Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Hypothalamus-Pituitary-Adrenal Axis and Social Cognition in Borderline Personality Disorder

Author(s): Eugenia Kulakova*, Livia Graumann and Katja Wingenfeld

Volume 22, Issue 3, 2024

Published on: 07 August, 2023

Page: [378 - 394] Pages: 17

DOI: 10.2174/1570159X21666230804085639

Price: $65

Abstract

Borderline personality disorder (BPD) is characterized by emotional instability, impulsivity and unstable interpersonal relationships. Patients experience discomforting levels of distress, inducing symptoms like dissociation, aggression or withdrawal. Social situations are particularly challenging, and acute social stress can reduce patients’ cognitive and social functioning. In patients with Major Depressive Disorder or Posttraumatic Stress Disorder, which show high comorbidity with BPD, the endocrine stress response is characterized by Hypothalamus-Pituitary-Adrenal (HPA) axis dysfunction, which affects cognitive functioning. Compared to these clinical groups, research on HPA-axis function in BPD is relatively scarce, but evidence points towards a blunted cortisol reactivity to acute stress. Since BPD patients are particularly prone to social stress and experience high subjective difficulties in these situations, it seems plausible that HPA-axis dysregulation might contribute to decreased social cognition in BPD. The present review summarizes findings on the HPA-axis function in BPD and its association with social cognition following acute social stress. For this purpose, we review literature that employed a widely used social stressor (Trier Social Stress Test, TSST) to study the effects of acute social stress on social cognition and the HPA-axis response. We contrast these findings with studies on social cognition that employed Cyberball, another widely used social stressor that lacks HPA-axis involvement. We conclude that research on social cognition in BPD reveals heterogeneous results with no clear relationship between social functioning and HPA-axis response. More research is needed to better understand the psychophysiological underpinnings of impaired social cognition in BPD.

Graphical Abstract

[1]
Ellison, W.D.; Rosenstein, L.K.; Morgan, T.A.; Zimmerman, M. Community and clinical epidemiology of borderline personality disorder. Psychiatr. Clin. North Am., 2018, 41(4), 561-573.
[http://dx.doi.org/10.1016/j.psc.2018.07.008] [PMID: 30447724]
[2]
Shah, R.; Zanarini, M.C. Comorbidity of borderline personality disorder: Current status and future directions. Psychiatr. Clin. North Am., 2018, 41(4), 583-593.
[http://dx.doi.org/10.1016/j.psc.2018.07.009] [PMID: 30447726]
[3]
Doering, S. Borderline personality disorder in patients with medical illness: A review of assessment, prevalence, and treatment options. Psychosom. Med., 2019, 81(7), 584-594.
[http://dx.doi.org/10.1097/PSY.0000000000000724] [PMID: 31232916]
[4]
Association, A.P. Diagnostic and statistical manual of mental disorders: DSM-5; American Psychiatric Association: Arlington, VA, 2013.
[http://dx.doi.org/10.1176/appi.books.9780890425596]
[5]
Bourvis, N.; Aouidad, A.; Cabelguen, C.; Cohen, D.; Xavier, J. How do stress exposure and stress regulation relate to borderline personality disorder? Front. Psychol., 2017, 8, 2054.
[http://dx.doi.org/10.3389/fpsyg.2017.02054] [PMID: 29250007]
[6]
Lazarus, S.A.; Cheavens, J.S.; Festa, F.; Zachary Rosenthal, M. Interpersonal functioning in borderline personality disorder: A systematic review of behavioral and laboratory-based assessments. Clin. Psychol. Rev., 2014, 34(3), 193-205.
[http://dx.doi.org/10.1016/j.cpr.2014.01.007] [PMID: 24534643]
[7]
Zanarini, M.C.; Frankenburg, F.R.; Reich, D.B.; Fitzmaurice, G.M. Fluidity of the subsyndromal phenomenology of borderline personality disorder over 16 years of prospective follow-up. Am. J. Psychiatry, 2016, 173(7), 688-694.
[http://dx.doi.org/10.1176/appi.ajp.2015.15081045] [PMID: 26869248]
[8]
Linehan, M.M. Skills training manual for treating borderline personality disorder; Guilford press: New York, 1993.
[9]
Porter, C.; Palmier-Claus, J.; Branitsky, A.; Mansell, W.; Warwick, H.; Varese, F. Childhood adversity and borderline personality disorder: A meta-analysis. Acta Psychiatr. Scand., 2020, 141(1), 6-20.
[http://dx.doi.org/10.1111/acps.13118] [PMID: 31630389]
[10]
Gunderson, J.G. Clinical practice. Borderline personality disorder. N. Engl. J. Med., 2011, 364(21), 2037-2042.
[http://dx.doi.org/10.1056/NEJMcp1007358] [PMID: 21612472]
[11]
Bohus, M.; Haaf, B.; Simms, T.; Limberger, M.F.; Schmahl, C.; Unckel, C.; Lieb, K.; Linehan, M.M. Effectiveness of inpatient dialectical behavioral therapy for borderline personality disorder: A controlled trial. Behav. Res. Ther., 2004, 42(5), 487-499.
[http://dx.doi.org/10.1016/S0005-7967(03)00174-8] [PMID: 15033496]
[12]
DeCou, C.R.; Comtois, K.A.; Landes, S.J. Dialectical behavior therapy is effective for the treatment of suicidal behavior: A meta-analysis. Behav. Ther., 2019, 50(1), 60-72.
[http://dx.doi.org/10.1016/j.beth.2018.03.009] [PMID: 30661567]
[13]
Flynn, D.; Joyce, M.; Spillane, A.; Wrigley, C.; Corcoran, P.; Hayes, A.; Flynn, M.; Wyse, D.; Corkery, B.; Mooney, B. Does an adapted Dialectical Behaviour Therapy skills training programme result in positive outcomes for participants with a dual diagnosis? A mixed methods study. Addict. Sci. Clin. Pract., 2019, 14(1), 28.
[http://dx.doi.org/10.1186/s13722-019-0156-2] [PMID: 31412957]
[14]
Stoffers-Winterling, J.M.; Storebø, O.J.; Kongerslev, M.T.; Faltinsen, E.; Todorovac, A.; Sedoc Jørgensen, M.; Sales, C.P.; Edemann Callesen, H.; Pereira Ribeiro, J.; Völlm, B.A.; Lieb, K.; Simonsen, E. Psychotherapies for borderline personality disorder: A focused systematic review and meta-analysis. Br. J. Psychiatry, 2022, 221(3), 538-552.
[http://dx.doi.org/10.1192/bjp.2021.204] [PMID: 35088687]
[15]
Stiglmayr, C.E.; Ebner-Priemer, U.W.; Bretz, J.; Behm, R.; Mohse, M.; Lammers, C.H.; Anghelescu, I.G.; Schmahl, C.; Schlotz, W.; Kleindienst, N.; Bohus, M. Dissociative symptoms are positively related to stress in borderline personality disorder. Acta Psychiatr. Scand., 2008, 117(2), 139-147.
[PMID: 18028248]
[16]
Stiglmayr, C.E.; Shapiro, D.A.; Stieglitz, R.D.; Limberger, M.F.; Bohus, M. Experience of aversive tension and dissociation in female patients with borderline personality disorder — a controlled study. J. Psychiatr. Res., 2001, 35(2), 111-118.
[http://dx.doi.org/10.1016/S0022-3956(01)00012-7] [PMID: 11377440]
[17]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[18]
Lupien, S.J.; Maheu, F.; Tu, M.; Fiocco, A.; Schramek, T.E. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain Cogn., 2007, 65(3), 209-237.
[http://dx.doi.org/10.1016/j.bandc.2007.02.007] [PMID: 17466428]
[19]
Arnsten, A.F.T. Stress weakens prefrontal networks: Molecular insults to higher cognition. Nat. Neurosci., 2015, 18(10), 1376-1385.
[http://dx.doi.org/10.1038/nn.4087] [PMID: 26404712]
[20]
Sandi, C. Stress and cognition. Wiley Interdiscip. Rev. Cogn. Sci., 2013, 4(3), 245-261.
[http://dx.doi.org/10.1002/wcs.1222] [PMID: 26304203]
[21]
Shields, G.S.; Bonner, J.C.; Moons, W.G. Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting. Psychoneuroendocrinology, 2015, 58, 91-103.
[http://dx.doi.org/10.1016/j.psyneuen.2015.04.017] [PMID: 25973565]
[22]
Shields, G.S.; Sazma, M.A.; McCullough, A.M.; Yonelinas, A.P. The effects of acute stress on episodic memory: A meta-analysis and integrative review. Psychol. Bull., 2017, 143(6), 636-675.
[http://dx.doi.org/10.1037/bul0000100] [PMID: 28368148]
[23]
Wolf, O.T. Stress and memory retrieval: Mechanisms and consequences. Curr. Opin. Behav. Sci., 2017, 14, 40-46.
[http://dx.doi.org/10.1016/j.cobeha.2016.12.001]
[24]
de Kloet, E.R. From receptor balance to rational glucocorticoid therapy. Endocrinology, 2014, 155(8), 2754-2769.
[http://dx.doi.org/10.1210/en.2014-1048] [PMID: 24828611]
[25]
Joëls, M.; Sarabdjitsingh, R.A.; Karst, H. Unraveling the time domains of corticosteroid hormone influences on brain activity: Rapid, slow, and chronic modes. Pharmacol. Rev., 2012, 64(4), 901-938.
[http://dx.doi.org/10.1124/pr.112.005892] [PMID: 23023031]
[26]
Joëls, M. Corticosteroids and the brain. J. Endocrinol., 2018, 238(3), R121-R130.
[http://dx.doi.org/10.1530/JOE-18-0226] [PMID: 29875162]
[27]
Joëls, M.; Karst, H.; DeRijk, R.; de Kloet, E.R. The coming out of the brain mineralocorticoid receptor. Trends Neurosci., 2008, 31(1), 1-7.
[http://dx.doi.org/10.1016/j.tins.2007.10.005] [PMID: 18063498]
[28]
Wingenfeld, K.; Otte, C. Mineralocorticoid receptor function and cognition in health and disease. Psychoneuroendocrinology, 2019, 105, 25-35.
[http://dx.doi.org/10.1016/j.psyneuen.2018.09.010] [PMID: 30243757]
[29]
Otte, C.; Moritz, S.; Yassouridis, A.; Koop, M.; Madrischewski, A.M.; Wiedemann, K.; Kellner, M. Blockade of the mineralocorticoid receptor in healthy men: Effects on experimentally induced panic symptoms, stress hormones, and cognition. Neuropsychopharmacology, 2007, 32(1), 232-238.
[http://dx.doi.org/10.1038/sj.npp.1301217] [PMID: 17035932]
[30]
Cornelisse, S.; Joëls, M.; Smeets, T. A randomized trial on mineralocorticoid receptor blockade in men: Effects on stress responses, selective attention, and memory. Neuropsychopharmacology, 2011, 36(13), 2720-2728.
[http://dx.doi.org/10.1038/npp.2011.162] [PMID: 21881569]
[31]
Rimmele, U.; Besedovsky, L.; Lange, T.; Born, J. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans. Neuropsychopharmacology, 2013, 38(5), 884-894.
[http://dx.doi.org/10.1038/npp.2012.254] [PMID: 23303058]
[32]
Groch, S.; Wilhelm, I.; Lange, T.; Born, J. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep. Psychoneuroendocrinology, 2013, 38(12), 2962-2972.
[http://dx.doi.org/10.1016/j.psyneuen.2013.08.006] [PMID: 24035099]
[33]
Hinkelmann, K.; Wingenfeld, K.; Kuehl, L.K.; Fleischer, J.; Heuser, I.; Wiedemann, K.; Otte, C. Stimulation of the mineralocorticoid receptor improves memory in young and elderly healthy individuals. Neurobiol. Aging, 2015, 36(2), 919-924.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.008] [PMID: 25442112]
[34]
Piber, D.; Schultebraucks, K.; Mueller, S.C.; Deuter, C.E.; Wingenfeld, K.; Otte, C. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task. Neurobiol. Learn. Mem., 2016, 136, 139-146.
[http://dx.doi.org/10.1016/j.nlm.2016.10.006] [PMID: 27725248]
[35]
Vogel, S.; Fernández, G.; Joëls, M.; Schwabe, L. Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor. Trends Cogn. Sci., 2016, 20(3), 192-203.
[http://dx.doi.org/10.1016/j.tics.2015.12.003] [PMID: 26803208]
[36]
Groeneweg, F.L.; Karst, H.; de Kloet, E.R.; Joëls, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol., 2011, 209(2), 153-167.
[http://dx.doi.org/10.1530/JOE-10-0472] [PMID: 21357682]
[37]
Joëls, M.; Karst, H.; Sarabdjitsingh, R.A. The stressed brain of humans and rodents. Acta Physiol., 2018, 223(2), e13066.
[http://dx.doi.org/10.1111/apha.13066] [PMID: 29575542]
[38]
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[39]
Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci., 2008, 31(9), 464-468.
[http://dx.doi.org/10.1016/j.tins.2008.06.006] [PMID: 18675469]
[40]
Schatzberg, A.F. Anna-Monika Award Lecture, DGPPN Kongress, 2013: The role of the hypothalamic–pituitary–adrenal (HPA) axis in the pathogenesis of psychotic major depression. World J. Biol. Psychiatry, 2015, 16(1), 2-11.
[http://dx.doi.org/10.3109/15622975.2014.916414] [PMID: 24933348]
[41]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[42]
Hinkelmann, K.; Moritz, S.; Botzenhardt, J.; Riedesel, K.; Wiedemann, K.; Kellner, M.; Otte, C. Cognitive impairment in major depression: Association with salivary cortisol. Biol. Psychiatry, 2009, 66(9), 879-885.
[http://dx.doi.org/10.1016/j.biopsych.2009.06.023] [PMID: 19709646]
[43]
Hinkelmann, K.; Muhtz, C.; Dettenborn, L.; Agorastos, A.; Moritz, S.; Wingenfeld, K.; Spitzer, C.; Gold, S.M.; Wiedemann, K.; Otte, C. Association between cortisol awakening response and memory function in major depression. Psychol. Med., 2013, 43(11), 2255-2263.
[http://dx.doi.org/10.1017/S0033291713000287] [PMID: 23442784]
[44]
Gomez, R.G.; Fleming, S.H.; Keller, J.; Flores, B.; Kenna, H.; DeBattista, C.; Solvason, B.; Schatzberg, A.F. The neuropsychological profile of psychotic major depression and its relation to cortisol. Biol. Psychiatry, 2006, 60(5), 472-478.
[http://dx.doi.org/10.1016/j.biopsych.2005.11.010] [PMID: 16483550]
[45]
O’Hara, R.; Schröder, C.M.; Mahadevan, R.; Schatzberg, A.F.; Lindley, S.; Fox, S.; Weiner, M.; Kraemer, H.C.; Noda, A.; Lin, X.; Gray, H.L.; Hallmayer, J.F. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: Association and interaction with cortisol. Mol. Psychiatry, 2007, 12(6), 544-555.
[http://dx.doi.org/10.1038/sj.mp.4001978] [PMID: 17353910]
[46]
Behnken, A.; Bellingrath, S.; Symanczik, J.P.; Rieck, M.J.; Zavorotnyy, M.; Domschke, K.; Arolt, V.; Zwanzger, P. Associations between cognitive performance and cortisol reaction to the DEX/CRH test in patients recovered from depression. Psychoneuroendocrinology, 2013, 38(3), 447-454.
[http://dx.doi.org/10.1016/j.psyneuen.2012.07.005] [PMID: 22840287]
[47]
Krogh, J.; Videbech, P.; Renvillard, S.G.; Garde, A.H.; Jørgensen, M.B.; Nordentoft, M. Cognition and HPA axis reactivity in mildly to moderately depressed outpatients. A case–control study. Nord. J. Psychiatry, 2012, 66(6), 414-421.
[http://dx.doi.org/10.3109/08039488.2012.665081] [PMID: 22424441]
[48]
Schlosser, N.; Wolf, O.T.; Wingenfeld, K. Cognitive correlates of HPA axis alterations and their relevance for therapeutic interventions in major depressive disorder. Expert Rev. Endocrinol. Metab., 2011, 6, 109-126.
[http://dx.doi.org/10.1586/eem.10.79] [PMID: 30764039]
[49]
Terfehr, K.; Wolf, O.T.; Schlosser, N.; Fernando, S.C.; Otte, C.; Muhtz, C.; Beblo, T.; Driessen, M.; Spitzer, C.; Löwe, B.; Wingenfeld, K. Effects of acute hydrocortisone administration on declarative memory in patients with major depressive disorder: A placebo-controlled, double-blind crossover study. J. Clin. Psychiatry, 2011, 72(12), 1644-1650.
[http://dx.doi.org/10.4088/JCP.10m06240] [PMID: 21535999]
[50]
Schlosser, N.; Wolf, O.T.; Fernando, S.C.; Riedesel, K.; Otte, C.; Muhtz, C.; Beblo, T.; Driessen, M.; Löwe, B.; Wingenfeld, K. Effects of acute cortisol administration on autobiographical memory in patients with major depression and healthy controls. Psychoneuroendocrinology, 2010, 35(2), 316-320.
[http://dx.doi.org/10.1016/j.psyneuen.2009.06.015] [PMID: 19616895]
[51]
Terfehr, K.; Wolf, O.T.; Schlosser, N.; Fernando, S.C.; Otte, C.; Muhtz, C.; Beblo, T.; Driessen, M.; Spitzer, C.; Löwe, B.; Wingenfeld, K. Hydrocortisone impairs working memory in healthy humans, but not in patients with major depressive disorder. Psychopharmacology, 2011, 215(1), 71-79.
[http://dx.doi.org/10.1007/s00213-010-2117-z] [PMID: 21161185]
[52]
Schlosser, N.; Wolf, O.T.; Fernando, S.C.; Terfehr, K.; Otte, C.; Spitzer, C.; Beblo, T.; Driessen, M.; Löwe, B.; Wingenfeld, K. Effects of acute cortisol administration on response inhibition in patients with major depression and healthy controls. Psychiatry Res., 2013, 209(3), 439-446.
[http://dx.doi.org/10.1016/j.psychres.2012.12.019] [PMID: 23332680]
[53]
Klok, M.D.; Alt, S.R.; Irurzun Lafitte, A.J.M.; Turner, J.D.; Lakke, E.A.J.F.; Huitinga, I.; Muller, C.P.; Zitman, F.G.; Ronald de Kloet, E.; DeRijk, R.H. Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. J. Psychiatr. Res., 2011, 45(7), 871-878.
[http://dx.doi.org/10.1016/j.jpsychires.2010.12.002] [PMID: 21195417]
[54]
Medina, A.; Seasholtz, A.F.; Sharma, V.; Burke, S.; Bunney, W., Jr; Myers, R.M.; Schatzberg, A.; Akil, H.; Watson, S.J. Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. J. Psychiatr. Res., 2013, 47(3), 307-314.
[http://dx.doi.org/10.1016/j.jpsychires.2012.11.002] [PMID: 23219281]
[55]
Otte, C.; Wingenfeld, K.; Kuehl, L.K.; Kaczmarczyk, M.; Richter, S.; Quante, A.; Regen, F.; Bajbouj, M.; Zimmermann-Viehoff, F.; Wiedemann, K.; Hinkelmann, K. Mineralocorticoid receptor stimulation improves cognitive function and decreases cortisol secretion in depressed patients and healthy individuals. Neuropsychopharmacology, 2015, 40(2), 386-393.
[http://dx.doi.org/10.1038/npp.2014.181] [PMID: 25035081]
[56]
Otte, C.; Wingenfeld, K.; Kuehl, L.K.; Richter, S.; Regen, F.; Piber, D.; Hinkelmann, K. Cognitive function in older adults with major depression: Effects of mineralocorticoid receptor stimulation. J. Psychiatr. Res., 2015, 69, 120-125.
[http://dx.doi.org/10.1016/j.jpsychires.2015.08.001] [PMID: 26343603]
[57]
Nowacki, J.; Wingenfeld, K.; Kaczmarczyk, M.; Chae, W.R.; Salchow, P.; Deuter, C.E.; Piber, D.; Otte, C. Selective attention to emotional stimuli and emotion recognition in patients with major depression: The role of mineralocorticoid and glutamatergic NMDA receptors. J. Psychopharmacol., 2021, 35(8), 1017-1023.
[http://dx.doi.org/10.1177/02698811211009797] [PMID: 33908312]
[58]
Lembke, A.; Gomez, R.; Tenakoon, L.; Keller, J.; Cohen, G.; Williams, G.H.; Kraemer, F.B.; Schatzberg, A.F. The mineralocorticoid receptor agonist, fludrocortisone, differentially inhibits pituitary–adrenal activity in humans with psychotic major depression. Psychoneuroendocrinology, 2013, 38(1), 115-121.
[http://dx.doi.org/10.1016/j.psyneuen.2012.05.006] [PMID: 22727477]
[59]
Juruena, M.F.; Pariante, C.M.; Papadopoulos, A.S.; Poon, L.; Lightman, S.; Cleare, A.J. The role of mineralocorticoid receptor function in treatment-resistant depression. J. Psychopharmacol., 2013, 27(12), 1169-1179.
[http://dx.doi.org/10.1177/0269881113499205] [PMID: 23904409]
[60]
Morris, M.C.; Compas, B.E.; Garber, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clin. Psychol. Rev., 2012, 32(4), 301-315.
[http://dx.doi.org/10.1016/j.cpr.2012.02.002] [PMID: 22459791]
[61]
Meewisse, M.L.; Reitsma, J.B.; De Vries, G.J.; Gersons, B.P.R.; Olff, M. Cortisol and post-traumatic stress disorder in adults. Br. J. Psychiatry, 2007, 191(5), 387-392.
[http://dx.doi.org/10.1192/bjp.bp.106.024877] [PMID: 17978317]
[62]
de Kloet, C.; Vermetten, E.; Lentjes, E.; Geuze, E.; van Pelt, J.; Manuel, R.; Heijnen, C.; Westenberg, H. Differences in the response to the combined DEX-CRH test between PTSD patients with and without co-morbid depressive disorder. Psychoneuroendocrinology, 2008, 33(3), 313-320.
[http://dx.doi.org/10.1016/j.psyneuen.2007.11.016] [PMID: 18215470]
[63]
Szeszko, P.R.; Lehrner, A.; Yehuda, R. Glucocorticoids and hippocampal structure and function in PTSD. Harv. Rev. Psychiatry, 2018, 26(3), 142-157.
[http://dx.doi.org/10.1097/HRP.0000000000000188] [PMID: 29734228]
[64]
Yehuda, R. Current status of cortisol findings in post-traumatic stress disorder. Psychiatr. Clin. North Am., 2002, 25(2), 341-368. vii
[http://dx.doi.org/10.1016/S0193-953X(02)00002-3] [PMID: 12136504]
[65]
Heim, C.; Nemeroff, C.B. Neurobiology of posttraumatic stress disorder. CNS Spectr., 2009, 14(1)(Suppl. 1), 13-24.
[PMID: 19169190]
[66]
Grossman, R.; Yehuda, R.; Golier, J.; McEwen, B.; Harvey, P.; Maria, N.S. Cognitive effects of intravenous hydrocortisone in subjects with PTSD and healthy control subjects. Ann. N. Y. Acad. Sci., 2006, 1071(1), 410-421.
[http://dx.doi.org/10.1196/annals.1364.032] [PMID: 16891588]
[67]
Vythilingam, M.; Lawley, M.; Collin, C.; Bonne, O.; Agarwal, R.; Hadd, K.; Charney, D.S.; Grillon, C. Hydrocortisone impairs hippocampal-dependent trace eyeblink conditioning in post-traumatic stress disorder. Neuropsychopharmacology, 2006, 31(1), 182-188.
[http://dx.doi.org/10.1038/sj.npp.1300843] [PMID: 16123770]
[68]
Wingenfeld, K.; Driessen, M.; Terfehr, K.; Schlosser, N.; Fernando, S.C.; Otte, C.; Beblo, T.; Spitzer, C.; Löwe, B.; Wolf, O.T. Cortisol has enhancing, rather than impairing effects on memory retrieval in PTSD. Psychoneuroendocrinology, 2012, 37(7), 1048-1056.
[http://dx.doi.org/10.1016/j.psyneuen.2011.12.002] [PMID: 22197003]
[69]
Yehuda, R.; Harvey, P.D.; Buchsbaum, M.; Tischler, L.; Schmeidler, J. Enhanced effects of cortisol administration on episodic and working memory in aging veterans with PTSD. Neuropsychopharmacology, 2007, 32(12), 2581-2591.
[http://dx.doi.org/10.1038/sj.npp.1301380] [PMID: 17392739]
[70]
Yehuda, R.; Golier, J.A.; Bierer, L.M.; Mikhno, A.; Pratchett, L.C.; Burton, C.L.; Makotkine, I.; Devanand, D.P.; Pradhaban, G.; Harvey, P.D.; Mann, J.J. Hydrocortisone responsiveness in Gulf War veterans with PTSD: Effects on ACTH, declarative memory hippocampal [18F]FDG uptake on PET. Psychiatry Res. Neuroimaging, 2010, 184(2), 117-127.
[http://dx.doi.org/10.1016/j.pscychresns.2010.06.010] [PMID: 20934312]
[71]
Drews, E.; Fertuck, E.A.; Koenig, J.; Kaess, M.; Arntz, A. Hypothalamic-pituitary-adrenal axis functioning in borderline personality disorder: A meta-analysis. Neurosci. Biobehav. Rev., 2019, 96, 316-334.
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.008] [PMID: 30500331]
[72]
Lieb, K.; Rexhausen, J.E.; Kahl, K.G.; Schweiger, U.; Philipsen, A.; Hellhammer, D.H.; Bohus, M. Increased diurnal salivary cortisol in women with borderline personality disorder. J. Psychiatr. Res., 2004, 38(6), 559-565.
[http://dx.doi.org/10.1016/j.jpsychires.2004.04.002] [PMID: 15458851]
[73]
Carvalho Fernando, S.; Beblo, T.; Schlosser, N.; Terfehr, K.; Otte, C.; Löwe, B.; Wolf, O.T.; Spitzer, C.; Driessen, M.; Wingenfeld, K. Associations of childhood trauma with hypothalamic-pituitary-adrenal function in borderline personality disorder and major depression. Psychoneuroendocrinology, 2012, 37(10), 1659-1668.
[http://dx.doi.org/10.1016/j.psyneuen.2012.02.012] [PMID: 22444624]
[74]
Wingenfeld, K.; Driessen, M.; Adam, B.; Hill, A. Overnight urinary cortisol release in women with borderline personality disorder depends on comorbid PTSD and depressive psychopathology. Eur. Psychiatry, 2007, 22(5), 309-312.
[http://dx.doi.org/10.1016/j.eurpsy.2006.09.002] [PMID: 17142011]
[75]
Simeon, D.; Knutelska, M.; Yehuda, R.; Putnam, F.; Schmeidler, J.; Smith, L.M. Hypothalamic-pituitary-adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers. Biol. Psychiatry, 2007, 61(8), 966-973.
[http://dx.doi.org/10.1016/j.biopsych.2006.07.030] [PMID: 17137559]
[76]
Wingenfeld, K.; Spitzer, C.; Rullkötter, N.; Löwe, B. Borderline personality disorder: Hypothalamus pituitary adrenal axis and findings from neuroimaging studies. Psychoneuroendocrinology, 2010, 35(1), 154-170.
[http://dx.doi.org/10.1016/j.psyneuen.2009.09.014] [PMID: 19837517]
[77]
Zimmerman, D.J.; Choi-Kain, L.W. The hypothalamic-pituitary-adrenal axis in borderline personality disorder: A review. Harv. Rev. Psychiatry, 2009, 17(3), 167-183.
[http://dx.doi.org/10.1080/10673220902996734] [PMID: 19499417]
[78]
Martín-Blanco, A.; Ferrer, M.; Soler, J.; Salazar, J.; Vega, D.; Andión, O.; Sanchez-Mora, C.; Arranz, M.J.; Ribases, M.; Feliu-Soler, A.; Pérez, V.; Pascual, J.C. Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. J. Psychiatr. Res., 2014, 57, 34-40.
[http://dx.doi.org/10.1016/j.jpsychires.2014.06.011] [PMID: 25048180]
[79]
Steiger, H.; Labonté, B.; Groleau, P.; Turecki, G.; Israel, M. Methylation of the glucocorticoid receptor gene promoter in bulimic women: Associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int. J. Eat. Disord., 2013, 46(3), 246-255.
[http://dx.doi.org/10.1002/eat.22113] [PMID: 23417893]
[80]
Fischer, A.; Grundmann, J.; Gold, S.M.; Spitzer, C.; Wingenfeld, K. Steroid regulation of T cell function appears unaltered in borderline personality disorder. J. Pers. Disord., 2014, 29(2), 241-247.
[PMID: 25248018]
[81]
Baxter, L.; Edell, W.; Gerner, R.; Fairbanks, L.; Gwirtsman, H. Dexamethasone suppression test and Axis I diagnoses of inpatients with DSM-III borderline personality disorder. J. Clin. Psychiatry, 1984, 45(4), 150-153.
[PMID: 6715286]
[82]
Carroll, B.J.; Greden, J.F.; Feinberg, M.; Lohr, N.; James, N.M.; Steiner, M.; Haskett, R.F.; Albala, A.A.; DeVigne, J.P.; Tarika, J. Neuroendocrine evaluation of depression in borderline patients. Psychiatr. Clin. North Am., 1981, 4(1), 89-99.
[http://dx.doi.org/10.1016/S0193-953X(18)30938-9] [PMID: 7232239]
[83]
Kontaxakis, V.; Markianos, M.; Vaslamatzis, G.; Markidis, M.; Kanellos, P.; Stefanis, C. Multiple neuroendocrinological responses in borderline personality disorder patients. Acta Psychiatr. Scand., 1987, 76(5), 593-597.
[http://dx.doi.org/10.1111/j.1600-0447.1987.tb02924.x] [PMID: 3124503]
[84]
Beeber, A.R.; Kline, M.D.; Pies, R.W.; Manring, J.M., Jr Dexamethasone suppression test in hospitalized depressed patients with borderline personality disorder. J. Nerv. Ment. Dis., 1984, 172(5), 301-303.
[http://dx.doi.org/10.1097/00005053-198405000-00009] [PMID: 6716096]
[85]
Sternbach, H.A.; Fleming, J.; Extein, I.; Pottash, A.L.C.; Gold, M.S. The dexamethasone suppression and thyrotropin-releasing hormone tests in depressed borderline patients. Psychoneuroendocrinology, 1983, 8(4), 459-462.
[http://dx.doi.org/10.1016/0306-4530(83)90028-8] [PMID: 6425891]
[86]
Rinne, T.; de Kloet, E.R.; Wouters, L.; Goekoop, J.G.; DeRijk, R.H.; van den Brink, W. Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol. Psychiatry, 2002, 52(11), 1102-1112.
[http://dx.doi.org/10.1016/S0006-3223(02)01395-1] [PMID: 12460693]
[87]
Manuel De la Fuente, J.; Bobes, J.; Vizuete, C.; Mendlewicz, J. Biological nature of depressive symptoms in borderline personality disorder: Endocrine comparison to recurrent brief and major depression. J. Psychiatr. Res., 2002, 36(3), 137-145.
[http://dx.doi.org/10.1016/S0022-3956(01)00056-5] [PMID: 11886691]
[88]
Korzekwa, M.; Steiner, M.; Links, P.; Eppel, A. The dexamethasone suppression test in borderlines: Is it useful? Can. J. Psychiatry, 1991, 36(1), 26-28.
[http://dx.doi.org/10.1177/070674379103600106] [PMID: 2029680]
[89]
Yehuda, R. Status of glucocorticoid alterations in post-traumatic stress disorder. Ann. N. Y. Acad. Sci., 2009, 1179(1), 56-69.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04979.x] [PMID: 19906232]
[90]
Grossman, R.; Yehuda, R.; New, A.; Schmeidler, J.; Silverman, J.; Mitropoulou, V.; Sta Maria, N.; Golier, J.; Siever, L. Dexamethasone suppression test findings in subjects with personality disorders: Associations with posttraumatic stress disorder and major depression. Am. J. Psychiatry, 2003, 160(7), 1291-1298.
[http://dx.doi.org/10.1176/appi.ajp.160.7.1291] [PMID: 12832244]
[91]
Grossman, R.; Yehuda, R.; Siever, L. The dexamethasone suppression test and glucocorticoid receptors in borderline personality disorder. Ann. N. Y. Acad. Sci., 1997, 821((1 Psychobiology)), 459-464.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48305.x] [PMID: 9238229]
[92]
Lange, W.; Wulff, H.; Berea, C.; Beblo, T.; Saavedra, A.S.; Mensebach, C.; Wingenfeld, K.; Driessen, M. Dexamethasone suppression test in borderline personality disorder—effects of posttraumatic stress disorder. Psychoneuroendocrinology, 2005, 30(9), 919-923.
[http://dx.doi.org/10.1016/j.psyneuen.2005.02.009] [PMID: 15896918]
[93]
Wingenfeld, K.; Hill, A.; Adam, B.; Driessen, M. Dexamethasone suppression test in borderline personality disorder: Impact of PTSD symptoms. Psychiatry Clin. Neurosci., 2007, 61(6), 681-683.
[http://dx.doi.org/10.1111/j.1440-1819.2007.01728.x] [PMID: 18081632]
[94]
Dixon-Gordon, K.L.; Gratz, K.L.; Tull, M.T. Multimodal assessment of emotional reactivity in borderline personality pathology: The moderating role of posttraumatic stress disorder symptoms. Compr. Psychiatry, 2013, 54(6), 639-648.
[http://dx.doi.org/10.1016/j.comppsych.2012.12.019] [PMID: 23375184]
[95]
von Dawans, B.; Fischbacher, U.; Kirschbaum, C.; Fehr, E.; Heinrichs, M. The social dimension of stress reactivity: Acute stress increases prosocial behavior in humans. Psychol. Sci., 2012, 23(6), 651-660.
[http://dx.doi.org/10.1177/0956797611431576] [PMID: 22593119]
[96]
Cannon, W. Wisdom of the body; W.W. Norton & Company: New York, 1932.
[http://dx.doi.org/10.1097/00000441-193212000-00028]
[97]
Deckers, J.W.M.; Lobbestael, J.; van Wingen, G.A.; Kessels, R.P.C.; Arntz, A.; Egger, J.I.M. The influence of stress on social cognition in patients with borderline personality disorder. Psychoneuroendocrinology, 2015, 52, 119-129.
[http://dx.doi.org/10.1016/j.psyneuen.2014.11.003] [PMID: 25459898]
[98]
Schultebraucks, K.; Deuter, C.E.; Duesenberg, M.; Schulze, L.; Hellmann-Regen, J.; Domke, A.; Lockenvitz, L.; Kuehl, L.K.; Otte, C.; Wingenfeld, K. Selective attention to emotional cues and emotion recognition in healthy subjects: The role of mineralocorticoid receptor stimulation. Psychopharmacology, 2016, 233(18), 3405-3415.
[http://dx.doi.org/10.1007/s00213-016-4380-0] [PMID: 27422567]
[99]
Wolf, O.T.; Schulte, J.M.; Drimalla, H.; Hamacher-Dang, T.C.; Knoch, D.; Dziobek, I. Enhanced emotional empathy after psychosocial stress in young healthy men. Stress, 2015, 18(6), 631-637.
[http://dx.doi.org/10.3109/10253890.2015.1078787] [PMID: 26365125]
[100]
Wingenfeld, K.; Kuehl, L.K.; Janke, K.; Hinkelmann, K.; Dziobek, I.; Fleischer, J.; Otte, C.; Roepke, S. Enhanced emotional empathy after mineralocorticoid receptor stimulation in women with borderline personality disorder and healthy women. Neuropsychopharmacology, 2014, 39(8), 1799-1804.
[http://dx.doi.org/10.1038/npp.2014.36] [PMID: 24535100]
[101]
Wingenfeld, K.; Duesenberg, M.; Fleischer, J.; Roepke, S.; Dziobek, I.; Otte, C.; Wolf, O.T. Psychosocial stress differentially affects emotional empathy in women with borderline personality disorder and healthy controls. Acta Psychiatr. Scand., 2018, 137(3), 206-215.
[http://dx.doi.org/10.1111/acps.12856] [PMID: 29417987]
[102]
Taylor, S.E.; Klein, L.C.; Lewis, B.P.; Gruenewald, T.L.; Gurung, R.A.R.; Updegraff, J.A. Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychol. Rev., 2000, 107(3), 411-429.
[http://dx.doi.org/10.1037/0033-295X.107.3.411] [PMID: 10941275]
[103]
Buchanan, T.W.; Preston, S.D. Stress leads to prosocial action in immediate need situations. Front. Behav. Neurosci., 2014, 8, 5.
[http://dx.doi.org/10.3389/fnbeh.2014.00005] [PMID: 24478652]
[104]
Steinbeis, N.; Engert, V.; Linz, R.; Singer, T. The effects of stress and affiliation on social decision-making: Investigating the tend-and-befriend pattern. Psychoneuroendocrinology, 2015, 62, 138-148.
[http://dx.doi.org/10.1016/j.psyneuen.2015.08.003] [PMID: 26311359]
[105]
Faber, N.S.; Häusser, J.A. Why stress and hunger both increase and decrease prosocial behaviour. Curr. Opin. Psychol., 2022, 44, 49-57.
[http://dx.doi.org/10.1016/j.copsyc.2021.08.023] [PMID: 34563979]
[106]
Townsend, S.S.M.; Kim, H.S.; Mesquita, B. Are you feeling what I’m feeling? Emotional similarity buffers stress. Soc. Psychol. Personal. Sci., 2014, 5(5), 526-533.
[http://dx.doi.org/10.1177/1948550613511499]
[107]
Nitschke, J.P.; Forbes, P.; Lamm, C. Does stress make us more-or less-prosocial? A systematic review and meta-analysis of the effects of acute stress on prosocial behaviours using economic games. Neurosci. Biobehav. Rev., 2022, 142, 104905.
[108]
Hermans, E.J.; Henckens, M.J.A.G.; Joëls, M.; Fernández, G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci., 2014, 37(6), 304-314.
[http://dx.doi.org/10.1016/j.tins.2014.03.006] [PMID: 24766931]
[109]
Agorastos, A.; Heinig, A.; Stiedl, O.; Hager, T.; Sommer, A.; Müller, J.C.; Schruers, K.R.; Wiedemann, K.; Demiralay, C. Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology, 2019, 102, 196-203.
[http://dx.doi.org/10.1016/j.psyneuen.2018.12.017] [PMID: 30579237]
[110]
Krugers, H.J.; Karst, H.; Joels, M. Interactions between noradrenaline and corticosteroids in the brain: From electrical activity to cognitive performance. Front. Cell. Neurosci., 2012, 6, 15.
[http://dx.doi.org/10.3389/fncel.2012.00015] [PMID: 22509154]
[111]
Ji, D.; Flouri, E.; Papachristou, E. Social cognition and cortisol in the general population: A systematic review and meta-analysis. Stress Health, 2021, 37(3), 415-430.
[http://dx.doi.org/10.1002/smi.3013] [PMID: 34363741]
[112]
Roepke, S.; Vater, A.; Preißler, S.; Heekeren, H.R.; Dziobek, I. Social cognition in borderline personality disorder. Front. Neurosci., 2013, 6, 195.
[http://dx.doi.org/10.3389/fnins.2012.00195] [PMID: 23335877]
[113]
Lynch, T.R.; Rosenthal, M.Z.; Kosson, D.S.; Cheavens, J.S.; Lejuez, C.W.; Blair, R.J.R. Heightened sensitivity to facial expressions of emotion in borderline personality disorder. Emotion, 2006, 6(4), 647-655.
[http://dx.doi.org/10.1037/1528-3542.6.4.647] [PMID: 17144755]
[114]
Domes, G.; Schulze, L.; Herpertz, S.C. Emotion recognition in borderline personality disorder-a review of the literature. J. Pers. Disord., 2009, 23(1), 6-19.
[http://dx.doi.org/10.1521/pedi.2009.23.1.6] [PMID: 19267658]
[115]
Graumann, L.; Duesenberg, M.; Metz, S.; Schulze, L.; Wolf, O.T.; Roepke, S.; Otte, C.; Wingenfeld, K. Facial emotion recognition in borderline patients is unaffected by acute psychosocial stress. J. Psychiatr. Res., 2021, 132, 131-135.
[http://dx.doi.org/10.1016/j.jpsychires.2020.10.007] [PMID: 33091687]
[116]
Schilling, L.; Wingenfeld, K.; Löwe, B.; Moritz, S.; Terfehr, K.; Köther, U.; Spitzer, C. Normal mind-reading capacity but higher response confidence in borderline personality disorder patients. Psychiatry Clin. Neurosci., 2012, 66(4), 322-327.
[http://dx.doi.org/10.1111/j.1440-1819.2012.02334.x] [PMID: 22624737]
[117]
Daros, A.R.; Zakzanis, K.K.; Ruocco, A.C. Facial emotion recognition in borderline personality disorder. Psychol. Med., 2013, 43(9), 1953-1963.
[http://dx.doi.org/10.1017/S0033291712002607] [PMID: 23149223]
[118]
Dyck, M.; Habel, U.; Slodczyk, J.; Schlummer, J.; Backes, V.; Schneider, F.; Reske, M. Negative bias in fast emotion discrimination in borderline personality disorder. Psychol. Med., 2009, 39(5), 855-864.
[http://dx.doi.org/10.1017/S0033291708004273] [PMID: 18752730]
[119]
Niedtfeld, I.; Defiebre, N.; Regenbogen, C.; Mier, D.; Fenske, S.; Kirsch, P.; Lis, S.; Schmahl, C. Facing the problem: Impaired emotion recognition during multimodal social information processing in borderline personality disorder. J. Pers. Disord., 2017, 31(2), 273-288.
[http://dx.doi.org/10.1521/pedi_2016_30_248] [PMID: 27064850]
[120]
Schneider, I.; Bertsch, K.; Izurieta, H.N.A.; Müller, L.E.; Schmahl, C.; Herpertz, S.C. Remnants and changes in facial emotion processing in women with remitted borderline personality disorder: An EEG study. Eur. Arch. Psychiatry Clin. Neurosci., 2018, 268(4), 429-439.
[http://dx.doi.org/10.1007/s00406-017-0841-7] [PMID: 28956145]
[121]
Bertsch, K.; Krauch, M.; Stopfer, K.; Haeussler, K.; Herpertz, S.C.; Gamer, M. Interpersonal threat sensitivity in borderline personality disorder: An eye-tracking study. J. Pers. Disord., 2017, 31(5), 647-670.
[http://dx.doi.org/10.1521/pedi_2017_31_273] [PMID: 28072041]
[122]
Izurieta Hidalgo, N.A.; Oelkers-Ax, R.; Nagy, K.; Mancke, F.; Bohus, M.; Herpertz, S.C.; Bertsch, K. Time course of facial emotion processing in women with borderline personality disorder: An ERP study. J. Psychiatry Neurosci., 2016, 41(1), 16-26.
[http://dx.doi.org/10.1503/jpn.140215] [PMID: 26269211]
[123]
Kleindienst, N.; Hauschild, S.; Liebke, L.; Thome, J.; Bertsch, K.; Hensel, S.; Lis, S. A negative bias in decoding positive social cues characterizes emotion processing in patients with symptom-remitted Borderline Personality Disorder. Borderline Personal. Disord. Emot. Dysregul., 2019, 6(1), 17.
[http://dx.doi.org/10.1186/s40479-019-0114-3] [PMID: 31788316]
[124]
Downey, G.; Feldman, S.I. Implications of rejection sensitivity for intimate relationships. J. Pers. Soc. Psychol., 1996, 70(6), 1327-1343.
[http://dx.doi.org/10.1037/0022-3514.70.6.1327] [PMID: 8667172]
[125]
Feldman, S.; Downey, G. Rejection sensitivity as a mediator of the impact of childhood exposure to family violence on adult attachment behavior. Dev. Psychopathol., 1994, 6(1), 231-247.
[http://dx.doi.org/10.1017/S0954579400005976] [PMID: 23438329]
[126]
Cavicchioli, M.; Maffei, C. Rejection sensitivity in borderline personality disorder and the cognitive–affective personality system: A meta-analytic review. Pers. Disord., 2020, 11(1), 1-12.
[http://dx.doi.org/10.1037/per0000359] [PMID: 31478717]
[127]
Gao, S.; Assink, M.; Cipriani, A.; Lin, K. Associations between rejection sensitivity and mental health outcomes: A meta-analytic review. Clin. Psychol. Rev., 2017, 57, 59-74.
[http://dx.doi.org/10.1016/j.cpr.2017.08.007] [PMID: 28841457]
[128]
Arntz, A.; Veen, G. Evaluations of others by borderline patients. J. Nerv. Ment. Dis., 2001, 189(8), 513-521.
[http://dx.doi.org/10.1097/00005053-200108000-00004] [PMID: 11531203]
[129]
Barnow, S.; Stopsack, M.; Grabe, H.J.; Meinke, C.; Spitzer, C.; Kronmüller, K.; Sieswerda, S. Interpersonal evaluation bias in borderline personality disorder. Behav. Res. Ther., 2009, 47(5), 359-365.
[http://dx.doi.org/10.1016/j.brat.2009.02.003] [PMID: 19278670]
[130]
Sieswerda, S.; Barnow, S.; Verheul, R.; Arntz, A. Neither dichotomous nor split, but schema-related negative interpersonal evaluations characterize borderline patients. J. Pers. Disord., 2013, 27(1), 36-52.
[http://dx.doi.org/10.1521/pedi.2013.27.1.36] [PMID: 23342956]
[131]
Zaki, J.; Ochsner, K.N. The neuroscience of empathy: Progress, pitfalls and promise. Nat. Neurosci., 2012, 15(5), 675-680.
[http://dx.doi.org/10.1038/nn.3085] [PMID: 22504346]
[132]
Németh, N.; Mátrai, P.; Hegyi, P.; Czéh, B.; Czopf, L.; Hussain, A.; Pammer, J.; Szabó, I.; Solymár, M.; Kiss, L.; Hartmann, P.; Szilágyi, Á.L.; Kiss, Z.; Simon, M. Theory of mind disturbances in borderline personality disorder: A meta-analysis. Psychiatry Res., 2018, 270, 143-153.
[http://dx.doi.org/10.1016/j.psychres.2018.08.049] [PMID: 30248485]
[133]
Hillmann, K.; Neukel, C.; Krauch, M.; Spohn, A.; Schnell, K.; Herpertz, S.C.; Bertsch, K. Cognitive and affective theory of mind in female patients with borderline personality disorder. J. Pers. Disord., 2021, 35(5), 672-690.
[http://dx.doi.org/10.1521/pedi.2021.35.5.672] [PMID: 33107807]
[134]
Salgado, R.M.; Pedrosa, R.; Bastos-Leite, A.J. Dysfunction of empathy and related processes in borderline personality disorder: A systematic review. Harv. Rev. Psychiatry, 2020, 28(4), 238-254.
[http://dx.doi.org/10.1097/HRP.0000000000000260] [PMID: 32692088]
[135]
Davis, M.H. Measuring individual differences in empathy: Evidence for a multidimensional approach. J. Pers. Soc. Psychol., 1983, 44(1), 113-126.
[http://dx.doi.org/10.1037/0022-3514.44.1.113]
[136]
Niedtfeld, I. Experimental investigation of cognitive and affective empathy in borderline personality disorder: Effects of ambiguity in multimodal social information processing. Psychiatry Res., 2017, 253, 58-63.
[http://dx.doi.org/10.1016/j.psychres.2017.03.037] [PMID: 28351003]
[137]
Preißler, S.; Dziobek, I.; Ritter, K.; Heekeren, H.R.; Roepke, S. Social cognition in borderline personality disorder: Evidence for disturbed recognition of the emotions, thoughts, and intentions of others. Front. Behav. Neurosci., 2010, 4, 182.
[http://dx.doi.org/10.3389/fnbeh.2010.00182] [PMID: 21151817]
[138]
Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’--a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 1993, 28(1-2), 76-81.
[http://dx.doi.org/10.1159/000119004] [PMID: 8255414]
[139]
Radke, S.; Seidel, E.M.; Boubela, R.N.; Thaler, H.; Metzler, H.; Kryspin-Exner, I.; Moser, E.; Habel, U.; Derntl, B. Immediate and delayed neuroendocrine responses to social exclusion in males and females. Psychoneuroendocrinology, 2018, 93, 56-64.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.005] [PMID: 29702443]
[140]
Seidel, E.M.; Silani, G.; Metzler, H.; Thaler, H.; Lamm, C.; Gur, R.C.; Kryspin-Exner, I.; Habel, U.; Derntl, B. The impact of social exclusion vs. inclusion on subjective and hormonal reactions in females and males. Psychoneuroendocrinology, 2013, 38(12), 2925-2932.
[http://dx.doi.org/10.1016/j.psyneuen.2013.07.021] [PMID: 23972943]
[141]
Zöller, C.; Maroof, P.; Weik, U.; Deinzer, R. No effect of social exclusion on salivary cortisol secretion in women in a randomized controlled study. Psychoneuroendocrinology, 2010, 35(9), 1294-1298.
[http://dx.doi.org/10.1016/j.psyneuen.2010.02.019] [PMID: 20334980]
[142]
Lee, M.R.; Cacic, K.; Demers, C.H.; Haroon, M.; Heishman, S.; Hommer, D.W.; Epstein, D.H.; Ross, T.J.; Stein, E.A.; Heilig, M.; Salmeron, B.J. Gender differences in neural–behavioral response to self-observation during a novel fMRI social stress task. Neuropsychologia, 2014, 53, 257-263.
[http://dx.doi.org/10.1016/j.neuropsychologia.2013.11.022] [PMID: 24316200]
[143]
von Dawans, B.; Kirschbaum, C.; Heinrichs, M. The Trier Social Stress Test for Groups (TSST-G): A new research tool for controlled simultaneous social stress exposure in a group format. Psychoneuroendocrinology, 2011, 36(4), 514-522.
[http://dx.doi.org/10.1016/j.psyneuen.2010.08.004] [PMID: 20843608]
[144]
Zimmer, P.; Buttlar, B.; Halbeisen, G.; Walther, E.; Domes, G. Virtually stressed? A refined virtual reality adaptation of the Trier Social Stress Test (TSST) induces robust endocrine responses. Psychoneuroendocrinology, 2019, 101, 186-192.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.010] [PMID: 30469086]
[145]
Het, S.; Rohleder, N.; Schoofs, D.; Kirschbaum, C.; Wolf, O.T. Neuroendocrine and psychometric evaluation of a placebo version of the ‘Trier Social Stress Test’. Psychoneuroendocrinology, 2009, 34(7), 1075-1086.
[http://dx.doi.org/10.1016/j.psyneuen.2009.02.008] [PMID: 19307062]
[146]
Williams, K.D.; Jarvis, B. Cyberball: A program for use in research on interpersonal ostracism and acceptance. Behav. Res. Methods, 2006, 38(1), 174-180.
[http://dx.doi.org/10.3758/BF03192765] [PMID: 16817529]
[147]
De Panfilis, C.; Riva, P.; Preti, E.; Cabrino, C.; Marchesi, C. When social inclusion is not enough: Implicit expectations of extreme inclusion in borderline personality disorder. Personal. Disord., 2015, 6(4), 301-9.
[148]
Weinbrecht, A.; Niedeggen, M.; Roepke, S.; Renneberg, B. Feeling excluded no matter what? Bias in the processing of social participation in borderline personality disorder. Neuroimage Clin., 2018, 19, 343-350.
[http://dx.doi.org/10.1016/j.nicl.2018.04.031] [PMID: 30013917]
[149]
Mulvaney, P.; Christophers, L.; Rooney, B. A motion controlled virtual reality paradigm for ostracism research. Annu. Rev. Cybertherapy Telemed., 2021, 2021, 41.
[150]
Aleknaviciute, J.; Tulen, J.H.M.; Kamperman, A.M.; de Rijke, Y.B.; Kooiman, C.G.; Kushner, S.A. Borderline and cluster C personality disorders manifest distinct physiological responses to psychosocial stress. Psychoneuroendocrinology, 2016, 72, 131-138.
[http://dx.doi.org/10.1016/j.psyneuen.2016.06.010] [PMID: 27413994]
[151]
Duesenberg, M.; Wolf, O.T.; Metz, S.; Roepke, S.; Fleischer, J.; Elias, V.; Renneberg, B.; Otte, C.; Wingenfeld, K. Psychophysiological stress response and memory in borderline personality disorder. Eur. J. Psychotraumatol., 2019, 10(1), 1568134.
[http://dx.doi.org/10.1080/20008198.2019.1568134] [PMID: 30788063]
[152]
Inoue, A.; Oshita, H.; Maruyama, Y.; Tanaka, Y.; Ishitobi, Y.; Kawano, A.; Ikeda, R.; Ando, T.; Aizawa, S.; Masuda, K.; Higuma, H.; Kanehisa, M.; Ninomiya, T.; Akiyoshi, J. Gender determines cortisol and alpha-amylase responses to acute physical and psychosocial stress in patients with borderline personality disorder. Psychiatry Res., 2015, 228(1), 46-52.
[http://dx.doi.org/10.1016/j.psychres.2015.04.008] [PMID: 25979467]
[153]
Nater, U.M.; Bohus, M.; Abbruzzese, E.; Ditzen, B.; Gaab, J.; Kleindienst, N.; Ebner-Priemer, U.; Mauchnik, J.; Ehlert, U. Increased psychological and attenuated cortisol and alpha-amylase responses to acute psychosocial stress in female patients with borderline personality disorder. Psychoneuroendocrinology, 2010, 35(10), 1565-1572.
[http://dx.doi.org/10.1016/j.psyneuen.2010.06.002] [PMID: 20630661]
[154]
Scott, L.N.; Levy, K.N.; Granger, D.A. Biobehavioral reactivity to social evaluative stress in women with borderline personality disorder. Pers. Disord., 2013, 4(2), 91-100.
[http://dx.doi.org/10.1037/a0030117] [PMID: 23244772]
[155]
Ehrenthal, J.C.; Levy, K.N.; Scott, L.N.; Granger, D.A. Attachment-related regulatory processes moderate the impact of adverse childhood experiences on stress reaction in borderline personality disorder. J. Pers. Disord., 2018, 32(Suppl.), 93-114.
[http://dx.doi.org/10.1521/pedi.2018.32.supp.93] [PMID: 29388902]
[156]
Simeon, D.; Knutelska, M.; Smith, L.; Baker, B.R.; Hollander, E. A preliminary study of cortisol and norepinephrine reactivity to psychosocial stress in borderline personality disorder with high and low dissociation. Psychiatry Res., 2007, 149(1-3), 177-184.
[http://dx.doi.org/10.1016/j.psychres.2005.11.014] [PMID: 17169436]
[157]
Staebler, K.; Renneberg, B.; Stopsack, M.; Fiedler, P.; Weiler, M.; Roepke, S. Facial emotional expression in reaction to social exclusion in borderline personality disorder. Psychol. Med., 2011, 41(9), 1929-1938.
[http://dx.doi.org/10.1017/S0033291711000080] [PMID: 21306661]
[158]
Renneberg, B.; Herm, K.; Hahn, A.; Staebler, K.; Lammers, C.H.; Roepke, S. Perception of social participation in borderline personality disorder. Clin. Psychol. Psychother., 2012, 19(6), 473-480.
[http://dx.doi.org/10.1002/cpp.772] [PMID: 22076727]
[159]
Jobst, A.; Albert, A.; Bauriedl-Schmidt, C.; Mauer, M.C.; Renneberg, B.; Buchheim, A.; Sabass, L.; Falkai, P.; Zill, P.; Padberg, F. Social exclusion leads to divergent changes of oxytocin levels in borderline patients and healthy subjects. Psychother. Psychosom., 2014, 83(4), 252-254.
[http://dx.doi.org/10.1159/000358526] [PMID: 24969030]
[160]
Reinhard, M.A.; Padberg, F.; Dewald-Kaufmann, J.; Wüstenberg, T.; Goerigk, S.; Barton, B.B.; Zülch, A.; Brandl, L.; Windmüller, H.; Fernandes, F.; Brunoni, A.R.; Musil, R.; Jobst, A. Sequential social exclusion in a novel cyberball paradigm leads to reduced behavioral repair and plasma oxytocin in borderline personality disorder. J. Pers. Disord., 2022, 36(1), 99-115.
[http://dx.doi.org/10.1521/pedi_2021_35_532] [PMID: 34427490]
[161]
Gratz, K.L.; Dixon-Gordon, K.L.; Breetz, A.; Tull, M. A laboratory-based examination of responses to social rejection in borderline personality disorder: The mediating role of emotion dysregulation. J. Pers. Disord., 2013, 27(2), 157-171.
[http://dx.doi.org/10.1521/pedi.2013.27.2.157] [PMID: 23514181]
[162]
Seidl, E.; Padberg, F.; Bauriedl-Schmidt, C.; Albert, A.; Daltrozzo, T.; Hall, J.; Renneberg, B.; Seidl, O.; Jobst, A. Response to ostracism in patients with chronic depression, episodic depression and borderline personality disorder a study using Cyberball. J. Affect. Disord., 2020, 260, 254-262.
[http://dx.doi.org/10.1016/j.jad.2019.09.021] [PMID: 31513969]
[163]
Euler, S.; Wrege, J.; Busmann, M.; Lindenmeyer, H.J.; Sollberger, D.; Lang, U.E.; Gaab, J.; Walter, M. Exclusion-proneness in borderline personality disorder inpatients impairs alliance in mentalization-based group therapy. Front. Psychol., 2018, 9, 824.
[http://dx.doi.org/10.3389/fpsyg.2018.00824] [PMID: 29910754]
[164]
Bungert, M.; Koppe, G.; Niedtfeld, I.; Vollstädt-Klein, S.; Schmahl, C.; Lis, S.; Bohus, M. Pain processing after social exclusion and its relation to rejection sensitivity in borderline personality disorder. PLoS One, 2015, 10(8), e0133693.
[http://dx.doi.org/10.1371/journal.pone.0133693] [PMID: 26241850]
[165]
Gutz, L.; Renneberg, B.; Roepke, S.; Niedeggen, M. Neural processing of social participation in borderline personality disorder and social anxiety disorder. J. Abnorm. Psychol., 2015, 124(2), 421-431.
[http://dx.doi.org/10.1037/a0038614] [PMID: 25603358]
[166]
Graumann, L.; Cho, A.B.; Kulakova, E.; Deuter, C.E.; Wolf, O.T.; Roepke, S.; Hellmann-Regen, J.; Otte, C.; Wingenfeld, K. Impact of social exclusion on empathy in women with borderline personality disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2023, 2023, 1-10.
[http://dx.doi.org/10.1007/s00406-022-01535-0] [PMID: 36604330]
[167]
Jobst, A.; Padberg, F.; Mauer, M.C.; Daltrozzo, T.; Bauriedl-Schmidt, C.; Sabass, L.; Sarubin, N.; Falkai, P.; Renneberg, B.; Zill, P.; Gander, M.; Buchheim, A. Lower oxytocin plasma levels in borderline patients with unresolved attachment representations. Front. Hum. Neurosci., 2016, 10, 125.
[http://dx.doi.org/10.3389/fnhum.2016.00125] [PMID: 27064696]
[168]
Hill, M.N.; Tasker, J.G. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience, 2012, 204, 5-16.
[http://dx.doi.org/10.1016/j.neuroscience.2011.12.030] [PMID: 22214537]
[169]
Ferber, S.G.; Hazani, R.; Shoval, G.; Weller, A. Targeting the endocannabinoid system in borderline personality disorder: Corticolimbic and hypothalamic perspectives. Curr. Neuropharmacol., 2021, 19(3), 360-371.
[http://dx.doi.org/10.2174/18756190MTA2pMjQfz] [PMID: 32351183]
[170]
Wingenfeld, K.; Dettenborn, L.; Kirschbaum, C.; Gao, W.; Otte, C.; Roepke, S. Reduced levels of the endocannabinoid arachidonylethanolamide (AEA) in hair in patients with borderline personality disorder - a pilot study. Stress, 2018, 21(4), 366-369.
[http://dx.doi.org/10.1080/10253890.2018.1451837] [PMID: 29546791]
[171]
Campbell, A. Oxytocin and human social behavior. Pers. Soc. Psychol. Rev., 2010, 14(3), 281-295.
[http://dx.doi.org/10.1177/1088868310363594] [PMID: 20435805]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy