Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Development of Stress Reactivity and Regulation in Children and Adolescents

Author(s): Clarissa Filetti*, Finola Kane-Grade* and Megan Gunnar

Volume 22, Issue 3, 2024

Published on: 15 August, 2023

Page: [395 - 419] Pages: 25

DOI: 10.2174/1570159X21666230808120504

Price: $65

conference banner
Abstract

Adversity experienced in early life can have detrimental effects on physical and mental health. One pathway in which these effects occur is through the hypothalamic-pituitary-adrenal (HPA) axis, a key physiological stress-mediating system. In this review, we discuss the theoretical perspectives that guide stress reactivity and regulation research, the anatomy and physiology of the axis, developmental changes in the axis and its regulation, brain systems regulating stress, the role of genetic and epigenetics variation in axis development, sensitive periods in stress system calibration, the social regulation of stress (i.e., social buffering), and emerging research areas in the study of stress physiology and development. Understanding the development of stress reactivity and regulation is crucial for uncovering how early adverse experiences influence mental and physical health.

Graphical Abstract

[1]
Koss, K.J.; Gunnar, M.R. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J. Child Psychol. Psychiatry, 2018, 59(4), 327-346.
[http://dx.doi.org/10.1111/jcpp.12784] [PMID: 28714126]
[2]
McLaughlin, K.A.; Sheridan, M.A. Beyond cumulative risk. Curr. Dir. Psychol. Sci., 2016, 25(4), 239-245.
[http://dx.doi.org/10.1177/0963721416655883] [PMID: 27773969]
[3]
McEwen, B.S.; Stellar, E. Stress and the individual. Arch. Intern. Med., 1993, 153(18), 2093-2101.
[http://dx.doi.org/10.1001/archinte.1993.00410180039004] [PMID: 8379800]
[4]
McEwen, B.S. Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry, 2017, 74(6), 551-552.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.0270] [PMID: 28445556]
[5]
Seeman, T.E.; Singer, B.H.; Rowe, J.W.; Horwitz, R.I.; McEwen, B.S. Price of adaptation-allostatic load and its health consequences. MacArthur studies of successful aging. Arch. Intern. Med., 1997, 157(19), 2259-2268.
[http://dx.doi.org/10.1001/archinte.1997.00440400111013] [PMID: 9343003]
[6]
Boyce, W.T.; Ellis, B.J. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev. Psychopathol., 2005, 17(2), 271-301.
[http://dx.doi.org/10.1017/S0954579405050145]] [PMID: 16761546]
[7]
Belsky, J.; Pluess, M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol. Bull., 2009, 135(6), 885-908.
[http://dx.doi.org/10.1037/a0017376] [PMID: 19883141]
[8]
Del Giudice, M.; Ellis, B.J.; Shirtcliff, E.A. The adaptive calibration model of stress responsivity. Neurosci. Biobehav. Rev., 2011, 35(7), 1562-1592.
[http://dx.doi.org/10.1016/j.neubiorev.2010.11.007] [PMID: 21145350]
[9]
McLaughlin, K.A.; Sheridan, M.A.; Tibu, F.; Fox, N.A.; Zeanah, C.H.; Nelson, C.A., III Causal effects of the early caregiving environment on development of stress response systems in children. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5637-5642.
[http://dx.doi.org/10.1073/pnas.1423363112] [PMID: 25902515]
[10]
Gunnar, M.R.; DePasquale, C.E.; Reid, B.M.; Donzella, B.; Miller, B.S. Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. Proc. Natl. Acad. Sci. USA, 2019, 116(48), 23984-23988.
[http://dx.doi.org/10.1073/pnas.1909699116] [PMID: 31712449]
[11]
Daskalakis, N.P.; Bagot, R.C.; Parker, K.J.; Vinkers, C.H.; de Kloet, E.R. The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38(9), 1858-1873.
[http://dx.doi.org/10.1016/j.psyneuen.2013.06.008] [PMID: 23838101]
[12]
Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2009, 10(6), 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[13]
Gunnar, M.R.; Vasquez, D.M. Stress neurobiology and development psychopathology. In: Developmental Psychopathology, 2nd edition,; , 2006; 2, pp. 533-577.
[14]
Jirikowski, G.F.; Rodewald, A.; Sivukhina, E.; Caldwell, J. Corticosteroid binding globulin; Reference Module in Neuroscience and Biobehavioral Psychology, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809324-5.03222-3]
[15]
Zhang, J.; Li, J.; Xu, Y.; Yang, J.; Chen, Z.; Deng, H. Characteristics of novel hair-based biomarker for the activity assessment of 11β-hydroxysteroid dehydrogenase. Clin. Chim. Acta, 2013, 426, 25-32.
[http://dx.doi.org/10.1016/j.cca.2013.08.022] [PMID: 24001694]
[16]
Raul, J.S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem., 2004, 37(12), 1105-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.02.010] [PMID: 15589817]
[17]
Gomez-Sanchez, E.; Gomez-Sanchez, C.E. The multifaceted mineralocorticoid receptor. Compr. Physiol., 2014, 4(3), 965-994.
[http://dx.doi.org/10.1002/cphy.c130044] [PMID: 24944027]
[18]
Joëls, M.; de Kloet, E.R. 30 years of the mineralocorticoid receptor: The brain mineralocorticoid receptor: A saga in three episodes. J. Endocrinol., 2017, 234(1), T49-T66.
[http://dx.doi.org/10.1530/JOE-16-0660] [PMID: 28634266]
[19]
McEwen, B.S. Glucocorticoids and hippocampus: Receptors in search of a function. Adrenal actions on brain; Springer, 1982, pp. 1-22.
[http://dx.doi.org/10.1007/978-3-642-68336-7_1]
[20]
Madalena, K.M.; Lerch, J.K. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plasticity., 2017, 2017, 8640970.
[21]
Fries, E.; Hesse, J.; Hellhammer, J.; Hellhammer, D.H. A new view on hypocortisolism. Psychoneuroendocrinology, 2005, 30(10), 1010-1016.
[http://dx.doi.org/10.1016/j.psyneuen.2005.04.006] [PMID: 15950390]
[22]
Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445.
[http://dx.doi.org/10.1038/nrn2639] [PMID: 19401723]
[23]
Rosen, J.B.; Schulkin, J. From normal fear to pathological anxiety. Psychol. Rev., 1998, 105(2), 325-350.
[http://dx.doi.org/10.1037/0033-295X.105.2.325] [PMID: 9577241]
[24]
Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1), 55-89.
[PMID: 10696570]
[25]
Kirschbaum, C.; Hellhammer, D.H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 1994, 19(4), 313-333.
[http://dx.doi.org/10.1016/0306-4530(94)90013-2] [PMID: 8047637]
[26]
Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 2017, 83(83), 25-41.
[http://dx.doi.org/10.1016/j.psyneuen.2017.05.018] [PMID: 28578301]
[27]
Shirtcliff, E.A.; Allison, A.L.; Armstrong, J.M.; Slattery, M.J.; Kalin, N.H.; Essex, M.J. Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Dev. Psychobiol., 2012, 54(5), 493-502.
[http://dx.doi.org/10.1002/dev.20607] [PMID: 21953537]
[28]
Russell, G.; Lightman, S. The human stress response. Nat. Rev. Endocrinol., 2019, 15(9), 525-534.
[http://dx.doi.org/10.1038/s41574-019-0228-0] [PMID: 31249398]
[29]
Ishimoto, H.; Jaffe, R.B. Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocr. Rev., 2011, 32(3), 317-355.
[http://dx.doi.org/10.1210/er.2010-0001] [PMID: 21051591]
[30]
Rosenfeld, P.; van Eekelen, J.A.M.; Levine, S.; de Kloet, E.R. Ontogeny of corticosteroid receptors in the brain. Cell. Mol. Neurobiol., 1993, 13(4), 295-319.
[http://dx.doi.org/10.1007/BF00711575] [PMID: 8252605]
[31]
Noroña, A.N.; Doom, J.R.; Davis, E.P.; Gunnar, M.R. The effects of stress on early brain and behavioral development. Neural Circuit and Cognitive Development; Elsevier: Amsterdam, 2020, pp. 561-584.
[http://dx.doi.org/10.1016/B978-0-12-814411-4.00026-3]
[32]
O’Donnell, K.J.; Meaney, M.J. Epigenetics, Development, and Psychopathology. Annu. Rev. Clin. Psychol., 2020, 16(1), 327-350.
[http://dx.doi.org/10.1146/annurev-clinpsy-050718-095530] [PMID: 32084320]
[33]
Leneman, K.B.; Gunnar, M.R. 25 Developmental timing of stress effects on the brain. The Oxford Handbook of Stress and Mental Health; Oxford university press: Oxford, England, 2018.
[34]
Gunnar, M.R. The psychobiology of stress and coping in the human. Stress and Coping, 1985, 1, 179.
[35]
Gunnar, M.R.; Talge, N.M.; Herrera, A. Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 2009, 34(7), 953-967.
[http://dx.doi.org/10.1016/j.psyneuen.2009.02.010] [PMID: 19321267]
[36]
Gunnar, M.R.; Donzella, B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 2002, 27(1-2), 199-220.
[http://dx.doi.org/10.1016/S0306-4530(01)00045-2] [PMID: 11750779]
[37]
Lashansky, G.; Saenger, P.; Fishman, K.; Gautier, T.; Mayes, D.; Berg, G.; Martino-nardi, J.D.; Reiter, E. Normative data for adrenal steroidogenesis in a healthy pediatric population: Age-and sex-related changes after adrenocorticotropin stimulation. J. Clin. Endocrinol. Metab., 1991, 73(3), 674-686.
[http://dx.doi.org/10.1210/jcem-73-3-674] [PMID: 1651957]
[38]
Klug, I.; Dressendörfer, R.; Strasburger, C.; Kühl, G.P.; Reiter, H.L.; Reich, A.; Müller, G.; Meyer, K.; Kratzsch, J.; Kiess, W. Cortisol and 17-hydroxyprogesterone levels in saliva of healthy neonates: Normative data and relation to body mass index, arterial cord blood ph and time of sampling after birth. Neonatology, 2000, 78(1), 22-26.
[http://dx.doi.org/10.1159/000014242] [PMID: 10878418]
[39]
Mesas, A.E.; Sánchez-López, M.; Pozuelo-Carrascosa, D.P.; Sequí-Domínguez, I.; Jiménez-López, E.; Martínez-Vizcaíno, V. The role of daytime napping on salivary cortisol in children aged 0–5 years: A systematic review and meta-analysis. Eur. J. Pediatr., 2022, 181(4), 1437-1448.
[http://dx.doi.org/10.1007/s00431-021-04371-x] [PMID: 35028729]
[40]
Vermeer, H.J.; van IJzendoorn, M.H. Children’s elevated cortisol levels at daycare: A review and meta-analysis. Early Child. Res. Q., 2006, 21(3), 390-401.
[http://dx.doi.org/10.1016/j.ecresq.2006.07.004]
[41]
Gunnar, M.R.; Kryzer, E.; Van Ryzin, M.J.; Phillips, D.A. The rise in cortisol in family day care: Associations with aspects of care quality, child behavior, and child sex. Child Dev., 2010, 81(3), 851-869.
[http://dx.doi.org/10.1111/j.1467-8624.2010.01438.x] [PMID: 20573109]
[42]
Nystad, K.; Drugli, M.B.; Lydersen, S.; Lekhal, R.; Buøen, E.S. Change in toddlers’ cortisol activity during a year in childcare. Associations with childcare quality, child temperament, well-being and maternal education. Stress, 2022, 25(1), 156-165.
[http://dx.doi.org/10.1080/10253890.2022.2048371] [PMID: 35389301]
[43]
Sumner, M.M.; Bernard, K.; Dozier, M. Young children’s full-day patterns of cortisol production on child care days. Arch. Pediatr. Adolesc. Med., 2010, 164(6), 567-571.
[http://dx.doi.org/10.1001/archpediatrics.2010.85] [PMID: 20530308]
[44]
Gunnar, M.R.; Kryzer, E.; Van Ryzin, M.J.; Phillips, D.A. The import of the cortisol rise in child care differs as a function of behavioral inhibition. Dev. Psychol., 2011, 47(3), 792-803.
[http://dx.doi.org/10.1037/a0021902] [PMID: 21171752]
[45]
Berry, D.; Blair, C.; Ursache, A.; Willoughby, M.; Garrett-Peters, P.; Vernon-Feagans, L.; Bratsch-Hines, M.; Mills-Koonce, W.R.; Granger, D.A. Child care and cortisol across early childhood: Context matters. Dev. Psychol., 2014, 50(2), 514-525.
[http://dx.doi.org/10.1037/a0033379] [PMID: 23772818]
[46]
Quinn, T.; Greaves, R.; Badoer, E.; Walker, D. DHEA in prenatal and postnatal life: implications for brain and behavior. Vitam. Horm., 2018, 108, 145-174.
[http://dx.doi.org/10.1016/bs.vh.2018.03.001] [PMID: 30029725]
[47]
Grumbach, M.M. The neuroendocrinology of human puberty revisited. Horm. Res. Paediatr., 2002, 57(Suppl. 2), 2-14.
[http://dx.doi.org/10.1159/000058094] [PMID: 12065920]
[48]
Klimes-Dougan, B.; Hastings, P.D.; Granger, D.A.; Usher, B.A.; Zahn-Waxler, C. Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Dev. Psychopathol., 2001, 13(3), 695-719.
[http://dx.doi.org/10.1017/S0954579401003157]] [PMID: 11523855]
[49]
Sumter, S.R.; Bokhorst, C.L.; Miers, A.C.; Van Pelt, J.; Westenberg, P.M. Age and puberty differences in stress responses during a public speaking task: Do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology, 2010, 35(10), 1510-1516.
[http://dx.doi.org/10.1016/j.psyneuen.2010.05.004] [PMID: 20541871]
[50]
Kudielka, B.M.; Kirschbaum, C. Sex differences in HPA axis responses to stress: A review. Biol. Psychol., 2005, 69(1), 113-132.
[http://dx.doi.org/10.1016/j.biopsycho.2004.11.009] [PMID: 15740829]
[51]
Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2022.
[PMID: 17290797]
[52]
Sawchenko, P.E.; Li, H.Y.; Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog. Brain Res., 2000, 122, 61-78.
[http://dx.doi.org/10.1016/S0079-6123(08)62131-7] [PMID: 10737051]
[53]
Herman, J.P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell. Mol. Neurobiol., 2018, 38(1), 25-35.
[http://dx.doi.org/10.1007/s10571-017-0543-8] [PMID: 28895001]
[54]
Herman, J.P. The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology, 2022, 137, 105641.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105641] [PMID: 34954409]
[55]
Chen, P.B.; Hu, R.K.; Wu, Y.E.; Pan, L.; Huang, S.; Micevych, P.E.; Hong, W. Sexually dimorphic control of parenting behavior by the medial amygdala. Cell, 2019, 176(5), 1206-1221.e18.
[http://dx.doi.org/10.1016/j.cell.2019.01.024] [PMID: 30773317]
[56]
Haller, J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci. Biobehav. Rev., 2018, 85, 34-43.
[http://dx.doi.org/10.1016/j.neubiorev.2017.09.017] [PMID: 28918358]
[57]
Browning, K.N.; Travagli, R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol., 2014, 4(4), 1339-1368.
[http://dx.doi.org/10.1002/cphy.c130055] [PMID: 25428846]
[58]
Sah, P.; Faber, E.S.L.; Lopez De Armentia, M.; Power, J. The amygdaloid complex: Anatomy and physiology. Physiol. Rev., 2003, 83(3), 803-834.
[http://dx.doi.org/10.1152/physrev.00002.2003] [PMID: 12843409]
[59]
Shepard, J.D.; Barron, K.W.; Myers, D.A. Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary–adrenal responses to behavioral stress. Brain Res., 2003, 963(1-2), 203-213.
[http://dx.doi.org/10.1016/S0006-8993(02)03978-1] [PMID: 12560126]
[60]
Magarin˜os, A.M.; McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 1995, 69(1), 89-98.
[http://dx.doi.org/10.1016/0306-4522(95)00259-L] [PMID: 8637636]
[61]
Buss, C.; Davis, E.P.; Shahbaba, B.; Pruessner, J.C.; Head, K.; Sandman, C.A. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl. Acad. Sci. USA, 2012, 109(20), E1312-E1319.
[http://dx.doi.org/10.1073/pnas.1201295109] [PMID: 22529357]
[62]
Fowler, C.H.; Bogdan, R.; Gaffrey, M.S. Stress-induced cortisol response is associated with right amygdala volume in early childhood. Neurobiol. Stress, 2021, 14, 100329.
[http://dx.doi.org/10.1016/j.ynstr.2021.100329] [PMID: 33997154]
[63]
Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 2014, 39(5), 1245-1253.
[http://dx.doi.org/10.1038/npp.2013.327] [PMID: 24304824]
[64]
Vyas, A.; Mitra, R.; Shankaranarayana Rao, B.S.; Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci., 2002, 22(15), 6810-6818.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06810.2002] [PMID: 12151561]
[65]
Chareyron, L.J.; Lavenex, P.B.; Amaral, D.G.; Lavenex, P. Postnatal development of the amygdala: A stereological study in macaque monkeys. J. Comp. Neurol., 2012, 520(9), 1965-1984.
[http://dx.doi.org/10.1002/cne.23023] [PMID: 22173686]
[66]
Guadagno, A.; Belliveau, C.; Mechawar, N.; Walker, C.D. Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: the emerging role of local inhibition and perineuronal nets. Front. Hum. Neurosci., 2021, 15, 669120.
[http://dx.doi.org/10.3389/fnhum.2021.669120] [PMID: 34512291]
[67]
de Campo, D.M.; Cameron, J.L.; Miano, J.M.; Lewis, D.A.; Mirnics, K.; Fudge, J.L. Maternal deprivation alters expression of neural maturation gene tbr1 in the amygdala paralaminar nucleus in infant female macaques. Dev. Psychobiol., 2017, 59(2), 235-249.
[http://dx.doi.org/10.1002/dev.21493] [PMID: 27917473]
[68]
Gee, D.G.; Gabard-Durnam, L.J.; Flannery, J.; Goff, B.; Humphreys, K.L.; Telzer, E.H.; Hare, T.A.; Bookheimer, S.Y.; Tottenham, N. Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15638-15643.
[http://dx.doi.org/10.1073/pnas.1307893110] [PMID: 24019460]
[69]
Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front. Neuroendocrinol., 2003, 24(3), 151-180.
[http://dx.doi.org/10.1016/j.yfrne.2003.07.001] [PMID: 14596810]
[70]
Herman, J.P.; Schäfer, M.K.; Young, E.A.; Thompson, R.; Douglass, J.; Akil, H.; Watson, S.J. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J. Neurosci., 1989, 9(9), 3072-3082.
[http://dx.doi.org/10.1523/JNEUROSCI.09-09-03072.1989] [PMID: 2795152]
[71]
Herman, J.P.; Chen, K.C.; Booze, R.; Landfield, P.W. Up-regulation of α1D Ca2+ channel subunit mRNA expression in the hippocampus of aged F344 rats. Neurobiol. Aging, 1998, 19(6), 581-587.
[http://dx.doi.org/10.1016/S0197-4580(98)00099-2] [PMID: 10192218]
[72]
Cullinan, W.E.; Herman, J.P.; Watson, S.J. Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. J. Comp. Neurol., 1993, 332(1), 1-20.
[http://dx.doi.org/10.1002/cne.903320102] [PMID: 7685778]
[73]
Cullinan, W.E.; Herman, J.P.; Battaglia, D.F.; Akil, H.; Watson, S.J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience, 1995, 64(2), 477-505.
[http://dx.doi.org/10.1016/0306-4522(94)00355-9] [PMID: 7700534]
[74]
Myers, B.; Carvalho-Netto, E.; Wick-Carlson, D.; Wu, C.; Naser, S.; Solomon, M.B.; Ulrich-Lai, Y.M.; Herman, J.P. GABAergic signaling within a limbic-hypothalamic circuit integrates social and anxiety-like behavior with stress reactivity. Neuropsychopharmacology, 2016, 41(6), 1530-1539.
[http://dx.doi.org/10.1038/npp.2015.311] [PMID: 26442601]
[75]
Blankenship, S.L.; Chad-Friedman, E.; Riggins, T.; Dougherty, L.R. Early parenting predicts hippocampal subregion volume via stress reactivity in childhood. Dev. Psychobiol., 2019, 61(1), 125-140.
[http://dx.doi.org/10.1002/dev.21788] [PMID: 30288730]
[76]
Merz, E.C.; Desai, P.M.; Maskus, E.A.; Melvin, S.A.; Rehman, R.; Torres, S.D.; Meyer, J.; He, X.; Noble, K.G. Socioeconomic disparities in chronic physiologic stress are associated with brain structure in children. Biol. Psychiatry, 2019, 86(12), 921-929.
[http://dx.doi.org/10.1016/j.biopsych.2019.05.024] [PMID: 31409452]
[77]
Jabès, A.; Lavenex, P.B.; Amaral, D.G.; Lavenex, P. Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. J. Comp. Neurol., 2011, 519(6), 1051-1070.
[http://dx.doi.org/10.1002/cne.22549] [PMID: 21344402]
[78]
Diorio, D.; Viau, V.; Meaney, M.J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci., 1993, 13(9), 3839-3847.
[http://dx.doi.org/10.1523/JNEUROSCI.13-09-03839.1993] [PMID: 8396170]
[79]
Figueiredo, H.F.; Bruestle, A.; Bodie, B.; Dolgas, C.M.; Herman, J.P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur. J. Neurosci., 2003, 18(8), 2357-2364.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02932.x] [PMID: 14622198]
[80]
Sullivan, R.M.; Gratton, A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J. Neurosci., 1999, 19(7), 2834-2840.
[http://dx.doi.org/10.1523/JNEUROSCI.19-07-02834.1999] [PMID: 10087094]
[81]
Tottenham, N. Early adversity and the neotenous human brain. Biol. Psychiatry, 2020, 87(4), 350-358.
[http://dx.doi.org/10.1016/j.biopsych.2019.06.018] [PMID: 31399257]
[82]
Gee, D.G.; Gabard-Durnam, L.; Telzer, E.H.; Humphreys, K.L.; Goff, B.; Shapiro, M.; Flannery, J.; Lumian, D.S.; Fareri, D.S.; Caldera, C.; Tottenham, N. Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychol. Sci., 2014, 25(11), 2067-2078.
[http://dx.doi.org/10.1177/0956797614550878] [PMID: 25280904]
[83]
Vertes, R.P.; Linley, S.B.; Hoover, W.B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev., 2015, 54, 89-107.
[http://dx.doi.org/10.1016/j.neubiorev.2015.01.014] [PMID: 25616182]
[84]
Bhatnagar, S.; Huber, R.; Nowak, N.; Trotter, P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J. Neuroendocrinol., 2002, 14(5), 403-410.
[http://dx.doi.org/10.1046/j.0007-1331.2002.00792.x] [PMID: 12000546]
[85]
Jaferi, A.; Nowak, N.; Bhatnagar, S. Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiol. Behav., 2003, 78(3), 365-373.
[http://dx.doi.org/10.1016/S0031-9384(03)00014-3] [PMID: 12676271]
[86]
McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23.
[http://dx.doi.org/10.1038/npp.2015.171] [PMID: 26076834]
[87]
Sanchez, M.M.; Mccormack, K.; Grand, A.P.; Fulks, R.; Graff, A.; Maestripieri, D. Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys. Dev. Psychopathol., 2010, 22(1), 45-53.
[http://dx.doi.org/10.1017/S0954579409990253]] [PMID: 20102646]
[88]
Giedd, J.N.; Blumenthal, J.; Jeffries, N.O.; Castellanos, F.X.; Liu, H.; Zijdenbos, A.; Paus, T.; Evans, A.C.; Rapoport, J.L. Brain development during childhood and adolescence: A longitudinal MRI study. Nat. Neurosci., 1999, 2(10), 861-863.
[http://dx.doi.org/10.1038/13158] [PMID: 10491603]
[89]
Meaney, M.J.; Szyf, M.; Seckl, J.R. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol. Med., 2007, 13(7), 269-277.
[http://dx.doi.org/10.1016/j.molmed.2007.05.003] [PMID: 17544850]
[90]
Bunea, I.M. Szentágotai-Tătar, A.; Miu, A.C. Early-life adversity and cortisol response to social stress: A meta-analysis. Transl. Psychiatry, 2017, 7(12), 1274.
[http://dx.doi.org/10.1038/s41398-017-0032-3] [PMID: 29225338]
[91]
Capitanio, J.P.; Mendoza, S.P.; Mason, W.A.; Maninger, N. Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta). Dev. Psychobiol., 2005, 46(4), 318-330.
[http://dx.doi.org/10.1002/dev.20067] [PMID: 15832323]
[92]
VanTieghem, M.; Korom, M.; Flannery, J.; Choy, T.; Caldera, C.; Humphreys, K.L.; Gabard-Durnam, L.; Goff, B.; Gee, D.G.; Telzer, E.H.; Shapiro, M.; Louie, J.Y.; Fareri, D.S.; Bolger, N.; Tottenham, N. Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity. Dev. Cogn. Neurosci., 2021, 48, 100916.
[http://dx.doi.org/10.1016/j.dcn.2021.100916] [PMID: 33517107]
[93]
Gaffrey, M.S.; Barch, D.M.; Bogdan, R.; Farris, K.; Petersen, S.E.; Luby, J.L. Amygdala reward reactivity mediates the association between preschool stress response and depression severity. Biol. Psychiatry, 2018, 83(2), 128-136.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.020] [PMID: 29102026]
[94]
Koss, K.J.; Mliner, S.B.; Donzella, B.; Gunnar, M.R. Early adversity, hypocortisolism, and behavior problems at school entry: A study of internationally adopted children. Psychoneuroendocrinology, 2016, 66, 31-38.
[http://dx.doi.org/10.1016/j.psyneuen.2015.12.018] [PMID: 26773398]
[95]
Barch, D.M.; Tillman, R.; Kelly, D.; Whalen, D.; Gilbert, K.; Luby, J.L. Hippocampal volume and depression among young children. Psychiatry Res. Neuroimaging, 2019, 288, 21-28.
[http://dx.doi.org/10.1016/j.pscychresns.2019.04.012] [PMID: 31071541]
[96]
Tottenham, N.; Hare, T.A.; Quinn, B.T.; McCarry, T.W.; Nurse, M.; Gilhooly, T.; Millner, A.; Galvan, A.; Davidson, M.C.; Eigsti, I.M.; Thomas, K.M.; Freed, P.J.; Booma, E.S.; Gunnar, M.R.; Altemus, M.; Aronson, J.; Casey, B.J. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci., 2010, 13(1), 46-61.
[http://dx.doi.org/10.1111/j.1467-7687.2009.00852.x] [PMID: 20121862]
[97]
Sousa, N.; Madeira, M.D.; Paula-Barbosa, M.M. Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Res., 1998, 794(2), 199-210.
[http://dx.doi.org/10.1016/S0006-8993(98)00218-2] [PMID: 9622630]
[98]
Monroe, S.M.; Simons, A.D. Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychol. Bull., 1991, 110(3), 406-425.
[http://dx.doi.org/10.1037/0033-2909.110.3.406] [PMID: 1758917]
[99]
Bartels, M.; Van den Berg, M.; Sluyter, F.; Boomsma, D.I.; de Geus, E.J.C. Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 2003, 28(2), 121-137.
[http://dx.doi.org/10.1016/S0306-4530(02)00003-3] [PMID: 12510008]
[100]
Raffington, L.; Malanchini, M.; Grotzinger, A.D.; Madole, J.W.; Engelhardt, L.E.; Sabhlok, A.; Youn, C.; Patterson, M.W.; Harden, K.P.; Tucker-Drob, E.M. An in-laboratory stressor reveals unique genetic variation in child cortisol output. Dev. Psychol., 2022, 58(10), 1832-1848.
[http://dx.doi.org/10.1037/dev0001393] [PMID: 35771497]
[101]
Argentieri, M.A.; Nagarajan, S.; Seddighzadeh, B.; Baccarelli, A.A.; Shields, A.E. Epigenetic pathways in human disease: The impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development. EBioMedicine, 2017, 18, 327-350.
[http://dx.doi.org/10.1016/j.ebiom.2017.03.044] [PMID: 28434943]
[102]
Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene-stress-epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology, 2016, 41(1), 261-274.
[http://dx.doi.org/10.1038/npp.2015.235] [PMID: 26250598]
[103]
Binder, E.B.; Salyakina, D.; Lichtner, P.; Wochnik, G.M.; Ising, M.; Pütz, B.; Papiol, S.; Seaman, S.; Lucae, S.; Kohli, M.A.; Nickel, T.; Künzel, H.E.; Fuchs, B.; Majer, M.; Pfennig, A.; Kern, N.; Brunner, J.; Modell, S.; Baghai, T.; Deiml, T.; Zill, P.; Bondy, B.; Rupprecht, R.; Messer, T.; Köhnlein, O.; Dabitz, H.; Brückl, T.; Müller, N.; Pfister, H.; Lieb, R.; Mueller, J.C.; Lõhmussaar, E.; Strom, T.M.; Bettecken, T.; Meitinger, T.; Uhr, M.; Rein, T.; Holsboer, F.; Muller-Myhsok, B. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet., 2004, 36(12), 1319-1325.
[http://dx.doi.org/10.1038/ng1479] [PMID: 15565110]
[104]
Szyf, M.; Weaver, I.C.G.; Champagne, F.A.; Diorio, J.; Meaney, M.J. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front. Neuroendocrinol., 2005, 26(3-4), 139-162.
[http://dx.doi.org/10.1016/j.yfrne.2005.10.002] [PMID: 16303171]
[105]
Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; Nemeroff, C.B.; Holsboer, F.; Heim, C.M.; Ressler, K.J.; Rein, T.; Binder, E.B. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci., 2013, 16(1), 33-41.
[http://dx.doi.org/10.1038/nn.3275] [PMID: 23201972]
[106]
Vitellius, G.; Trabado, S.; Bouligand, J.; Delemer, B.; Lombès, M. Pathophysiology of glucocorticoid signaling. Annales d’endocrinologie; Elsevier: Amsterdam, 2018, Vol. 79, pp. 98-106.
[107]
Levine, S. Infantile experience and resistance to physiological stress. Science, 1957, 126(3270), 405-405.
[http://dx.doi.org/10.1126/science.126.3270.405.a] [PMID: 13467220]
[108]
Sarrieau, A.; Sharma, S.; Meaney, M.J. Postnatal development and environmental regulation of hippocampal glucocorticoid and mineralocorticoid receptors. Brain Res. Dev. Brain Res., 1988, 43(1), 158-162.
[http://dx.doi.org/10.1016/0165-3806(88)90162-9] [PMID: 2851372]
[109]
Weaver, I.C.G.; Cervoni, N.; Diorio, J.; Szyf, M.; Meaney, M.J. Maternal behavior in infancy regulates methylation of the hippocampal glucocorticoid receptor promoter. Soc. Neurosci.Abstr., 2001, 27.
[110]
McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci., 2009, 12(3), 342-348.
[http://dx.doi.org/10.1038/nn.2270] [PMID: 19234457]
[111]
Parade, S.H.; Huffhines, L.; Daniels, T.E.; Stroud, L.R.; Nugent, N.R.; Tyrka, A.R. A systematic review of childhood maltreatment and DNA methylation: Candidate gene and epigenome-wide approaches. Transl. Psychiatry, 2021, 11(1), 134.
[http://dx.doi.org/10.1038/s41398-021-01207-y] [PMID: 33608499]
[112]
Gerritsen, L.; Milaneschi, Y.; Vinkers, C.H.; van Hemert, A.M.; van Velzen, L.; Schmaal, L.; Penninx, B.W.J.H. HPA axis genes, and their interaction with childhood maltreatment, are related to cortisol levels and stress-related phenotypes. Neuropsychopharmacology, 2017, 42(12), 2446-2455.
[http://dx.doi.org/10.1038/npp.2017.118] [PMID: 28589964]
[113]
Bolton, J.L.; Hayward, C.; Direk, N.; Lewis, J.G.; Hammond, G.L.; Hill, L.A.; Anderson, A.; Huffman, J.; Wilson, J.F.; Campbell, H.; Rudan, I.; Wright, A.; Hastie, N.; Wild, S.H.; Velders, F.P.; Hofman, A.; Uitterlinden, A.G.; Lahti, J.; Räikkönen, K.; Kajantie, E.; Widen, E.; Palotie, A.; Eriksson, J.G.; Kaakinen, M.; Järvelin, M.R.; Timpson, N.J.; Davey Smith, G.; Ring, S.M.; Evans, D.M.; St Pourcain, B.; Tanaka, T.; Milaneschi, Y.; Bandinelli, S.; Ferrucci, L.; van der Harst, P.; Rosmalen, J.G.M.; Bakker, S.J.L.; Verweij, N.; Dullaart, R.P.F.; Mahajan, A.; Lindgren, C.M.; Morris, A.; Lind, L.; Ingelsson, E.; Anderson, L.N.; Pennell, C.E.; Lye, S.J.; Matthews, S.G.; Eriksson, J.; Mellstrom, D.; Ohlsson, C.; Price, J.F.; Strachan, M.W.J.; Reynolds, R.M.; Tiemeier, H.; Walker, B.R. Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and corticosteroid binding globulin. PLoS Genet., 2014, 10(7), e1004474.
[http://dx.doi.org/10.1371/journal.pgen.1004474] [PMID: 25010111]
[114]
Crawford, A.A.; Bankier, S.; Altmaier, E.; Barnes, C.L.K.; Clark, D.W.; Ermel, R.; Friedrich, N.; van der Harst, P.; Joshi, P.K.; Karhunen, V.; Lahti, J.; Mahajan, A.; Mangino, M.; Nethander, M.; Neumann, A.; Pietzner, M.; Sukhavasi, K.; Wang, C.A.; Bakker, S.J.L.; Bjorkegren, J.L.M.; Campbell, H.; Eriksson, J.; Gieger, C.; Hayward, C.; Jarvelin, M.R.; McLachlan, S.; Morris, A.P.; Ohlsson, C.; Pennell, C.E.; Price, J.; Rudan, I.; Ruusalepp, A.; Spector, T.; Tiemeier, H.; Völzke, H.; Wilson, J.F.; Michoel, T.; Timpson, N.J.; Smith, G.D.; Walker, B.R.; Mellström, D. Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. J. Hum. Genet., 2021, 66(6), 625-636.
[http://dx.doi.org/10.1038/s10038-020-00895-6] [PMID: 33469137]
[115]
Velders, F.P.; Kuningas, M.; Kumari, M.; Dekker, M.J.; Uitterlinden, A.G.; Kirschbaum, C.; Hek, K.; Hofman, A.; Verhulst, F.C.; Kivimaki, M.; Van Duijn, C.M.; Walker, B.R.; Tiemeier, H. Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach. Psychoneuroendocrinology, 2011, 36(7), 1053-1061.
[http://dx.doi.org/10.1016/j.psyneuen.2011.01.003] [PMID: 21316860]
[116]
Rietschel, L.; Streit, F.; Zhu, G.; McAloney, K.; Frank, J.; Couvy-Duchesne, B.; Witt, S.H.; Binz, T.M.; Bolton, J.L.; Hayward, C.; Direk, N.; Anderson, A.; Huffman, J.; Wilson, J.F.; Campbell, H.; Rudan, I.; Wright, A.; Hastie, N.; Wild, S.H.; Velders, F.P.; Hofman, A.; Uitterlinden, A.G.; Lahti, J.; Räikkönen, K.; Kajantie, E.; Widen, E.; Palotie, A.; Eriksson, J.G.; Kaakinen, M.; Järvelin, M-R.; Timpson, N.J.; Davey Smith, G.; Ring, S.M.; Evans, D.M.; St Pourcain, B.; Tanaka, T.; Milaneschi, Y.; Bandinelli, S.; Ferrucci, L.; van der Harst, P.; Rosmalen, J.G.M.; Bakker, S.J.L.; Verweij, N.; Dullaart, R.P.F.; Mahajan, A.; Lindgren, C.M.; Morris, A.; Lind, L.; Ingelsson, E.; Anderson, L.N.; Pennell, C.E.; Lye, S.J.; Matthews, S.G.; Eriksson, J.; Mellstrom, D.; Ohlsson, C.; Price, J.F.; Strachan, M.W.J.; Reynolds, R.M.; Tiemeier, H.; Ripke, S.; Mattheisen, M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.F.M.; Bacanu, S-A.; Bækvad-Hansen, M.; Beekman, A.T.F.; Bennett, D.A.; Berger, K.; Bigdeli, T.B.; Bybjerg-Grauholm, J.; Byrne, E.M.; Cai, N.; Castelao, E.; Clarke, T-K.; Coleman, J.R.I.; Consortium, C.; Craddock, N.; Dannlowski, U.; Davies, G.; Davies, G.; de Geus, E.J.C.; De Jager, P.; Deary, I.J.; Degenhardt, F.; Dunn, E.C.; Ehli, E.A.; Eley, T.C.; Escott-Price, V.; Esko, T.; Finucane, H.K.; Gill, M.; Gordon, S.D.; Grove, J.; Hall, L.S.; Hansen, T.F.; Søholm Hansen, C.; Hansen, T.F.; Heath, A.C.; Henders, A.K.; Herms, S.; Hoffmann, P.; Homuth, G.; Horn, C.; Hottenga, J-J.; Hougaard, D.; Huang, H.; Ising, M.; Jansen, R.; Jorgenson, E.; Kloiber, S.; Knowles, J.A.; Kretzschmar, W.W.; Krogh, J.; Kutalik, Z.; Lang, M.; Lewis, G.; Li, Y.; MacIntyre, D.J.; Madden, P.A.F.; Marchine, J.; Mbarek, H.; McGuffin, P.; Mehta, D.; Metspalu, A.; Middeldorp, C.M.; Mihailov, E.; Milani, L.; Montgomery, G.W.; Mostafavi, S.; Mullins, N.; Nauck, M.; Ng, B.; Nordentoft, M.; Nyholt, D.R.; O’Donovan, M.C.; O’Reilly, P.F.; Oskarsson, H.; Owen, M.J.; Paciga, S.A.; Pedersen, C.B.; Pedersen, M.G.; Pedersen, N.L.; Pergadia, M.L.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Porteous, D.J.; Posthuma, D.; Potash, J.B.; Quiroz, J.A.; Rice, J.P.; Riley, B.P.; Rivera, M.; Ruderfer, D.M.; Saeed Mirza, S.; Schoevers, R.; Shen, L.; Shi, J.; Sigurdsson, E.; Sinnamon, G.C.B.; Smit, J.H.; Smith, D.J.; Smoller, J.W.; Stephansson, H.; Steinberg, S.; Strohmaier, J.; Tansey, K.E.; Teumer, A.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Treutlein, J.; Trzaskowski, M.; Umbricht, D.; van der Auwera, S.; van Grootheest, G.; van Hemert, A.M.; Viktorin, A.; Völzke, H.; Wang, Y.; Webb, B.T.; Weissman, M.M.; Wellmann, J.; Willemsen, G.; Xi, H.S.; Baune, B.T.; Blackwood, D.H.R.; Boomsma, D.I.; Børglum, A.D.; Buttenschøn, H.N.; Cichon, S.; Domenici, E.; Flint, J.; Grabe, H.J.; Hamilton, S.P.; Kendler, K.S.; Li, Q.S.; Lucae, S.; Magnusson, P.K.; McIntosh, A.M.; Mors, O.; Bo Mortensen, P.; Müller-Myhsok, B.; Penninx, B.W.J.H.; Perlis, R.H.; Preisig, M.; Schaefer, C.; Smoller, J.W.; Stephansson, K.; Tiemeier, H.; Uher, R.; Werge, T.; Winslow, A.R.; Breen, G.; Levinson, D.F.; Lewis, C.M.; Wray, N.R.; Sullivan, P.F.; McGrath, J.; Hickie, I.B.; Hansell, N.K.; Wright, M.J.; Gillespie, N.A.; Forstner, A.J.; Schulze, T.G.; Wüst, S.; Nöthen, M.M.; Baumgartner, M.R.; Walker, B.R.; Crawford, A.A.; Colodro-Conde, L.; Medland, S.E.; Martin, N.G.; Rietschel, M. Hair cortisol in twins: heritability and genetic overlap with psychological variables and stress-system genes. Sci. Rep., 2017, 7(1), 15351.
[http://dx.doi.org/10.1038/s41598-017-11852-3] [PMID: 29127340]
[117]
Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S.; Belden, A.C.; Botteron, K.N.; Harms, M.P.; Barch, D.M. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J. Abnorm. Psychol., 2015, 124(4), 817-833.
[http://dx.doi.org/10.1037/abn0000094] [PMID: 26595470]
[118]
Starr, L.R.; Stroud, C.B.; Shaw, Z.A.; Vrshek-Schallhorn, S. Stress sensitization to depression following childhood adversity: Moderation by HPA axis and serotonergic multilocus profile scores. Dev.Psychopathol., 2021, 33(4), 1264-1278.
[http://dx.doi.org/10.1017/S0954579420000474]] [PMID: 32684200]
[119]
Utge, S.; Räikkönen, K.; Kajantie, E.; Lipsanen, J.; Andersson, S.; Strandberg, T.; Reynolds, R.M.; Eriksson, J.G.; Lahti, J. Polygenic risk score of SERPINA6/SERPINA1 associates with diurnal and stress-induced HPA axis activity in children. Psychoneuroendocrinology, 2018, 93, 1-7.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.009] [PMID: 29679879]
[120]
Houtepen, L.C.; Vinkers, C.H.; Carrillo-Roa, T.; Hiemstra, M.; van Lier, P.A.; Meeus, W.; Branje, S.; Heim, C.M.; Nemeroff, C.B.; Mill, J.; Schalkwyk, L.C.; Creyghton, M.P.; Kahn, R.S.; Joëls, M.; Binder, E.B.; Boks, M.P.M. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat. Commun., 2016, 7(1), 10967.
[http://dx.doi.org/10.1038/ncomms10967] [PMID: 26997371]
[121]
Reh, R.K.; Dias, B.G.; Nelson, C.A., III; Kaufer, D.; Werker, J.F.; Kolb, B.; Levine, J.D.; Hensch, T.K. Critical period regulation across multiple timescales. Proc. Natl. Acad. Sci. USA, 2020, 117(38), 23242-23251.
[http://dx.doi.org/10.1073/pnas.1820836117] [PMID: 32503914]
[122]
Kann, R.B.; Romeo, R.D. Pubertal changes in the pituitary and adrenal glands of male and female rats: Relevance to stress reactivity. Neurobiol. Stress, 2022, 18, 100457.
[http://dx.doi.org/10.1016/j.ynstr.2022.100457] [PMID: 35592027]
[123]
Monk, C.; Georgieff, M.K.; Osterholm, E.A. Research Review: Maternal prenatal distress and poor nutrition - mutually influencing risk factors affecting infant neurocognitive development. J. Child Psychol. Psychiatry, 2013, 54(2), 115-130.
[http://dx.doi.org/10.1111/jcpp.12000] [PMID: 23039359]
[124]
O’Donnell, K.J.; Meaney, M.J. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am. J. Psychiatry, 2017, 174(4), 319-328.
[http://dx.doi.org/10.1176/appi.ajp.2016.16020138] [PMID: 27838934]
[125]
Barker, D.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 1986, 327(8489), 1077-1081.
[http://dx.doi.org/10.1016/S0140-6736(86)91340-1] [PMID: 2871345]
[126]
Kajantie, E.; Phillips, D.I.W.; Andersson, S.; Barker, D.J.P.; Dunkel, L.; Forsén, T.; Osmond, C.; Tuominen, J.; Wood, P.J.; Eriksson, J. Size at birth, gestational age and cortisol secretion in adult life: Foetal programming of both hyper- and hypocortisolism? Clin. Endocrinol., 2002, 57(5), 635-641.
[http://dx.doi.org/10.1046/j.1365-2265.2002.01659.x] [PMID: 12390338]
[127]
Carpenter, T.; Grecian, S.M.; Reynolds, R.M. Sex differences in early-life programming of the hypothalamic–pituitary–adrenal axis in humans suggest increased vulnerability in females: A systematic review. J. Dev. Orig. Health Dis., 2017, 8(2), 244-255.
[http://dx.doi.org/10.1017/S204017441600074X] [PMID: 28103963]
[128]
Clifton, V.L. Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta, 2010, 31(Suppl.), S33-S39.
[http://dx.doi.org/10.1016/j.placenta.2009.11.010] [PMID: 20004469]
[129]
Sandman, C.A.; Glynn, L.M.; Davis, E.P. Is there a viability–vulnerability tradeoff? Sex differences in fetal programming. J. Psychosom. Res., 2013, 75(4), 327-335.
[http://dx.doi.org/10.1016/j.jpsychores.2013.07.009] [PMID: 24119938]
[130]
Uno, H.; Lohmiller, L.; Thieme, C.; Kemnitz, J.W.; Engle, M.J.; Roecker, E.B.; Farrell, P.M. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res. Dev. Brain Res., 1990, 53(2), 157-167.
[http://dx.doi.org/10.1016/0165-3806(90)90002-G] [PMID: 2357788]
[131]
Nazzari, S.; Fearon, P.; Rice, F.; Dottori, N.; Ciceri, F.; Molteni, M.; Frigerio, A. Beyond the HPA-axis: Exploring maternal prenatal influences on birth outcomes and stress reactivity. Psychoneuroendocrinology, 2019, 101(101), 253-262.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.018] [PMID: 30497017]
[132]
Correia-Branco, A.; Keating, E.; Martel, F. Maternal undernutrition and fetal developmental programming of obesity: The glucocorticoid connection. Reprod. Sci., 2015, 22(2), 138-145.
[http://dx.doi.org/10.1177/1933719114542012] [PMID: 25001018]
[133]
Pearson, J.; Tarabulsy, G.M.; Bussières, E.L. Foetal programming and cortisol secretion in early childhood: A meta-analysis of different programming variables. Infant Behav. Dev., 2015, 40, 204-215.
[http://dx.doi.org/10.1016/j.infbeh.2015.04.004] [PMID: 26209745]
[134]
Grimm, J.; Stemmler, M.; Golub, Y.; Schwenke, E.; Goecke, T.W.; Fasching, P.A.; Beckmann, M.W.; Kratz, O.; Moll, G.H.; Kornhuber, J.; Eichler, A. The association between prenatal alcohol consumption and preschool child stress system disturbance. Dev. Psychobiol., 2021, 63(4), 687-697.
[http://dx.doi.org/10.1002/dev.22038] [PMID: 33012000]
[135]
Ong, S.X.; Chng, K.; Meaney, M.J.; Buschdorf, J.P. Decreased hippocampal mineralocorticoid:glucocorticoid receptor ratio is associated with low birth weight in female cynomolgus macaque neonates. J. Mol. Endocrinol., 2013, 51(1), 59-67.
[http://dx.doi.org/10.1530/JME-12-0218] [PMID: 23592886]
[136]
Howell, B.R.; McCormack, K.M.; Grand, A.P.; Sawyer, N.T.; Zhang, X.; Maestripieri, D.; Hu, X.; Sanchez, M.M. Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: Associations with high cortisol during infancy. Biol. Mood Anxiety Disord., 2013, 3(1), 21.
[http://dx.doi.org/10.1186/2045-5380-3-21] [PMID: 24289263]
[137]
Howell, B.R.; Grand, A.P.; McCormack, K.M.; Shi, Y.; LaPrarie, J.L.; Maestripieri, D.; Styner, M.A.; Sanchez, M.M. Early adverse experience increases emotional reactivity in juvenile rhesus macaques: Relation to amygdala volume. Dev. Psychobiol., 2014, 56(8), 1735-1746.
[http://dx.doi.org/10.1002/dev.21237] [PMID: 25196846]
[138]
Hanson, J.L.; Nacewicz, B.M.; Sutterer, M.J.; Cayo, A.A.; Schaefer, S.M.; Rudolph, K.D.; Shirtcliff, E.A.; Pollak, S.D.; Davidson, R.J. Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biol. Psychiatry, 2015, 77(4), 314-323.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.020] [PMID: 24993057]
[139]
Kuhlman, K.R.; Vargas, I.; Geiss, E.G.; Lopez-Duran, N.L. Age of trauma onset and HPA axis dysregulation among trauma-exposed youth. J. Trauma. Stress, 2015, 28(6), 572-579.
[http://dx.doi.org/10.1002/jts.22054] [PMID: 26556544]
[140]
Cicchetti, D.; Rogosch, F.A.; Gunnar, M.R.; Toth, S.L. The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Dev., 2010, 81(1), 252-269.
[http://dx.doi.org/10.1111/j.1467-8624.2009.01393.x] [PMID: 20331666]
[141]
Essex, M.J.; Klein, M.H.; Cho, E.; Kalin, N.H. Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biol. Psychiatry, 2002, 52(8), 776-784.
[http://dx.doi.org/10.1016/S0006-3223(02)01553-6] [PMID: 12372649]
[142]
Dougherty, L.R.; Tolep, M.R.; Smith, V.C.; Rose, S. Early exposure to parental depression and parenting: Associations with young offspring’s stress physiology and oppositional behavior. J. Abnorm. Child Psychol., 2013, 41(8), 1299-1310.
[http://dx.doi.org/10.1007/s10802-013-9763-7] [PMID: 23722864]
[143]
van IJzendoorn, M.H.; Palacios, J.; Sonuga-Barke, E.J.S.; Gunnar, M.R.; Vorria, P.; McCall, R.B.; Le Mare, L.; Bakermans-Kranenburg, M.J.; Dobrova-Krol, N.A.; Juffer, F. Children in institutional care: Delayed development and resilience. Monogr. Soc. Res. Child Dev., 2011, 76(4), 8-30.
[http://dx.doi.org/10.1111/j.1540-5834.2011.00626.x] [PMID: 25125707]
[144]
Carlson, M.; Earls, F. Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Ann. N. Y. Acad. Sci., 1997, 807, 419-428.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb51936.x]
[145]
Dobrova-Krol, N.A.; van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Cyr, C.; Juffer, F. Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behav. Dev., 2008, 31(3), 539-553.
[http://dx.doi.org/10.1016/j.infbeh.2008.04.001] [PMID: 18511123]
[146]
Van IJzendoorn, M.H.; Juffer, F. The Emanuel Miller Memorial Lecture 2006: Adoption as intervention. Meta-analytic evidence for massive catch-up and plasticity in physical, socio-emotional, and cognitive development. J. Child Psychol. Psychiatry, 2006, 47(12), 1228-1245.
[http://dx.doi.org/10.1111/j.1469-7610.2006.01675.x] [PMID: 17176378]
[147]
Gunnar, M.R.; Morison, S.J.; Chisholm, K.; Schuder, M. Salivary cortisol levels in children adopted from Romanian orphanages. Dev. Psychopathol., 2001, 13(3), 611-628.
[http://dx.doi.org/10.1017/S095457940100311X] [PMID: 11523851]
[148]
Kumsta, R.; Schlotz, W.; Golm, D.; Moser, D.; Kennedy, M.; Knights, N.; Kreppner, J.; Maughan, B.; Rutter, M.; Sonuga-Barke, E. HPA axis dysregulation in adult adoptees twenty years after severe institutional deprivation in childhood. Psychoneuroendocrinology, 2017, 86, 196-202.
[http://dx.doi.org/10.1016/j.psyneuen.2017.09.021] [PMID: 28982048]
[149]
Leneman, K.B.; Donzella, B.; Desjardins, C.D.; Miller, B.S.; Gunnar, M.R. The slope of cortisol from awakening to 30 min post-wake in post-institutionalized children and early adolescents. Psychoneuroendocrinology, 2018, 96, 93-99.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.011] [PMID: 29920425]
[150]
Sánchez, M.M.; Ladd, C.O.; Plotsky, P.M. Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Dev. Psychopathol, 2001, 13(3), 419-449.
[http://dx.doi.org/10.1017/S0954579401003029] [PMID: 11523842]
[151]
Galván, A. Insights about adolescent behavior, plasticity, and policy from neuroscience research. Neuron, 2014, 83(2), 262-265.
[http://dx.doi.org/10.1016/j.neuron.2014.06.027] [PMID: 25033176]
[152]
Blakemore, S.J.; Burnett, S.; Dahl, R.E. The role of puberty in the developing adolescent brain. Hum. Brain Mapp., 2010, 31(6), 926-933.
[http://dx.doi.org/10.1002/hbm.21052] [PMID: 20496383]
[153]
Hare, T.A.; Tottenham, N.; Galvan, A.; Voss, H.U.; Glover, G.H.; Casey, B.J. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol. Psychiatry, 2008, 63(10), 927-934.
[http://dx.doi.org/10.1016/j.biopsych.2008.03.015] [PMID: 18452757]
[154]
Gunnar, M.R.; Wewerka, S.; Frenn, K.; Long, J.D.; Griggs, C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Dev. Psychopathol., 2009, 21(1), 69-85.
[http://dx.doi.org/10.1017/S0954579409000054] [PMID: 19144223]
[155]
Stroud, L.R.; Foster, E.; Papandonatos, G.D.; Handwerger, K.; Granger, D.A.; Kivlighan, K.T.; Niaura, R. Stress response and the adolescent transition: Performance versus peer rejection stressors. Dev. Psychopathol., 2009, 21(1), 47-68.
[http://dx.doi.org/10.1017/S0954579409000042] [PMID: 19144222]
[156]
Gee, D.G.; Casey, B.J. The impact of developmental timing for stress and recovery. Neurobiol. Stress, 2015, 1, 184-194.
[http://dx.doi.org/10.1016/j.ynstr.2015.02.001] [PMID: 25798454]
[157]
Kirschbaum, C.; Kudielka, B.M.; Gaab, J.; Schommer, N.C.; Hellhammer, D.H. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom. Med., 1999, 61(2), 154-162.
[http://dx.doi.org/10.1097/00006842-199903000-00006] [PMID: 10204967]
[158]
Romeo, R.D. Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Front. Neuroendocrinol., 2010, 31(2), 232-240.
[http://dx.doi.org/10.1016/j.yfrne.2010.02.004] [PMID: 20193707]
[159]
Eiland, L.; Romeo, R.D. Stress and the developing adolescent brain. Neuroscience, 2013, 249(212), 162-171.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.048] [PMID: 23123920]
[160]
Romeo, R.D. The impact of stress on the structure of the adolescentbrain: Implications for adolescent mental health. Brain Res., 2017, 1654((Pt B)), 185-191.
[http://dx.doi.org/10.1016/j.brainres.2016.03.021] [PMID: 27021951]
[161]
DePasquale, C.E.; Donzella, B.; Gunnar, M.R. Pubertal recalibration of cortisol reactivity following early life stress: A cross-sectional analysis. J. Child Psychol. Psychiatry, 2019, 60(5), 566-575.
[http://dx.doi.org/10.1111/jcpp.12992] [PMID: 30357830]
[162]
Zhang, D.; Fang, J.; Zhang, L.; Yuan, J.; Wan, Y.; Su, P.; Tao, F.; Sun, Y. Pubertal recalibration of cortisol reactivity following early life parent-child separation. J. Affect. Disord., 2021, 278, 320-326.
[http://dx.doi.org/10.1016/j.jad.2020.09.030] [PMID: 32979563]
[163]
King, L.S.; Colich, N.L.; LeMoult, J.; Humphreys, K.L.; Ordaz, S.J.; Price, A.N.; Gotlib, I.H. The impact of the severity of early life stress on diurnal cortisol: The role of puberty. Psychoneuroendocrinology, 2017, 77, 68-74.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.024] [PMID: 28024271]
[164]
Howland, M.A.; Donzella, B.; Miller, B.S.; Gunnar, M.R. Pubertal recalibration of cortisol-DHEA coupling in previously-institutionalized children. Horm. Behav., 2020, 125, 104816.
[http://dx.doi.org/10.1016/j.yhbeh.2020.104816] [PMID: 32649929]
[165]
King, L.S.; Graber, M.G.; Colich, N.L.; Gotlib, I.H. Associations of waking cortisol with DHEA and testosterone across the pubertal transition: Effects of threat-related early life stress. Psychoneuroendocrinology, 2020, 115, 104651.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104651] [PMID: 32199287]
[166]
Gunnar, M.; Quevedo, K. The neurobiology of stress and development. Annu. Rev. Psychol., 2007, 58(1), 145-173.
[http://dx.doi.org/10.1146/annurev.psych.58.110405.085605] [PMID: 16903808]
[167]
Gunnar, M.R.; Gonzalez, C.A.; Goodlin, B.L.; Levine, S. Behavioral and pituitary - adrenal responses during a prolonged separation period in infant rhesus macaques. Psychoneuroendocrinology, 1981, 6(1), 65-75.
[http://dx.doi.org/10.1016/0306-4530(81)90049-4] [PMID: 7195597]
[168]
Gunnar, M.R. Social Buffering of Stress in Development: A Career Perspective. Perspect. Psychol. Sci., 2017, 12(3), 355-373.
[http://dx.doi.org/10.1177/1745691616680612] [PMID: 28544861]
[169]
Thompson, R.A. Emotion and emotion regulation: two sides of the developing coin. Emot. Rev., 2011, 3(1), 53-61.
[http://dx.doi.org/10.1177/1754073910380969]
[170]
Hennessy, M.B.; Kaiser, S.; Sachser, N. Social buffering of the stress response: Diversity, mechanisms, and functions. Front. Neuroendocrinol., 2009, 30(4), 470-482.
[http://dx.doi.org/10.1016/j.yfrne.2009.06.001] [PMID: 19545584]
[171]
Hostinar, C.E.; Sullivan, R.M.; Gunnar, M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychol. Bull., 2014, 140(1), 256-282.
[http://dx.doi.org/10.1037/a0032671] [PMID: 23607429]
[172]
Gunnar, M.; Gonzalez, C.; Levine, S. The role of peers in modifying behavioral distress and pituitary-adrenal response to a novel environment in year-old rhesus monkeys. Physiol. Behav., 1980, 25(5), 795-798.
[http://dx.doi.org/10.1016/0031-9384(80)90387-X] [PMID: 7192415]
[173]
Bowlby, J. Attachment and Loss v. 3 (Vol. 1); Basic books: New York, 1969, Vol. 3, .
[174]
Nachmias, M.; Gunnar, M.; Mangelsdorf, S.; Parritz, R.H.; Buss, K. Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Dev., 1996, 67(2), 508-522.
[http://dx.doi.org/10.2307/1131829] [PMID: 8625725]
[175]
Fearon, R.M.P.; Tomlinson, M.; Kumsta, R.; Skeen, S.; Murray, L.; Cooper, P.J.; Morgan, B. Poverty, early care, and stress reactivity in adolescence: Findings from a prospective, longitudinal study in South Africa. Dev. Psychopathol, 2017, 29(2), 449-464.
[http://dx.doi.org/10.1017/S0954579417000104] [PMID: 28401838]
[176]
Ahnert, L.; Gunnar, M.R.; Lamb, M.E.; Barthel, M. Transition to child care: Associations with infant-mother attachment, infant negative emotion, and cortisol elevations. Child Dev., 2004, 75(3), 639-650.
[http://dx.doi.org/10.1111/j.1467-8624.2004.00698.x] [PMID: 15144478]
[177]
Johnson, A.B.; Mliner, S.B.; Depasquale, C.E.; Troy, M.; Gunnar, M.R. Attachment security buffers the HPA axis of toddlers growing up in poverty or near poverty: Assessment during pediatric well-child exams with inoculations. Psychoneuroendocrinology, 2018, 95, 120-127.
[http://dx.doi.org/10.1016/j.psyneuen.2018.05.030] [PMID: 29852405]
[178]
Seltzer, L.J.; Ziegler, T.E.; Pollak, S.D. Social vocalizations can release oxytocin in humans. Proc. Biol. Sci., 2010, 277(1694), 2661-2666.
[http://dx.doi.org/10.1098/rspb.2010.0567] [PMID: 20462908]
[179]
Yirmiya, K.; Motsan, S.; Zagoory-Sharon, O.; Feldman, R. Human attachment triggers different social buffering mechanisms under high and low early life stress rearing. Int. J. Psychophysiol., 2020, 152, 72-80.
[http://dx.doi.org/10.1016/j.ijpsycho.2020.04.001] [PMID: 32272126]
[180]
Doom, J.R.; Hostinar, C.E.; VanZomeren-Dohm, A.A.; Gunnar, M.R. The roles of puberty and age in explaining the diminished effectiveness of parental buffering of HPA reactivity and recovery in adolescence. Psychoneuroendocrinology, 2015, 59, 102-111.
[http://dx.doi.org/10.1016/j.psyneuen.2015.04.024] [PMID: 26047719]
[181]
Doom, J.R.; Doyle, C.M.; Gunnar, M.R. Social stress buffering by friends in childhood and adolescence: Effects on HPA and oxytocin activity. Soc. Neurosci., 2017, 12(1), 8-21.
[http://dx.doi.org/10.1080/17470919.2016.1149095] [PMID: 26899419]
[182]
Ditzen, B.; Neumann, I.D.; Bodenmann, G.; von Dawans, B.; Turner, R.A.; Ehlert, U.; Heinrichs, M. Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 2007, 32(5), 565-574.
[http://dx.doi.org/10.1016/j.psyneuen.2007.03.011] [PMID: 17499441]
[183]
Ditzen, B.; Heinrichs, M. Psychobiology of social support: The social dimension of stress buffering. Restor. Neurol. Neurosci., 2014, 32(1), 149-162.
[http://dx.doi.org/10.3233/RNN-139008] [PMID: 23603443]
[184]
Umaña-Taylor, A.J. A Post-racial society in which ethnic-racial discrimination still exists and has significant consequences for Youths’ adjustment. Curr. Dir. Psychol. Sci., 2016, 25(2), 111-118.
[http://dx.doi.org/10.1177/0963721415627858]
[185]
Burris, H.H.; Hacker, M.R. Birth outcome racial disparities: a result of intersecting social and environmental factors. Seminars in perinatology; Elsevier, 2017, Vol. 41, pp. 360-366.
[http://dx.doi.org/10.1053/j.semperi.2017.07.002]
[186]
Spears Brown, C.; Bigler, R.S. Children’s perceptions of discrimination: A developmental model. Child Dev., 2005, 76(3), 533-553.
[http://dx.doi.org/10.1111/j.1467-8624.2005.00862.x] [PMID: 15892777]
[187]
Benner, A.D.; Wang, Y.; Shen, Y.; Boyle, A.E.; Polk, R.; Cheng, Y.P. Racial/ethnic discrimination and well-being during adolescence: A meta-analytic review. Am. Psychol., 2018, 73(7), 855-883.
[http://dx.doi.org/10.1037/amp0000204] [PMID: 30024216]
[188]
Sanders-Phillips, K.; Settles-Reaves, B.; Walker, D.; Brownlow, J. Social inequality and racial discrimination: risk factors for health disparities in children of color. Pediatrics, 2009, 124(Suppl. 3), S176-S186.
[http://dx.doi.org/10.1542/peds.2009-1100E] [PMID: 19861468]
[189]
Dismukes, A.; Shirtcliff, E.; Jones, C.W.; Zeanah, C.; Theall, K.; Drury, S. The development of the cortisol response to dyadic stressors in Black and White infants. Dev. Psychopathol., 2018, 30(5), 1995-2008.
[http://dx.doi.org/10.1017/S0954579418001232] [PMID: 30328402]
[190]
Bates, R.A.; Singletary, B.; Yacques, A.; Justice, L. Sleep and stress in mother–toddler dyads living in low‐income homes. Dev. Psychobiol., 2021, 63(5), 1635-1643.
[http://dx.doi.org/10.1002/dev.22077] [PMID: 33368168]
[191]
Gunnar, M.R.; Haapala, J.; French, S.A.; Sherwood, N.E.; Seburg, E.M.; Crain, A.L.; Kunin-Batson, A.S. Race/ethnicity and age associations with hair cortisol concentrations among children studied longitudinally from early through middle childhood. Psychoneuroendocrinology, 2022, 144, 105892.
[http://dx.doi.org/10.1016/j.psyneuen.2022.105892] [PMID: 35985241]
[192]
Martin, C.G.; Bruce, J.; Fisher, P.A. Racial and ethnic differences in diurnal cortisol rhythms in preadolescents: The role of parental psychosocial risk and monitoring. Horm. Behav., 2012, 61(5), 661-668.
[http://dx.doi.org/10.1016/j.yhbeh.2012.02.025] [PMID: 22414445]
[193]
Deer, L.K.; Shields, G.S.; Ivory, S.L.; Hostinar, C.E.; Telzer, E.H. Racial/ethnic disparities in cortisol diurnal patterns and affect in adolescence. Dev. Psychopathol, 2018, 30(5), 1977-1993.
[http://dx.doi.org/10.1017/S0954579418001098] [PMID: 30309395]
[194]
Hittner, E.F.; Adam, E.K. Emotional pathways to the biological embodiment of racial discrimination experiences. Psychosom. Med., 2020, 82(4), 420-431.
[http://dx.doi.org/10.1097/PSY.0000000000000792] [PMID: 32108742]
[195]
Tackett, J.L.; Herzhoff, K.; Smack, A.J.; Reardon, K.W.; Adam, E.K. Does socioeconomic status mediate racial differences in the cortisol response in middle childhood? Health Psychol., 2017, 36(7), 662-672.
[http://dx.doi.org/10.1037/hea0000480] [PMID: 28277700]
[196]
Wosu, A.C.; Gelaye, B.; Valdimarsdóttir, U.; Kirschbaum, C.; Stalder, T.; Shields, A.E.; Williams, M.A. Hair cortisol in relation to sociodemographic and lifestyle characteristics in a multiethnic US sample. Ann. Epidemiol., 2015, 25(2), 90-95. e2, 95.e1-95.e2.
[http://dx.doi.org/10.1016/j.annepidem.2014.11.022] [PMID: 25534254]
[197]
Busse, D.; Yim, I.S.; Campos, B.; Marshburn, C.K. Discrimination and the HPA axis: Current evidence and future directions. J. Behav. Med., 2017, 40(4), 539-552.
[http://dx.doi.org/10.1007/s10865-017-9830-6] [PMID: 28155003]
[198]
Korous, K.M.; Causadias, J.M.; Casper, D.M. Racial discrimination and cortisol output: A meta-analysis. Soc. Sci. Med., 2017, 193, 90-100.
[http://dx.doi.org/10.1016/j.socscimed.2017.09.042] [PMID: 29028560]
[199]
Meerlo, P.; Koehl, M.; Van Der Borght, K.; Turek, F.W. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J. Neuroendocrinol., 2002, 14(5), 397-402.
[http://dx.doi.org/10.1046/j.0007-1331.2002.00790.x] [PMID: 12000545]
[200]
Hairston, I.S.; Ruby, N.F.; Brooke, S.; Peyron, C.; Denning, D.P.; Heller, H.C.; Sapolsky, R.M. Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neurosci. Lett., 2001, 315(1-2), 29-32.
[http://dx.doi.org/10.1016/S0304-3940(01)02309-6] [PMID: 11711207]
[201]
Steiger, A. Sleep and the hypothalamo–pituitary–adrenocortical system. Sleep Med. Rev., 2002, 6(2), 125-138.
[http://dx.doi.org/10.1053/smrv.2001.0159] [PMID: 12531148]
[202]
Vgontzas, A.N.; Zoumakis, M.; Bixler, E.O.; Lin, H.M.; Prolo, P.; Vela-Bueno, A.; Kales, A.; Chrousos, G.P. Impaired nighttime sleep in healthy old versus young adults is associated with elevated plasma interleukin-6 and cortisol levels: physiologic and therapeutic implications. J. Clin. Endocrinol. Metab., 2003, 88(5), 2087-2095.
[http://dx.doi.org/10.1210/jc.2002-021176] [PMID: 12727959]
[203]
Gribbin, C.E.; Watamura, S.E.; Cairns, A.; Harsh, J.R.; LeBourgeois, M.K. The cortisol awakening response (CAR) in 2- to 4-year-old children: Effects of acute nighttime sleep restriction, wake time, and daytime napping. Dev. Psychobiol., 2012, 54(4), 412-422.
[http://dx.doi.org/10.1002/dev.20599] [PMID: 21953381]
[204]
Vargas, I.; Lopez-Duran, N. Dissecting the impact of sleep and stress on the cortisol awakening response in young adults. Psychoneuroendocrinology, 2014, 40, 10-16.
[http://dx.doi.org/10.1016/j.psyneuen.2013.10.009] [PMID: 24485471]
[205]
Zeiders, K.H.; Doane, L.D.; Adam, E.K. Reciprocal relations between objectively measured sleep patterns and diurnal cortisol rhythms in late adolescence. J. Adolesc. Health, 2011, 48(6), 566-571.
[http://dx.doi.org/10.1016/j.jadohealth.2010.08.012] [PMID: 21575815]
[206]
El-Sheikh, M.; Buckhalt, J.A.; Keller, P.S.; Granger, D.A. Children’s objective and subjective sleep disruptions: Links with afternoon cortisol levels. Health Psychol., 2008, 27(1), 26-33.
[http://dx.doi.org/10.1037/0278-6133.27.1.26] [PMID: 18230010]
[207]
Räikkönen, K.; Matthews, K.A.; Pesonen, A.K.; Pyhälä, R.; Paavonen, E.J.; Feldt, K.; Jones, A.; Phillips, D.I.W.; Seckl, J.R.; Heinonen, K.; Lahti, J.; Komsi, N.; Järvenpää, A.L.; Eriksson, J.G.; Strandberg, T.E.; Kajantie, E. Poor sleep and altered hypothalamic-pituitary-adrenocortical and sympatho-adrenal-medullary system activity in children. J. Clin. Endocrinol. Metab., 2010, 95(5), 2254-2261.
[http://dx.doi.org/10.1210/jc.2009-0943] [PMID: 20194713]
[208]
Buckley, T.M.; Schatzberg, A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab., 2005, 90(5), 3106-3114.
[http://dx.doi.org/10.1210/jc.2004-1056] [PMID: 15728214]
[209]
Brand, S.; Furlano, R.; Sidler, M.; Schulz, J.; Holsboer-Trachsler, E. ‘Oh, baby, please don’t cry!’: In infants suffering from infantile colic hypothalamic-pituitary-adrenocortical axis activity is related to poor sleep and increased crying intensity. Neuropsychobiology, 2011, 64(1), 15-23.
[http://dx.doi.org/10.1159/000322456] [PMID: 21577009]
[210]
Flom, M.; St John, A.M.; Meyer, J.S.; Tarullo, A.R. Infant hair cortisol: Associations with salivary cortisol and environmental context. Dev. Psychobiol., 2017, 59(1), 26-38.
[http://dx.doi.org/10.1002/dev.21449] [PMID: 27472986]
[211]
Scher, A.; Hall, W.A.; Zaidman-Zait, A.; Weinberg, J. Sleep quality, cortisol levels, and behavioral regulation in toddlers. Dev. Psychobiol., 2010, 52(1), 44-53.
[PMID: 19921708]
[212]
Kajantie, E.; Räikkönen, K. Early life predictors of the physiological stress response later in life. Neurosci. Biobehav. Rev., 2010, 35(1), 23-32.
[http://dx.doi.org/10.1016/j.neubiorev.2009.11.013] [PMID: 19931557]
[213]
Maurer, N.; Perkinson-Gloor, N.; Stalder, T.; Hagmann-von Arx, P.; Brand, S.; Holsboer-Trachsler, E.; Wellmann, S.; Grob, A.; Weber, P.; Lemola, S. Salivary and hair glucocorticoids and sleep in very preterm children during school age. Psychoneuroendocrinology, 2016, 72, 166-174.
[http://dx.doi.org/10.1016/j.psyneuen.2016.07.003] [PMID: 27434634]
[214]
Hatzinger, M.; Brand, S.; Perren, S.; Stadelmann, S.; Wyl, A.; Klitzing, K.; Holsboer-Trachsler, E. Sleep actigraphy pattern and behavioral/emotional difficulties in kindergarten children: Association with hypothalamic-pituitary-adrenocortical (HPA) activity. J. Psychiatr. Res., 2010, 44(4), 253-261.
[http://dx.doi.org/10.1016/j.jpsychires.2009.08.012] [PMID: 19762039]
[215]
Fallone, G.; Owens, J.A.; Deane, J. Sleepiness in children and adolescents: Clinical implications. Sleep Med. Rev., 2002, 6(4), 287-306.
[http://dx.doi.org/10.1053/smrv.2001.0192] [PMID: 12531133]
[216]
Johnson, E.O.; Roth, T.; Schultz, L.; Breslau, N. Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics, 2006, 117(2), e247-e256.
[http://dx.doi.org/10.1542/peds.2004-2629] [PMID: 16452333]
[217]
Thapar, A.; Collishaw, S.; Pine, D.S.; Thapar, A.K. Depression in adolescence. Lancet, 2012, 379(9820), 1056-1067.
[http://dx.doi.org/10.1016/S0140-6736(11)60871-4] [PMID: 22305766]
[218]
Carskadon, M.A. Sleep in adolescents: The perfect storm. Pediatr. Clin. North Am., 2011, 58(3), 637-647.
[http://dx.doi.org/10.1016/j.pcl.2011.03.003] [PMID: 21600346]
[219]
Tu, K.M.; Erath, S.A.; El-Sheikh, M. Peer victimization and adolescent adjustment: the moderating role of sleep. J. Abnorm. Child Psychol., 2015, 43(8), 1447-1457.
[http://dx.doi.org/10.1007/s10802-015-0035-6] [PMID: 26002848]
[220]
El-Sheikh, M.; Tu, K.M.; Saini, E.K.; Fuller-Rowell, T.E.; Buckhalt, J.A. Perceived discrimination and youths’ adjustment: Sleep as a moderator. J. Sleep Res., 2016, 25(1), 70-77.
[http://dx.doi.org/10.1111/jsr.12333] [PMID: 26260026]
[221]
Yip, T. The effects of ethnic/racial discrimination and sleep quality on depressive symptoms and self-esteem trajectories among diverse adolescents. J. Youth Adolesc., 2015, 44(2), 419-430.
[http://dx.doi.org/10.1007/s10964-014-0123-x] [PMID: 24682960]
[222]
Chiang, J.J.; Tsai, K.M.; Park, H.; Bower, J.E.; Almeida, D.M.; Dahl, R.E.; Irwin, M.R.; Seeman, T.E.; Fuligni, A.J. Daily family stress and HPA axis functioning during adolescence: The moderating role of sleep. Psychoneuroendocrinology, 2016, 71, 43-53.
[http://dx.doi.org/10.1016/j.psyneuen.2016.05.009] [PMID: 27235639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy