Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Targeting Glutamine Metabolism through Glutaminase Inhibition Suppresses Cell Proliferation and Progression in Nasopharyngeal Carcinoma

Author(s): Chang Su*, Minghan Li, Yuxin Yang, Ziying Wang, Qianru Wang, Weijia Wang, Xuemin Ma, Rongrong Jie, Huaihong Chen*, Xiangping Li* and Juan Lu*

Volume 23, Issue 17, 2023

Published on: 21 August, 2023

Page: [1944 - 1957] Pages: 14

DOI: 10.2174/1871520623666230727104825

Price: $65

conference banner
Abstract

Background: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors.

Objective: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC).

Methods: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression.

Results: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor.

Conclusion: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695.
[http://dx.doi.org/10.1038/s41571-021-00524-x] [PMID: 34194007]
[3]
Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet, 2019, 394(10192), 64-80.
[http://dx.doi.org/10.1016/S0140-6736(19)30956-0] [PMID: 31178151]
[4]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[5]
Masisi, B.K.; El Ansari, R.; Alfarsi, L.; Rakha, E.A.; Green, A.R.; Craze, M.L. The role of glutaminase in cancer. Histopathology, 2020, 76(4), 498-508.
[http://dx.doi.org/10.1111/his.14014] [PMID: 31596504]
[6]
Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis., 2019, 10(2), 40.
[http://dx.doi.org/10.1038/s41419-018-1291-5] [PMID: 30674873]
[7]
Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.063] [PMID: 30555042]
[8]
Edwards, D.N.; Ngwa, V.M.; Raybuck, A.L.; Wang, S.; Hwang, Y.; Kim, L.C.; Cho, S.H.; Paik, Y.; Wang, Q.; Zhang, S.; Manning, H.C.; Rathmell, J.C.; Cook, R.S.; Boothby, M.R.; Chen, J. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest., 2021, 131(4), e140100.
[http://dx.doi.org/10.1172/JCI140100] [PMID: 33320840]
[9]
Wu, S.; Fukumoto, T.; Lin, J.; Nacarelli, T.; Wang, Y.; Ong, D.; Liu, H.; Fatkhutdinov, N.; Zundell, J.A.; Karakashev, S.; Zhou, W.; Schwartz, L.E.; Tang, H.Y.; Drapkin, R.; Liu, Q.; Huntsman, D.G.; Kossenkov, A.V.; Speicher, D.W.; Schug, Z.T.; Van Dang, C.; Zhang, R. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Can., 2021, 2(2), 189-200.
[http://dx.doi.org/10.1038/s43018-020-00160-x] [PMID: 34085048]
[10]
Xu, L.; Yin, Y.; Li, Y.; Chen, X.; Chang, Y.; Zhang, H.; Liu, J.; Beasley, J.; McCaw, P.; Zhang, H.; Young, S.; Groth, J.; Wang, Q.; Locasale, J.W.; Gao, X.; Tang, D.G.; Dong, X.; He, Y.; George, D.; Hu, H.; Huang, J. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2012748118.
[http://dx.doi.org/10.1073/pnas.2012748118] [PMID: 33753479]
[11]
Li, L.; Meng, Y.; Li, Z.; Dai, W.; Xu, X.; Bi, X.; Bian, J. Discovery and development of small molecule modulators targeting glutamine metabolism. Eur. J. Med. Chem., 2019, 163, 215-242.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.066] [PMID: 30522056]
[12]
Varghese, S.; Pramanik, S.; Williams, L.J.; Hodges, H.R.; Hudgens, C.W.; Fischer, G.M.; Luo, C.K.; Knighton, B.; Tan, L.; Lorenzi, P.L.; Mackinnon, A.L.; McQuade, J.L.; Hailemichael, Y.; Roszik, J.; Peng, W.; Vashisht Gopal, Y.N. The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cell–mediated immunotherapies. Mol. Cancer Ther., 2021, 20(3), 500-511.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0430] [PMID: 33361272]
[13]
Zhao, Y.; Feng, X.; Chen, Y.; Selfridge, J.E.; Gorityala, S.; Du, Z.; Wang, J.M.; Hao, Y.; Cioffi, G.; Conlon, R.A.; Barnholtz-Sloan, J.S.; Saltzman, J.; Krishnamurthi, S.S.; Vinayak, S.; Veigl, M.; Xu, Y.; Bajor, D.L.; Markowitz, S.D.; Meropol, N.J.; Eads, J.R.; Wang, Z. 5-fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers. Cancer Res., 2020, 80(21), 4815-4827.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0600] [PMID: 32907836]
[14]
Jin, H.; Wang, S.; Zaal, E.A.; Wang, C.; Wu, H.; Bosma, A.; Jochems, F.; Isima, N.; Jin, G.; Lieftink, C.; Beijersbergen, R.; Berkers, C.R.; Qin, W.; Bernards, R. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife, 2020, 9, e56749.
[http://dx.doi.org/10.7554/eLife.56749] [PMID: 33016874]
[15]
Wicker, C.A.; Hunt, B.G.; Krishnan, S.; Aziz, K.; Parajuli, S.; Palackdharry, S.; Elaban, W.R.; Wise-Draper, T.M.; Mills, G.B.; Waltz, S.E.; Takiar, V. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett., 2021, 502, 180-188.
[http://dx.doi.org/10.1016/j.canlet.2020.12.038] [PMID: 33450358]
[16]
Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: Achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00961] [PMID: 30148361]
[17]
Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res., 2019, 79(6), 1019-1031.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2738] [PMID: 30808672]
[18]
Chang, F.; Lee, J.T.; Navolanic, P.M.; Steelman, L.S.; Shelton, J.G.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 2003, 17(3), 590-603.
[http://dx.doi.org/10.1038/sj.leu.2402824] [PMID: 12646949]
[19]
Lee, A.W.M.; Ng, W.T.; Chan, J.Y.W.; Corry, J.; Mäkitie, A.; Mendenhall, W.M.; Rinaldo, A.; Rodrigo, J.P.; Saba, N.F.; Strojan, P.; Suárez, C.; Vermorken, J.B.; Yom, S.S.; Ferlito, A. Management of locally recurrent nasopharyngeal carcinoma. Cancer Treat. Rev., 2019, 79, 101890.
[http://dx.doi.org/10.1016/j.ctrv.2019.101890] [PMID: 31470314]
[20]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[21]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[http://dx.doi.org/10.1038/ncb3124] [PMID: 25774832]
[22]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684.
[http://dx.doi.org/10.1172/JCI69600] [PMID: 23999442]
[23]
Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.007] [PMID: 30053497]
[24]
Matés, J.M.; Di Paola, F.J.; Campos-Sandoval, J.A.; Mazurek, S.; Márquez, J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin. Cell Dev. Biol., 2020, 98, 34-43.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.012] [PMID: 31100352]
[25]
Mukha, A.; Kahya, U.; Dubrovska, A. Targeting glutamine metabolism and autophagy: The combination for prostate cancer radiosensitization. Autophagy, 2021, 17(11), 3879-3881.
[http://dx.doi.org/10.1080/15548627.2021.1962682] [PMID: 34486482]
[26]
Zhang, J.; Mao, S.; Guo, Y.; Wu, Y.; Yao, X.; Huang, Y. Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer. Biosci. Rep., 2019, 39(6), BSR20181826.
[http://dx.doi.org/10.1042/BSR20181826] [PMID: 31196962]
[27]
Yuan, L.; Sheng, X.; Clark, L.H.; Zhang, L.; Guo, H.; Jones, H.M.; Willson, A.K.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. Am. J. Transl. Res., 2016, 8(10), 4265-4277.
[PMID: 27830010]
[28]
Qie, S.; Diehl, J.A. Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin. Cancer Biol., 2020, 67(Pt 2), 159-170.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.012] [PMID: 32006569]
[29]
Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 399.
[http://dx.doi.org/10.1186/s13046-019-1405-7] [PMID: 31511084]
[30]
Shi, H.; Han, J.; Yue, S.; Zhang, T.; Zhu, W.; Zhang, D. Prognostic significance of combined microRNA-206 and CyclinD2 in gastric cancer patients after curative surgery: A retrospective cohort study. Biomed. Pharmacother., 2015, 71, 210-215.
[http://dx.doi.org/10.1016/j.biopha.2014.12.037] [PMID: 25960238]
[31]
Wang, S.; Li, X.; Li, Z.G.; Lu, J.; Fang, W.Y.; Ding, Y.Q.; Yao, K.T. Gene expression profile changes and possible molecular subtypes in differentiated-type nonkeratinizing nasopharyngeal carcinoma. Int. J. Cancer, 2011, 128(4), 753-762.
[http://dx.doi.org/10.1002/ijc.25392] [PMID: 20473882]
[32]
Li, X.; Liu, F.; Lin, B.; Luo, H.; Liu, M.; Wu, J.; Li, C.; Li, R.; Zhang, X.; Zhou, K.; Ren, D. miR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int. J. Oncol., 2017, 50(4), 1097-1108.
[http://dx.doi.org/10.3892/ijo.2017.3909] [PMID: 28350089]
[33]
Lu, J.; He, M.L.; Wang, L.; Chen, Y.; Liu, X.; Dong, Q.; Chen, Y.C.; Peng, Y.; Yao, K.T.; Kung, H.F.; Li, X.P. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res., 2011, 71(1), 225-233.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1850] [PMID: 21199804]
[34]
Vadlakonda, L.; Pasupuleti, M.; Pallu, R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 2013, 3, 85.
[http://dx.doi.org/10.3389/fonc.2013.00085] [PMID: 23596569]
[35]
Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092.
[http://dx.doi.org/10.1371/journal.pone.0185092] [PMID: 28950000]
[36]
Yuan, L.; Sheng, X.; Willson, A.K.; Roque, D.R.; Stine, J.E.; Guo, H.; Jones, H.M.; Zhou, C.; Bae-Jump, V.L. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr. Relat. Cancer, 2015, 22(4), 577-591.
[http://dx.doi.org/10.1530/ERC-15-0192] [PMID: 26045471]
[37]
Xi, J.; Sun, Y.; Zhang, M.; Fa, Z.; Wan, Y.; Min, Z.; Xu, H.; Xu, C.; Tang, J. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp. Cell Res., 2019, 381(1), 1-9.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.005] [PMID: 31054856]
[38]
Yang, W.H.; Qiu, Y.; Stamatatos, O.; Janowitz, T.; Lukey, M.J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer, 2021, 7(8), 790-804.
[http://dx.doi.org/10.1016/j.trecan.2021.04.003] [PMID: 34020912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy