex and menopausal status on response, remission, and recurrence in patients with recurrent major depressive disorder treated with venlafaxine extended release or fluoxetine: Analysis of data from the PREVENT study. J. Clin. Psychiatry, 2014, 75(1), 62-68.
[http://dx.doi.org/10.4088/JCP.12m07841] [PMID: 24345717]
[221]
Thase, M.E.; Entsuah, R.; Cantillon, M.; Kornstein, S.G. Relative antidepressant efficacy of venlafaxine and SSRIs: sex-age interactions. J. Womens Health, 2005, 14(7), 609-616.
[http://dx.doi.org/10.1089/jwh.2005.14.609] [PMID: 16181017]
[222]
Naito, S.; Sato, K.; Yoshida, K.; Higuchi, H.; Takahashi, H.; Kamata, M.; Ito, K.; Ohkubo, T.; Shimizu, T. Gender differences in the clinical effects of fluvoxamine and milnacipran in Japanese major depressive patients. Psychiatry Clin. Neurosci., 2007, 61(4), 421-427.
[http://dx.doi.org/10.1111/j.1440-1819.2007.01679.x] [PMID: 17610668]
[223]
Williams, A.V.; Trainor, B.C. The impact of sex as a biological variable in the search for novel antidepressants. Front. Neuroendocrinol., 2018, 50, 107-117.
[http://dx.doi.org/10.1016/j.yfrne.2018.05.003] [PMID: 29859882]
[224]
Keating, C.; Tilbrook, A.; Kulkarni, J. Oestrogen: an overlooked mediator in the neuropsychopharmacology of treatment response? Int. J. Neuropsychopharmacol., 2011, 14(4), 553-566.
[http://dx.doi.org/10.1017/S1461145710000982] [PMID: 20860875]
[225]
Schneider, L.S.; Small, G.W.; Clary, C.M. Estrogen replacement therapy and antidepressant response to sertraline in older depressed women. Am. J. Geriatr. Psychiatry, 2001, 9(4), 393-399.
[http://dx.doi.org/10.1097/00019442-200111000-00007] [PMID: 11739065]
[226]
Schneider, L.S.; Small, G.W.; Hamilton, S.H.; Bystritsky, A.; Nemeroff, C.B.; Meyers, B.S. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Am. J. Geriatr. Psychiatry, 1997, 5(2), 97-106.
[http://dx.doi.org/10.1097/00019442-199721520-00002] [PMID: 9106373]
[227]
Stahl, S.M. Basic psychopharmacology of antidepressants, part 2: Estrogen as an adjunct to antidepressant treatment. J. Clin. Psychiatry, 1998, 59(S4), 15-24.
[PMID: 9554317]
[228]
Richardson, T.A.; Robinson, R.D. Menopause and depression: A review of psychologic function and sex steroid neurobiology during the menopause. Prim. Care Update Ob Gyns, 2000, 7(6), 215-223.
[http://dx.doi.org/10.1016/S1068-607X(00)00049-4] [PMID: 11077233]
[229]
Shapira, B.; Oppenheim, G.; Zohar, J.; Segal, M.; Malach, D.; Belmaker, R.H. Lack of efficacy of estrogen supplementation to imipramine in resistant female depressives. Biol. Psychiatry, 1985, 20(5), 576-579.
[http://dx.doi.org/10.1016/0006-3223(85)90031-9] [PMID: 2985131]
[230]
Amsterdam, J.; Garcia-España, F.; Fawcett, J.; Quitkin, F.; Reimherr, F.; Rosenbaum, J.; Beasley, C. Fluoxetine efficacy in menopausal women with and without estrogen replacement. J. Affect. Disord., 1999, 55(1), 11-17.
[http://dx.doi.org/10.1016/S0165-0327(98)00203-1] [PMID: 10512601]
[231]
Frokjaer, V.G.; Pinborg, A.; Holst, K.K.; Overgaard, A.; Henningsson, S.; Heede, M.; Larsen, E.C.; Jensen, P.S.; Agn, M.; Nielsen, A.P.; Stenbæk, D.S.; da Cunha-Bang, S.; Lehel, S.; Siebner, H.R.; Mikkelsen, J.D.; Svarer, C.; Knudsen, G.M. Role of serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: A positron emission tomography study. Biol. Psychiatry, 2015, 78(8), 534-543.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.015] [PMID: 26004162]
[232]
Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res., 2017, 95(1-2), 731-736.
[http://dx.doi.org/10.1002/jnr.23861] [PMID: 27870451]
[233]
Eid, R.S.; Gobinath, A.R.; Galea, L.A.M. Sex differences in depression: Insights from clinical and preclinical studies. Prog. Neurobiol., 2019, 176, 86-102.
[http://dx.doi.org/10.1016/j.pneurobio.2019.01.006] [PMID: 30721749]
[234]
Kokras, N.; Antoniou, K.; Mikail, H.G.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z.; Dalla, C. Forced swim test: What about females? Neuropharmacology, 2015, 99, 408-421.
[http://dx.doi.org/10.1016/j.neuropharm.2015.03.016] [PMID: 25839894]
[235]
Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in animal models of depression and antidepressant response. Basic Clin. Pharmacol. Toxicol., 2010, 106(3), 226-233.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00516.x] [PMID: 20050844]
[236]
Saland, S.K.; Duclot, F.; Kabbaj, M. Integrative analysis of sex differences in the rapid antidepressant effects of ketamine in preclinical models for individualized clinical outcomes. Curr. Opin. Behav. Sci., 2017, 14, 19-26.
[http://dx.doi.org/10.1016/j.cobeha.2016.11.002] [PMID: 28584860]
[237]
Fernández-Guasti, A.; Olivares-Nazario, M.; Reyes, R.; Martínez-Mota, L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol. Biochem. Behav., 2017, 152, 81-89.
[http://dx.doi.org/10.1016/j.pbb.2016.01.011] [PMID: 26807812]
[238]
Gómez, M.L.; Martínez-Mota, L.; Estrada-Camarena, E.; Fernández-Guasti, A. Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test. Neuroscience, 2014, 261, 11-22.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.035] [PMID: 24374081]
[239]
David, D.J.P.; Nic Dhonnchadha, B.Á.; Jolliet, P.; Hascoët, M.; Bourin, M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav. Brain Res., 2001, 119(2), 203-211.
[http://dx.doi.org/10.1016/S0166-4328(00)00351-X] [PMID: 11165336]
[240]
Melo, A.; Kokras, N.; Dalla, C.; Ferreira, C.; Ventura-Silva, A.P.; Sousa, N.; Pêgo, J.M. The positive effect on ketamine as a priming adjuvant in antidepressant treatment. Transl. Psychiatry, 2015, 5(5), e573-e573.
[http://dx.doi.org/10.1038/tp.2015.66] [PMID: 26080090]
[241]
Pavlidi, P.; Megalokonomou, A.; Sofron, A.; Kokras, N.; Dalla, C. Pharmacology of ketamine and esketamine as rapid-acting antidepressants. Psychiatriki, 2021, 32(S1), 55-63.
[242]
Carrier, N.; Kabbaj, M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology, 2013, 70, 27-34.
[http://dx.doi.org/10.1016/j.neuropharm.2012.12.009] [PMID: 23337256]
[243]
Sarkar, A.; Kabbaj, M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol. Psychiatry, 2016, 80(6), 448-456.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.025] [PMID: 26957131]
[244]
Scacchi, R.; Gambina, G.; Broggio, E.; Corbo, R.M. Sex and ESR1 genotype may influence the response to treatment with donepezil and rivastigmine in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2014, 29(6), 610-615.
[http://dx.doi.org/10.1002/gps.4043] [PMID: 24150894]
[245]
Mehta, N.; Rodrigues, C.; Lamba, M.; Wu, W.; Bronskill, S.E.; Herrmann, N.; Gill, S.S.; Chan, A.W.; Mason, R.; Day, S.; Gurwitz, J.H.; Rochon, P.A. Systematic review of sex‐specific reporting of data: Cholinesterase inhibitor example. J. Am. Geriatr. Soc., 2017, 65(10), 2213-2219.
[http://dx.doi.org/10.1111/jgs.15020] [PMID: 28832937]
[246]
Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and emerging treatments for major depression. Lancet, 2023, 401(10371), 141-153.
[http://dx.doi.org/10.1016/S0140-6736(22)02080-3] [PMID: 36535295]
[247]
Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front. Psychiatry, 2020, 11, 595584.
[http://dx.doi.org/10.3389/fpsyt.2020.595584] [PMID: 33424664]
[248]
Sartori, S.B.; Singewald, N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol. Ther., 2019, 204, 107402.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107402] [PMID: 31470029]
[249]
Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacol. Rev., 2010, 62(2), 155-198.
[http://dx.doi.org/10.1124/pr.109.002071] [PMID: 20392807]
[250]
Almeida, F.B.; Pinna, G.; Barros, H.M.T. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int. J. Mol. Sci., 2021, 22(11), 5495.
[http://dx.doi.org/10.3390/ijms22115495] [PMID: 34071053]
[251]
Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070.
[http://dx.doi.org/10.1016/S0140-6736(18)31551-4] [PMID: 30177236]
[252]
Arevalo, M.A.; Azcoitia, I.; Garcia-Segura, L.M. The neuroprotective actions of oestradiol and oestrogen receptors. Nat. Rev. Neurosci., 2015, 16(1), 17-29.
[http://dx.doi.org/10.1038/nrn3856] [PMID: 25423896]
[253]
Srivastava, D.P.; Woolfrey, K.M.; Penzes, P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol. Rev., 2013, 65(4), 1318-1350.
[http://dx.doi.org/10.1124/pr.111.005272] [PMID: 24076546]
[254]
Pavlidi, P.; Kokras, N.; Dalla, C. Sex differences in depression and anxiety. Curr. Top. Behav. Neurosci., 2022, 62, 103-132.
[http://dx.doi.org/10.1007/7854_2022_375]
[255]
Handa, R.J.; Weiser, M.J. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol., 2014, 35(2), 197-220.
[http://dx.doi.org/10.1016/j.yfrne.2013.11.001] [PMID: 24246855]
[256]
Juster, R.P.; Raymond, C.; Desrochers, A.B.; Bourdon, O.; Durand, N.; Wan, N.; Pruessner, J.C.; Lupien, S.J. Sex hormones adjust “sex-specific” reactive and diurnal cortisol profiles. Psychoneuroendocrinology, 2016, 63, 282-290.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.012] [PMID: 26539966]
[257]
Balthazart, J.; Charlier, T.D.; Cornil, C.A.; Dickens, M.J.; Harada, N.; Konkle, A.T.M.; Voigt, C.; Ball, G.F. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front. Endocrinol., 2011, 2, 34.
[http://dx.doi.org/10.3389/fendo.2011.00034] [PMID: 22645508]
[258]
Kokras, N.; Pastromas, N.; Porto, T.H.; Kafetzopoulos, V.; Mavridis, T.; Dalla, C. Acute but not sustained aromatase inhibition displays antidepressant properties. Int. J. Neuropsychopharmacol., 2014, 17(8), 1307-1313.
[http://dx.doi.org/10.1017/S1461145714000212] [PMID: 24674846]
[259]
Chaiton, J.A.; Wong, S.J.; Galea, L.A.M. Chronic aromatase inhibition increases ventral hippocampal neurogenesis in middle-aged female mice. Psychoneuroendocrinology, 2019, 106, 111-116.
[http://dx.doi.org/10.1016/j.psyneuen.2019.04.003] [PMID: 30974324]
[260]
Dalla, C.; Antoniou, K.; Papadopoulou-Daifoti, Z.; Balthazart, J.; Bakker, J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit ‘depressive-like’ symptomatology. Eur. J. Neurosci., 2004, 20(1), 217-228.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03443.x] [PMID: 15245494]
[261]
Alexander, A.; Irving, A.J.; Harvey, J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology., 2017, 113((Pt B)), 652-660.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.003]
[262]
Tang, H.; Zhang, Q.; Yang, L.; Dong, Y.; Khan, M.; Yang, F.; Brann, D.W.; Wang, R. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol. Cell. Endocrinol., 2014, 387(1-2), 52-58.
[http://dx.doi.org/10.1016/j.mce.2014.01.024] [PMID: 24594140]
[263]
Yang, Z.D.; Yu, J.; Zhang, Q. Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: A systematic review of randomized controlled trials. Maturitas, 2013, 75(4), 341-348.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.010] [PMID: 23764354]
[264]
Solomon, M.B.; Herman, J.P. Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiol. Behav., 2009, 97(2), 250-258.
[http://dx.doi.org/10.1016/j.physbeh.2009.02.033] [PMID: 19275906]
[265]
Carmassi, C.; Cordone, A.; Dell’Oste, V.; Pedrinelli, V.; Pardini, F.; Simoncini, M.; Dell’Osso, L. Prescribing tamoxifen in patients with mood disorders. J. Clin. Psychopharmacol., 2021, 41(4), 450-460.
[http://dx.doi.org/10.1097/JCP.0000000000001412] [PMID: 34166298]
[266]
Palacios, J.; Yildiz, A.; Young, A.H.; Taylor, M.J. Tamoxifen for bipolar disorder: Systematic review and meta-analysis. J. Psychopharmacol., 2019, 33(2), 177-184.
[http://dx.doi.org/10.1177/0269881118822167] [PMID: 30741085]
[267]
Kastenberger, I.; Schwarzer, C. GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm. Behav., 2014, 66(4), 628-636.
[http://dx.doi.org/10.1016/j.yhbeh.2014.09.001] [PMID: 25236887]
[268]
Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology (Berl.), 2012, 221(3), 527-535.
[http://dx.doi.org/10.1007/s00213-011-2599-3] [PMID: 22143579]
[269]
Findikli, E.; Kurutas, E.B.; Camkurt, M.A.; Karaaslan, M.F.; Izci, F. Fındıklı, H.A.; Kardaş S.; Dag, B.; Altun, H. Increased serum g protein-coupled estrogen receptor 1 levels and its diagnostic value in drug naïve patients with major depressive disorder. Clin. Psychopharmacol. Neurosci., 2017, 15(4), 337-342.
[http://dx.doi.org/10.9758/cpn.2017.15.4.337] [PMID: 29073745]
[270]
Miller, L.R.; Marks, C.; Becker, J.B.; Hurn, P.D.; Chen, W.J.; Woodruff, T.; McCarthy, M.M.; Sohrabji, F.; Schiebinger, L.; Wetherington, C.L.; Makris, S.; Arnold, A.P.; Einstein, G.; Miller, V.M.; Sandberg, K.; Maier, S.; Cornelison, T.L.; Clayton, J.A. Considering sex as a biological variable in preclinical research. FASEB J., 2017, 31(1), 29-34.
[http://dx.doi.org/10.1096/fj.201600781r] [PMID: 27682203]
[271]
Accounting for Neglected Factors and Applying Practical Solutions to Enhance Rigor and Reproducibility, 2023. Available from: https://www.preclinicaldataforum.org/addressing-sex-as-a-biological-variable-training/
[272]
Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature, 2014, 509(7500), 282-283.
[http://dx.doi.org/10.1038/509282a] [PMID: 24834516]
[273]
Pawluski, J.L.; Kokras, N.; Charlier, T.D.; Dalla, C. Sex matters in neuroscience and neuropsychopharmacology. Eur. J. Neurosci., 2020, 52(1), 2423-2428.
[http://dx.doi.org/10.1111/ejn.14880] [PMID: 32578303]
[274]
Shansky, R.M. Are hormones a “female problem” for animal research? Science, 2019, 364(6443), 825-826.
[http://dx.doi.org/10.1126/science.aaw7570] [PMID: 31147505]
[275]
Butlen-Ducuing, F.; Balkowiec-Iskra, E.; Dalla, C.; Slattery, D.A.; Ferretti, M.T.; Kokras, N.; Balabanov, P.; De Vries, C.; Mellino, S.; Chadha, S.A. Implications of sex-related differences in central nervous system disorders for drug research and development. Nat. Rev. Drug Discov., 2021, 20(12), 881-882.
[http://dx.doi.org/10.1038/d41573-021-00115-6] [PMID: 34226696]
[276]
Bespalov, A.; Steckler, T. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? J. Neurosci. Methods, 2018, 300, 4-9.
[http://dx.doi.org/10.1016/j.jneumeth.2017.10.018] [PMID: 29107620]
[277]
Bespalov, A.; Steckler, T.; Altevogt, B.; Koustova, E.; Skolnick, P.; Deaver, D.; Millan, M.J.; Bastlund, J.F.; Doller, D.; Witkin, J.; Moser, P.; O’Donnell, P.; Ebert, U.; Geyer, M.A.; Prinssen, E.; Ballard, T.; Macleod, M. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat. Rev. Drug Discov., 2016, 15(7), 516.
[http://dx.doi.org/10.1038/nrd.2016.88] [PMID: 27312728]
[278]
Hodes, G.E.; Kropp, D.R. Sex as a biological variable in stress and mood disorder research. Nat. Mental Health, 2023, 1(7), 453-461.
[http://dx.doi.org/10.1038/s44220-023-00083-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy