Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Prebiotics Modulate Gut Microbiota-mediated T-cell Immunity to Enhance the Inhibitory Effect of Sintilimab in Lewis Lung Adenocarcinoma Model Mice

Author(s): Qin Yan, Shitong Su, Gangyi Dai and Lang He*

Volume 23, Issue 17, 2023

Published on: 04 August, 2023

Page: [1966 - 1973] Pages: 8

DOI: 10.2174/1871520623666230707112244

Price: $65

conference banner
Abstract

Background: Sintilimab (Sin) helps the body to restore the anti-tumor response of T lymphocytes. However, in clinical use, the treatment process is more complicated due to adverse effects and different dosing regimens. It is not clear whether prebiotics (PREB) have a potentiating effect on Sin for lung adenocarcinoma, and this study intends to investigate the inhibitory effect, safety and possible mechanism of Sin combined with PREB on lung adenocarcinoma from animal experiments.

Methods: Lewis lung adenocarcinoma cells were inoculated into the right axilla of mice subcutaneously to prepare the Lewis lung cancer mouse model and treated in groups. The volume of transplanted tumors was measured, the histopathology of the liver and kidney of mice was observed by H&E staining, the levels of ALT, AST, UREA, CREA, WBC, RBC, and HGB in blood were analyzed biochemically; the ratio of T-cell subpopulations in blood, spleen, and bone marrow was detected by flow cytometry, the expression of PD-L1 in tumor tissue was detected by immunofluorescence staining, and 16S rRNA to analyze the diversity of fecal flora.

Results: Sin inhibited tumor growth and regulated immune cell homeostasis in lung adenocarcinoma mice, but liver and kidney histopathology showed different degrees of damage after Sin treatment, while the addition of PREB reduced liver and kidney damage in lung adenocarcinoma mice and promoted Sin's regulation of immune cells. In addition, the beneficial effects of Sin were associated with changes in intestinal flora diversity.

Conclusion: The mechanism by which Sintilimab combined with prebiotics inhibits tumor volume and regulates immune cell subpopulation balance in lung adenocarcinoma mice may be related to gut microbes.

Graphical Abstract

[1]
Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1563-1579.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0221] [PMID: 31575553]
[2]
Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of non-small cell lung cancer. Lung, 2020, 198(6), 897-907.
[http://dx.doi.org/10.1007/s00408-020-00407-5] [PMID: 33175991]
[3]
Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis., 2018, 9(2), 117.
[http://dx.doi.org/10.1038/s41419-017-0063-y] [PMID: 29371589]
[4]
Santarpia, M.; Aguilar, A.; Chaib, I.; Cardona, A.F.; Fancelli, S.; Laguia, F.; Bracht, J.W.P.; Cao, P.; Molina-Vila, M.A.; Karachaliou, N.; Rosell, R. Non-small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 antibodies. Cancers, 2020, 12(6), 1475.
[http://dx.doi.org/10.3390/cancers12061475] [PMID: 32516941]
[5]
Peng, D.H.; Rodriguez, B.L.; Diao, L.; Chen, L.; Wang, J.; Byers, L.A.; Wei, Y.; Chapman, H.A.; Yamauchi, M.; Behrens, C.; Raso, G.; Soto, L.M.S.; Cuentes, E.R.P.; Wistuba, I.I.; Kurie, J.M.; Gibbons, D.L. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat. Commun., 2020, 11(1), 4520.
[http://dx.doi.org/10.1038/s41467-020-18298-8] [PMID: 32908154]
[6]
Lin, S.H.; Zhang, A.; Li, L.Z.; Zhao, L.C.; Wu, L.X.; Fang, C.T. Isolated adrenocorticotropic hormone deficiency associated with sintilimab therapy in a patient with advanced lung adenocarcinoma: A case report and literature review. BMC Endocr. Disord., 2022, 22(1), 239.
[http://dx.doi.org/10.1186/s12902-022-01151-y] [PMID: 36153581]
[7]
Wang, J.; Li, J.; Tang, G.; Tian, Y.; Su, S.; Li, Y. Clinical outcomes and influencing factors of PD 1/PD L1 in hepatocellular carcinoma. Oncol. Lett., 2021, 21(4), 279.
[http://dx.doi.org/10.3892/ol.2021.12540] [PMID: 33732355]
[8]
Zhang, L.; Lin, W.; Tan, F.; Li, N.; Xue, Q.; Gao, S.; Gao, Y.; He, J. Sintilimab for the treatment of non-small cell lung cancer. Biomark. Res., 2022, 10(1), 23.
[http://dx.doi.org/10.1186/s40364-022-00363-7] [PMID: 35436956]
[9]
Dong, Q.; Chen, E.S.; Zhao, C.; Jin, C. Host-microbiome interaction in lung cancer. Front. Immunol., 2021, 12, 679829.
[http://dx.doi.org/10.3389/fimmu.2021.679829] [PMID: 34108973]
[10]
Di Modica, M.; Gargari, G.; Regondi, V.; Bonizzi, A.; Arioli, S.; Belmonte, B.; De Cecco, L.; Fasano, E.; Bianchi, F.; Bertolotti, A.; Tripodo, C.; Villani, L.; Corsi, F.; Guglielmetti, S.; Balsari, A.; Triulzi, T.; Tagliabue, E. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res., 2021, 81(8), 2195-2206.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1659] [PMID: 33483370]
[11]
Zhang, X.; Coker, O.O.; Chu, E.S.H.; Fu, K.; Lau, H.C.H.; Wang, Y.X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; Yu, J. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 2021, 70(4), 761-774.
[http://dx.doi.org/10.1136/gutjnl-2019-319664] [PMID: 32694178]
[12]
Zhao, Y.; Liu, Y.; Li, S.; Peng, Z.; Liu, X.; Chen, J.; Zheng, X. Role of lung and gut microbiota on lung cancer pathogenesis. J. Cancer Res. Clin. Oncol., 2021, 147(8), 2177-2186.
[http://dx.doi.org/10.1007/s00432-021-03644-0] [PMID: 34018055]
[13]
Liu, X.; Cheng, Y.; Zang, D.; Zhang, M.; Li, X.; Liu, D.; Gao, B.; Zhou, H.; Sun, J.; Han, X.; Lin, M.; Chen, J. The role of gut microbiota in lung cancer: From carcinogenesis to immunotherapy. Front. Oncol., 2021, 11, 720842.
[http://dx.doi.org/10.3389/fonc.2021.720842] [PMID: 34490119]
[14]
Chau, J.; Yadav, M.; Liu, B.; Furqan, M.; Dai, Q.; Shahi, S.; Gupta, A.; Mercer, K.N.; Eastman, E.; Hejleh, T.A.; Chan, C.; Weiner, G.J.; Cherwin, C.; Lee, S.T.M.; Zhong, C.; Mangalam, A.; Zhang, J. Prospective correlation between the patient microbiome with response to and development of immune-mediated adverse effects to immunotherapy in lung cancer. BMC Cancer, 2021, 21(1), 808.
[http://dx.doi.org/10.1186/s12885-021-08530-z] [PMID: 34256732]
[15]
Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2), 172-184.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[16]
Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Tsigalou, C.; Dalamaga, M. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep., 2020, 9(3), 179-192.
[http://dx.doi.org/10.1007/s13679-020-00379-w] [PMID: 32472285]
[17]
Kuugbee, E.D.; Shang, X.; Gamallat, Y.; Bamba, D.; Awadasseid, A.; Suliman, M.A.; Zang, S.; Ma, Y.; Chiwala, G.; Xin, Y.; Shang, D. Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig. Dis. Sci., 2016, 61(10), 2908-2920.
[http://dx.doi.org/10.1007/s10620-016-4238-7] [PMID: 27384052]
[18]
Peng, Q.; Liu, H.; Shi, S.; Li, M. Lycium ruthenicum polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol., 2014, 67, 330-335.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.023] [PMID: 24680899]
[19]
Li, Y.; Elmén, L.; Segota, I.; Xian, Y.; Tinoco, R.; Feng, Y.; Fujita, Y.; Segura Muñoz, R.R.; Schmaltz, R.; Bradley, L.M.; Ramer-Tait, A.; Zarecki, R.; Long, T.; Peterson, S.N.; Ronai, Z.A. Prebiotic-induced anti-tumor immunity attenuates tumor growth. Cell Rep., 2020, 30(6), 1753-1766.e6.
[http://dx.doi.org/10.1016/j.celrep.2020.01.035] [PMID: 32049008]
[20]
Naseer, M.; Poola, S.; Uraz, S.; Tahan, V. Therapeutic effects of prebiotics on constipation: A schematic review. Curr. Clin. Pharmacol., 2020, 15(3), 207-215.
[http://dx.doi.org/10.2174/22123938MTA0yNDQ22] [PMID: 32048977]
[21]
Tsai, Y.L.; Lin, T.L.; Chang, C.J.; Wu, T.R.; Lai, W.F.; Lu, C.C.; Lai, H.C. Probiotics, prebiotics and amelioration of diseases. J. Biomed. Sci., 2019, 26(1), 3.
[http://dx.doi.org/10.1186/s12929-018-0493-6] [PMID: 30609922]
[22]
Zheng, D.W.; Li, R.Q.; An, J.X.; Xie, T.Q.; Han, Z.Y.; Xu, R.; Fang, Y.; Zhang, X.Z. Prebiotics-encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv. Mater., 2020, 32(45), 2004529.
[http://dx.doi.org/10.1002/adma.202004529] [PMID: 33006175]
[23]
Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 2021, 13(9), 3211.
[http://dx.doi.org/10.3390/nu13093211] [PMID: 34579087]
[24]
Li, L.; Yang, L.; Cheng, S.; Fan, Z.; Shen, Z.; Xue, W.; Zheng, Y.; Li, F.; Wang, D.; Zhang, K.; Lian, J.; Wang, D.; Zhu, Z.; Zhao, J.; Zhang, Y. Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity. Mol. Cancer, 2019, 18(1), 108.
[http://dx.doi.org/10.1186/s12943-019-1027-x] [PMID: 31221150]
[25]
Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Bakir, M.A.; Moore, D.A.; Hiley, C.T.; Lund, T. Tanić, M.; Reading, J.L.; Joshi, K.; Henry, J.Y.; Ghorani, E.; Wilson, G.A.; Birkbak, N.J.; Jamal-Hanjani, M.; Veeriah, S.; Szallasi, Z.; Loi, S.; Hellmann, M.D.; Feber, A.; Chain, B.; Herrero, J.; Quezada, S.A.; Demeulemeester, J.; Van Loo, P.; Beck, S.; McGranahan, N.; Swanton, C. Neoantigen-directed immune escape in lung cancer evolution. Nature, 2019, 567(7749), 479-485.
[http://dx.doi.org/10.1038/s41586-019-1032-7] [PMID: 30894752]
[26]
Jang, H.R.; Shin, S.B.; Kim, C.H.; Won, J.Y.; Xu, R.; Kim, D.E.; Yim, H. PLK1/vimentin signaling facilitates immune escape by recruiting Smad2/3 to PD-L1 promoter in metastatic lung adenocarcinoma. Cell Death Differ., 2021, 28(9), 2745-2764.
[http://dx.doi.org/10.1038/s41418-021-00781-4] [PMID: 33963314]
[27]
Liu, C.; Zheng, S.; Jin, R.; Wang, X.; Wang, F.; Zang, R.; Xu, H.; Lu, Z.; Huang, J.; Lei, Y.; Mao, S.; Wang, Y.; Feng, X.; Sun, N.; Wang, Y.; He, J. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett., 2020, 470, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2019.10.027] [PMID: 31644929]
[28]
Wang, H.; Yan, Z.; Hao, J.; Yang, B.; Wang, J.; Yi, L.; Wang, X.; Li, S.; Zhang, H.; Zhang, S. CD137 ligand feedback upregulates PD-L1 expression on lung cancer via T cell production of IFN-γ. Thorac. Cancer, 2019, 10(12), 2225-2235.
[http://dx.doi.org/10.1111/1759-7714.13207] [PMID: 31625289]
[29]
Wang, K.; Wang, J.; Liu, T.; Yu, W.; Dong, N.; Zhang, C.; Xia, W.; Wei, F.; Yang, L.; Ren, X. Morphine-3-glucuronide upregulates PD-L1 expression via TLR4 and promotes the immune escape of non-small cell lung cancer. Cancer Biol. Med., 2021, 18(1), 155-171.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0442] [PMID: 33628591]
[30]
Ge, H.; Wang, L.; Chen, W.; Wang, L. Mechanism of miR-760 reversing lung cancer immune escape by downregulating IDO1 and eliminating regulatory T cells based on mathematical biology. Comput. Math. Methods Med., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/2960773] [PMID: 35872931]
[31]
Kwak, J.W.; Laskowski, J.; Li, H.Y.; McSharry, M.V.; Sippel, T.R.; Bullock, B.L.; Johnson, A.M.; Poczobutt, J.M.; Neuwelt, A.J.; Malkoski, S.P.; Weiser-Evans, M.C.; Lambris, J.D.; Clambey, E.T.; Thurman, J.M.; Nemenoff, R.A. Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Res., 2018, 78(1), 143-156.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0240] [PMID: 29118090]
[32]
Huang, Q.; Wu, X.; Wang, Z.; Chen, X.; Wang, L.; Lu, Y.; Xiong, D.; Liu, Q.; Tian, Y.; Lin, H.; Guo, J.; Wen, S.; Dong, W.; Yang, X.; Yuan, Y.; Yue, Z.; Lei, S.; Wu, Q.; Ran, L.; Xie, L.; Wang, Y.; Gao, L.; Tian, Q.; Zhou, X.; Sun, B.; Xu, L.; Tang, Z.; Ye, L. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell, 2022, 185(22), 4049-4066.e25.
[http://dx.doi.org/10.1016/j.cell.2022.09.020] [PMID: 36208623]
[33]
Van Damme, H.; Dombrecht, B.; Kiss, M.; Roose, H.; Allen, E.; Van Overmeire, E.; Kancheva, D.; Martens, L.; Murgaski, A.; Bardet, P.M.R.; Blancke, G.; Jans, M.; Bolli, E.; Martins, M.S.; Elkrim, Y.; Dooley, J.; Boon, L.; Schwarze, J.K.; Tacke, F.; Movahedi, K.; Vandamme, N.; Neyns, B.; Ocak, S.; Scheyltjens, I.; Vereecke, L.; Nana, F.A.; Merchiers, P.; Laoui, D.; Van Ginderachter, J.A. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy. J. Immunother. Cancer, 2021, 9(2), e001749.
[http://dx.doi.org/10.1136/jitc-2020-001749] [PMID: 33589525]
[34]
Zhou, B.; Yuan, Y.; Zhang, S.; Guo, C.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front. Immunol., 2020, 11, 575.
[http://dx.doi.org/10.3389/fimmu.2020.00575] [PMID: 32318067]
[35]
Ni, Y.; Lohinai, Z.; Heshiki, Y.; Dome, B.; Moldvay, J.; Dulka, E.; Galffy, G.; Berta, J.; Weiss, G.J.; Sommer, M.O.A.; Panagiotou, G. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J., 2021, 15(11), 3207-3220.
[http://dx.doi.org/10.1038/s41396-021-00998-8] [PMID: 34002024]
[36]
Matson, V.; Chervin, C.S.; Gajewski, T.F. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology, 2021, 160(2), 600-613.
[http://dx.doi.org/10.1053/j.gastro.2020.11.041] [PMID: 33253684]
[37]
Gao, Y.; Bi, D.; Xie, R.; Li, M.; Guo, J.; Liu, H.; Guo, X.; Fang, J.; Ding, T.; Zhu, H.; Cao, Y.; Xing, M.; Zheng, J.; Xu, Q.; Xu, Q.; Wei, Q.; Qin, H. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct. Target. Ther., 2021, 6(1), 398.
[http://dx.doi.org/10.1038/s41392-021-00795-x] [PMID: 34795206]
[38]
Cao, B.; Wang, S.; Li, R.; Wang, Z.; Li, T.; Zhang, Y.; Dong, B.; Li, Y.; Lin, M.; Li, X.; Xiao, X.; Li, C.; Li, G. Xihuang Pill enhances anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Biomed. Pharmacother., 2022, 151, 113081.
[http://dx.doi.org/10.1016/j.biopha.2022.113081] [PMID: 35605293]
[39]
Wang, Z.; Qin, X.; Hu, D.; Huang, J.; Guo, E.; Xiao, R.; Li, W.; Sun, C.; Chen, G. Akkermansia supplementation reverses the tumor-promoting effect of the fecal microbiota transplantation in ovarian cancer. Cell Rep., 2022, 41(13), 111890.
[http://dx.doi.org/10.1016/j.celrep.2022.111890] [PMID: 36577369]
[40]
Brennan, C.A.; Clay, S.L.; Lavoie, S.L.; Bae, S.; Lang, J.K.; Fonseca-Pereira, D.; Rosinski, K.G.; Ou, N.; Glickman, J.N.; Garrett, W.S. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes, 2021, 13(1), 1987780.
[http://dx.doi.org/10.1080/19490976.2021.1987780] [PMID: 34781821]
[41]
Sun, L.; Yan, Y.; Chen, D.; Yang, Y. Quxie capsule modulating gut microbiome and its association with T cell regulation in patients with metastatic colorectal cancer: Result from a randomized controlled clinical trial. Integr. Cancer Ther., 2020, 19, 1534735420969820.
[http://dx.doi.org/10.1177/1534735420969820] [PMID: 33243018]
[42]
Palumbo, V.D.; Romeo, M.; Gammazza, A.M.; Carini, F.; Damiani, P.; Damiano, G.; Buscemi, S.; Lo Monte, A.I.; Gerges-Geagea, A.; Jurjus, A.; Tomasello, G. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study. Biomed. Pap. Med. Fac. Univ., 2016, 160(3), 372-377.
[http://dx.doi.org/10.5507/bp.2016.044] [PMID: 27623957]
[43]
Finnicum, C.; Rahal, Z.; Hassane, M.; Treekitkarnmongkol, W.; Sinjab, A.; Morris, R.; Liu, Y.; Tang, E.; Viet, S.; Petersen, J.; Lorenzi, P.; Tan, L.; Petrosino, J.; Hoffman, K.; Fujimoto, J.; Moghaddam, S.; Kadara, H. pathogenesis of tobacco-associated lung adenocarcinoma is closely coupled with changes in the gut and lung microbiomes. Int. J. Mol. Sci., 2022, 23(18), 10930.
[http://dx.doi.org/10.3390/ijms231810930] [PMID: 36142843]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy