Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Inhibition of Ribonucleotide Reductase Induces Endoplasmic Reticulum Stress and Apoptosis, Leading to the Death of Docetaxel-resistant Prostate Cancer Cells

Author(s): Riza Serttas and Suat Erdogan*

Volume 23, Issue 17, 2023

Published on: 18 August, 2023

Page: [1958 - 1965] Pages: 8

DOI: 10.2174/1871520623666230810094635

Price: $65

Abstract

Background: The development of chemotherapy resistance in prostate cancer (PCa) patients poses a significant obstacle to disease progression. Ribonucleotide reductase is a crucial enzyme for cell division and tumor growth. Triapine, an inhibitor of ribonucleotide reductase, has shown strong anti-tumor activity in various types of cancers. However, the effect of triapine on docetaxel-resistant (DR) human PCa cells has not been explored previously.

Aim: This study aimed to examine the potential anti-proliferative effects of triapine in PC3-DR (docetaxel-resistant) cells.

Methods: Cell viability was determined by the MTT test, and apoptosis and cell cycle progression were analyzed by image-based cytometer. mRNA and protein expression were assessed by RT-qPCR and western blot, respectively.

Results: Triapine administration significantly reduced PC3 and PC3-DR cells' survival, while the cytotoxic effect was higher in PC3-DR cells. Cell death resulting from inhibition of ribonucleotide reductase was mediated by endoplasmic reticulum stress, induction of apoptosis, and cell cycle arrest. The findings were supported by the upregulation of caspases, Bax, Bak, P21, P27, P53, TNF-α, FAS, and FASL, and downregulation of Bcl2, Bcl-XL, cyclin-dependent kinase 2 (CDK2), CDK4, cyclins, and heat shock proteins expression. According to the data, the reduction of ABC transporter proteins and NF-ĸB expression may play a role in triapine-mediated cytotoxicity in docetaxel-resistant cells.

Conclusion: Based on our findings, triapine emerges as a promising chemotherapeutic approach for combating docetaxel- resistant prostate cancer.

Graphical Abstract

[1]
Cindolo, L.; Natoli, C.; De Nunzio, C.; De Tursi, M.; Valeriani, M.; Giacinti, S.; Micali, S.; Rizzo, M.; Bianchi, G.; Martorana, E.; Scarcia, M.; Ludovico, G.M.; Bove, P.; Laudisi, A.; Selvaggio, O.; Carrieri, G.; Bada, M.; Castellan, P.; Boccasile, S.; Ditonno, P.; Chiodini, P.; Verze, P.; Mirone, V.; Schips, L. Safety and efficacy of abiraterone acetate in chemotherapy-naive patients with metastatic castration-resistant prostate cancer: An Italian multicenter “real life” study. BMC Cancer, 2017, 17(1), 753.
[http://dx.doi.org/10.1186/s12885-017-3755-x] [PMID: 29126389]
[2]
Bozkurt, Y.; Atar, M.; Pisters, L.L. Early experience with salvage robotic-assisted radical prostatectomy in proton beam radiotherapy failures. Balkan Med. J., 2021, 38(5), 310-315.
[http://dx.doi.org/10.5152/balkanmedj.2021.21174] [PMID: 34462255]
[3]
Kroon, J.; Kooijman, S.; Cho, N.J.; Storm, G.; van der Pluijm, G. Improving taxane-based chemotherapy in castration-resistant prostate cancer. Trends Pharmacol. Sci., 2016, 37(6), 451-462.
[http://dx.doi.org/10.1016/j.tips.2016.03.003] [PMID: 27068431]
[4]
Huff, S.E.; Winter, J.M.; Dealwis, C.G. Inhibitors of the cancer target ribonucleotide reductase, past and present. Biomolecules, 2022, 12(6), 815.
[http://dx.doi.org/10.3390/biom12060815] [PMID: 35740940]
[5]
Wang, N.; Li, Y.; Zhou, J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol. Lett., 2018, 15(3), 3719-3725.
[http://dx.doi.org/10.3892/ol.2018.7806] [PMID: 29556274]
[6]
Alvero, A.B.; Chen, W.; Sartorelli, A.C.; Schwartz, P.; Rutherford, T.; Mor, G. Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) induces apoptosis in ovarian cancer cells. J. Soc. Gynecol. Investig., 2006, 13(2), 145-152.
[http://dx.doi.org/10.1016/j.jsgi.2005.11.004] [PMID: 16443509]
[7]
Wright, P.S.; Cross-Doersen, D.; Th’ng, J.P.H.; Guo, X.W.; Crissman, H.A.; Bradbury, E.M.; Montgomery, L.R.; Thompson, F.Y.; Loudy, D.E.; Johnston, J.O.N.; Bitonti, A.J. A ribonucleotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts. Exp. Cell Res., 1996, 222(1), 54-60.
[http://dx.doi.org/10.1006/excr.1996.0007] [PMID: 8549673]
[8]
Plunkett, W.; Huang, P.; Gandhi, V. Preclinical characteristics of gemcitabine. Anticancer Drugs, 1995, 6(Suppl. 6), 7-13.
[http://dx.doi.org/10.1097/00001813-199512006-00002] [PMID: 8718419]
[9]
Trondl, R.; Flocke, L.S.; Kowol, C.R.; Heffeter, P.; Jungwirth, U.; Mair, G.E.; Steinborn, R.; Enyedy, É.A.; Jakupec, M.A.; Berger, W.; Keppler, B.K. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells. Mol. Pharmacol., 2014, 85(3), 451-459.
[http://dx.doi.org/10.1124/mol.113.090605] [PMID: 24378333]
[10]
Ratner, E.S.; Zhu, Y.L.; Penketh, P.G.; Berenblum, J.; Whicker, M.E.; Huang, P.H.; Lee, Y.; Ishiguro, K.; Zhu, R.; Sartorelli, A.C.; Lin, Z.P. Triapine potentiates platinum-based combination therapy by disruption of homologous recombination repair. Br. J. Cancer, 2016, 114(7), 777-786.
[http://dx.doi.org/10.1038/bjc.2016.54] [PMID: 26964031]
[11]
Mandula, J.K.; Chang, S.; Mohamed, E.; Jimenez, R.; Sierra-Mondragon, R.A.; Chang, D.C.; Obermayer, A.N.; Moran-Segura, C.M.; Das, S.; Vazquez-Martinez, J.A.; Prieto, K.; Chen, A.; Smalley, K.S.M.; Czerniecki, B.; Forsyth, P.; Koya, R.C.; Ruffell, B.; Cubillos-Ruiz, J.R.; Munn, D.H.; Shaw, T.I.; Conejo-Garcia, J.R.; Rodriguez, P.C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 2022, 40(10), 1145-1160.e9.
[http://dx.doi.org/10.1016/j.ccell.2022.08.016] [PMID: 36150390]
[12]
Barker, C.A.; Burgan, W.E.; Carter, D.J.; Cerna, D.; Gius, D.; Hollingshead, M.G.; Camphausen, K.; Tofilon, P.J. In vitro and in vivo radiosensitization induced by the ribonucleotide reductase inhibitor Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone). Clin. Cancer Res., 2006, 12(9), 2912-2918.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2860] [PMID: 16675588]
[13]
Ma, Z.; Zhang, W.; Dong, B.; Xin, Z.; Ji, Y.; Su, R.; Shen, K.; Pan, J.; Wang, Q.; Xue, W. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics, 2022, 12(11), 4965-4979.
[http://dx.doi.org/10.7150/thno.73152] [PMID: 35836810]
[14]
Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380.
[PMID: 26814148]
[15]
Mazzu, Y.Z.; Armenia, J.; Nandakumar, S.; Chakraborty, G.; Yoshikawa, Y.; Jehane, L.E.; Lee, G.S.M.; Atiq, M.; Khan, N.; Schultz, N.; Kantoff, P.W. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Mol. Oncol., 2020, 14(8), 1881-1897.
[http://dx.doi.org/10.1002/1878-0261.12706] [PMID: 32385899]
[16]
Mazzu, Y.Z.; Armenia, J.; Chakraborty, G.; Yoshikawa, Y.; Coggins, S.A.A.; Nandakumar, S.; Gerke, T.A.; Pomerantz, M.M.; Qiu, X.; Zhao, H.; Atiq, M.; Khan, N.; Komura, K.; Lee, G.S.M.; Fine, S.W.; Bell, C.; O’Connor, E.; Long, H.W.; Freedman, M.L.; Kim, B.; Kantoff, P.W. A novel mechanism driving poor-prognosis prostate cancer: Overexpression of the DNA repair gene, ribonucleotide reductase small subunit M2 (RRM2). Clin. Cancer Res., 2019, 25(14), 4480-4492.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4046] [PMID: 30996073]
[17]
Takeda, M.; Mizokami, A.; Mamiya, K.; Li, Y.Q.; Zhang, J.; Keller, E.T.; Namiki, M. The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate, 2007, 67(9), 955-967.
[http://dx.doi.org/10.1002/pros.20581] [PMID: 17440963]
[18]
Erdogan, S.; Genc, F.; Atabey, U.S.; Serttas, R. Abiraterone acetate, in combination with apigenin, attenuates the survival of human castration-sensitive prostate cancer cells. Anticancer. Agents Med. Chem., 2022, 22(18), 3148-3156.
[http://dx.doi.org/10.2174/1871520622666220426095257] [PMID: 35473536]
[19]
Finch, R.A.; Liu, M.C.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.C.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59(8), 983-991.
[http://dx.doi.org/10.1016/S0006-2952(99)00419-0] [PMID: 10692563]
[20]
Rasmussen, R.D.; Gajjar, M.K.; Tuckova, L.; Jensen, K.E.; Maya-Mendoza, A.; Holst, C.B.; Møllgaard, K.; Rasmussen, J.S.; Brennum, J.; Bartek, J., Jr; Syrucek, M.; Sedlakova, E.; Andersen, K.K.; Frederiksen, M.H.; Bartek, J.; Hamerlik, P. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat. Commun., 2016, 7(1), 13398.
[http://dx.doi.org/10.1038/ncomms13398] [PMID: 27845331]
[21]
Limonta, P.; Moretti, R.; Marzagalli, M.; Fontana, F.; Raimondi, M.; Montagnani, M.M. Role of endoplasmic reticulum stress in the anticancer activity of natural compounds. Int. J. Mol. Sci., 2019, 20(4), 961.
[http://dx.doi.org/10.3390/ijms20040961] [PMID: 30813301]
[22]
Önay, U. E.; Şengelen, A.; Mertoğlu, K E. Hsp27, Hsp60, Hsp70, or Hsp90 depletion enhances the antitumor effects of resveratrol via oxidative and ER stress response in human glioblastoma cells. Biochem. Pharmacol., 2023, 208, 115409.
[http://dx.doi.org/10.1016/j.bcp.2022.115409] [PMID: 36603687]
[23]
Lang, B.J.; Guerrero-Giménez, M.E.; Prince, T.L.; Ackerman, A.; Bonorino, C.; Calderwood, S.K. Heat shock proteins are essential components in transformation and tumor progression: Cancer cell intrinsic pathways and beyond. Int. J. Mol. Sci., 2019, 20(18), 4507.
[http://dx.doi.org/10.3390/ijms20184507] [PMID: 31514477]
[24]
Serttas, R.; Erdogan, S. Pretreatment of prostate cancer cells with salinomycin and Wnt inhibitor increases the efficacy of cabazitaxel by inducing apoptosis and decreasing cancer stem cells. Med. Oncol., 2023, 40(7), 194.
[http://dx.doi.org/10.1007/s12032-023-02062-1] [PMID: 37264204]
[25]
Sinniah, S.K.; Tan, K.W.; Ng, S.W.; Sim, K.S. Thiosemicarbazone derivative induces in vitro apoptosis in metastatic PC-3 cells via activation of mitochondrial pathway. Anticancer. Agents Med. Chem., 2017, 17(5), 741-753.
[http://dx.doi.org/10.2174/1871520616666160926110929] [PMID: 27671302]
[26]
Kazan, H.H.; Urfali-Mamatoglu, C.; Gunduz, U. Iron metabolism and drug resistance in cancer. Biometals, 2017, 30(5), 629-641.
[http://dx.doi.org/10.1007/s10534-017-0037-7] [PMID: 28766192]
[27]
Ibrahim, O.; O’Sullivan, J. Iron chelators in cancer therapy. Biometals, 2020, 33(4-5), 201-215.
[http://dx.doi.org/10.1007/s10534-020-00243-3] [PMID: 32757166]
[28]
Zhao, Y.; Zheng, Y.; Zhu, Y.; Ding, K.; Zhou, M.; Liu, T. Co-delivery of gemcitabine and Triapine by calcium carbonate nanoparticles against chemoresistant pancreatic cancer. Int. J. Pharm., 2023, 636, 122844.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122844] [PMID: 36925025]
[29]
Lin, Z.P.; Zhu, Y.L.; Lo, Y.C.; Moscarelli, J.; Xiong, A.; Korayem, Y.; Huang, P.H.; Giri, S.; LoRusso, P.; Ratner, E.S. Combination of triapine, olaparib, and cediranib suppresses progression of BRCA-wild type and PARP inhibitor-resistant epithelial ovarian cancer. PLoS One, 2018, 13(11), e0207399.
[http://dx.doi.org/10.1371/journal.pone.0207399] [PMID: 30444904]
[30]
Kunos, C.A.; Ivy, S.P. Triapine radiochemotherapy in advanced stage cervical cancer. Front. Oncol., 2018, 8, 149.
[http://dx.doi.org/10.3389/fonc.2018.00149] [PMID: 29868473]
[31]
Kunos, C.A.; Chu, E.; Beumer, J.H.; Sznol, M.; Ivy, S.P. Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies. Cancer Chemother. Pharmacol., 2017, 79(1), 201-207.
[http://dx.doi.org/10.1007/s00280-016-3200-x] [PMID: 27878356]
[32]
Schelman, W.R.; Morgan-Meadows, S.; Marnocha, R.; Lee, F.; Eickhoff, J.; Huang, W.; Pomplun, M.; Jiang, Z.; Alberti, D.; Kolesar, J.M.; Ivy, P.; Wilding, G.; Traynor, A.M. A phase I study of Triapine® in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(6), 1147-1156.
[http://dx.doi.org/10.1007/s00280-008-0890-8] [PMID: 19082825]
[33]
Kunos, C.A.; Chiu, S.; Pink, J.; Kinsella, T.J. Modulating radiation resistance by inhibiting ribonucleotide reductase in cancers with virally or mutationally silenced p53 protein. Radiat. Res., 2009, 172(6), 666-676.
[http://dx.doi.org/10.1667/RR1858.1] [PMID: 19929413]
[34]
Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306]
[35]
Zhu, Y.; Liu, C.; Nadiminty, N.; Lou, W.; Tummala, R.; Evans, C.P.; Gao, A.C. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol. Cancer Ther., 2013, 12(9), 1829-1836.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0208] [PMID: 23861346]
[36]
O’Neill, A.J.; Prencipe, M.; Dowling, C.; Fan, Y.; Mulrane, L.; Gallagher, W.M.; O’Connor, D.; O’Connor, R.; Devery, A.; Corcoran, C.; Rani, S.; O’Driscoll, L.; Fitzpatrick, J.M.; Watson, R.W.G. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol. Cancer, 2011, 10(1), 126.
[http://dx.doi.org/10.1186/1476-4598-10-126] [PMID: 21982118]
[37]
Codony-Servat, J.; Marín-Aguilera, M.; Visa, L.; García-Albéniz, X.; Pineda, E.; Fernández, P.L.; Filella, X.; Gascón, P.; Mellado, B. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate, 2013, 73(5), 512-521.
[http://dx.doi.org/10.1002/pros.22591] [PMID: 23038213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy