Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence

Author(s): Alexis E. Cullen*, Javier Labad, Dominic Oliver, Adam Al-Diwani, Amedeo Minichino and Paolo Fusar-Poli

Volume 22, Issue 3, 2024

Published on: 27 March, 2023

Page: [350 - 377] Pages: 28

DOI: 10.2174/1570159X21666230322145049

Price: $65

Abstract

Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.

Graphical Abstract

[1]
Maj, M.; Os, J.; De Hert, M.; Gaebel, W.; Galderisi, S.; Green, M.F.; Guloksuz, S.; Harvey, P.D.; Jones, P.B.; Malaspina, D.; McGorry, P.; Miettunen, J.; Murray, R.M.; Nuechterlein, K.H.; Peralta, V.; Thornicroft, G.; Winkel, R.; Ventura, J. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry, 2021, 20(1), 4-33.
[http://dx.doi.org/10.1002/wps.20809] [PMID: 33432763]
[2]
Moreno-Küstner, B.; Martín, C.; Pastor, L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS One, 2018, 13(4), e0195687.
[http://dx.doi.org/10.1371/journal.pone.0195687] [PMID: 29649252]
[3]
Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; de Pablo, S.G.; Il, S.J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; Kim, J.Y.; Carvalho, A.F.; Seeman, M.V.; Correll, C.U.; Fusar-Poli, P. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry, 2022, 27(1), 281-295.
[http://dx.doi.org/10.1038/s41380-021-01161-7] [PMID: 34079068]
[4]
Fusar-Poli, P.; McGorry, P.D.; Kane, J.M. Improving outcomes of first-episode psychosis: An overview. World Psychiatry, 2017, 16(3), 251-265.
[http://dx.doi.org/10.1002/wps.20446] [PMID: 28941089]
[5]
Fusar-Poli, P.; Correll, C.U.; Arango, C.; Berk, M.; Patel, V.; Ioannidis, J.P.A. Preventive psychiatry: A blueprint for improving the mental health of young people. World Psychiatry, 2021, 20(2), 200-221.
[http://dx.doi.org/10.1002/wps.20869] [PMID: 34002494]
[6]
Rosenthal, D. Genetic theory and abnormal behavior; McGraw-Hill: New York, 1970.
[7]
Zubin, J.; Spring, B. Vulnerability: A new view of schizophrenia. J. Abnorm. Psychol., 1977, 86(2), 103-126.
[http://dx.doi.org/10.1037/0021-843X.86.2.103] [PMID: 858828]
[8]
Walker, E.; Mittal, V.; Tessner, K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu. Rev. Clin. Psychol., 2008, 4(1), 189-216.
[http://dx.doi.org/10.1146/annurev.clinpsy.4.022007.141248] [PMID: 18370616]
[9]
Walker, E.F.; Diforio, D. Schizophrenia: A neural diathesis-stress model. Psychol. Rev., 1997, 104(4), 667-685.
[http://dx.doi.org/10.1037/0033-295X.104.4.667] [PMID: 9337628]
[10]
Pruessner, M.; Cullen, A.E.; Aas, M.; Walker, E.F. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci. Biobehav. Rev., 2017, 73, 191-218.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.013] [PMID: 27993603]
[11]
Murray, R.M.; Lewis, S.W. Is schizophrenia a neurodevelopmental disorder? BMJ, 1987, 295(6600), 681-682.
[http://dx.doi.org/10.1136/bmj.295.6600.681] [PMID: 3117295]
[12]
Howes, O.D.; Murray, R.M. Schizophrenia: An integrated sociodevelopmental-cognitive model. Lancet, 2014, 383(9929), 1677-1687.
[http://dx.doi.org/10.1016/S0140-6736(13)62036-X] [PMID: 24315522]
[13]
Murray, R.M.; Bhavsar, V.; Tripoli, G.; Howes, O. 30 years on: How the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr. Bull., 2017, 43(6), 1190-1196.
[http://dx.doi.org/10.1093/schbul/sbx121] [PMID: 28981842]
[14]
Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophr. Bull., 2009, 35(3), 549-562.
[http://dx.doi.org/10.1093/schbul/sbp006] [PMID: 19325164]
[15]
van Winkel, R.; Stefanis, N.C.; Myin-Germeys, I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr. Bull., 2008, 34(6), 1095-1105.
[http://dx.doi.org/10.1093/schbul/sbn101] [PMID: 18718885]
[16]
Mizrahi, R. Social stress and psychosis risk: Common neurochemical substrates? Neuropsychopharmacology, 2016, 41(3), 666-674.
[http://dx.doi.org/10.1038/npp.2015.274] [PMID: 26346639]
[17]
Ruby, E.; Polito, S.; McMahon, K.; Gorovitz, M.; Corcoran, C.; Malaspina, D. Pathways associating childhood trauma to the neurobiology of schizophrenia. Front Psychol Behav Sci, 2014, 3(1), 1-17.
[PMID: 25419548]
[18]
Vargas, T.; Conley, R.E.; Mittal, V.A. Chronic stress, structural exposures and neurobiological mechanisms: A stimulation, discrepancy and deprivation model of psychosis. Int. Rev. Neurobiol., 2020, 152, 41-69.
[http://dx.doi.org/10.1016/bs.irn.2019.11.004] [PMID: 32451000]
[19]
Shah, J.L.; Malla, A.K. Much ado about much: Stress, dynamic biomarkers and HPA axis dysregulation along the trajectory to psychosis. Schizophr. Res., 2015, 162(1-3), 253-260.
[http://dx.doi.org/10.1016/j.schres.2015.01.010] [PMID: 25620122]
[20]
Niemi, L.T.; Suvisaari, J.M.; Tuulio-Henriksson, A.; Lönnqvist, J.K. Childhood developmental abnormalities in schizophrenia: evidence from high-risk studies. Schizophr. Res., 2003, 60(2-3), 239-258.
[http://dx.doi.org/10.1016/S0920-9964(02)00234-7] [PMID: 12591587]
[21]
Sullivan, P.F.; Kendler, K.S.; Neale, M.C. Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry, 2003, 60(12), 1187-1192.
[http://dx.doi.org/10.1001/archpsyc.60.12.1187] [PMID: 14662550]
[22]
Rasic, D.; Hajek, T.; Alda, M.; Uher, R. Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: A meta-analysis of family high-risk studies. Schizophr. Bull., 2014, 40(1), 28-38.
[http://dx.doi.org/10.1093/schbul/sbt114] [PMID: 23960245]
[23]
Dennison, C.A.; Legge, S.E.; Pardiñas, A.F.; Walters, J.T.R. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophr. Res., 2020, 217, 4-12.
[http://dx.doi.org/10.1016/j.schres.2019.10.048] [PMID: 31780348]
[24]
Gottesman, I.I.; Shields, J. Schizophrenia, the epigenetic puzzle; Cambridge University Press: Cambridge, New York, 1982.
[25]
Mortensen, P.B.; Pedersen, M.G.; Pedersen, C.B. Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant? Psychol. Med., 2010, 40(2), 201-210.
[http://dx.doi.org/10.1017/S0033291709990419] [PMID: 19607751]
[26]
Chemerinski, E.; Triebwasser, J.; Roussos, P.; Siever, L.J. Schizotypal personality disorder. J. Pers. Disord., 2013, 27(5), 652-679.
[http://dx.doi.org/10.1521/pedi_2012_26_053] [PMID: 22928856]
[27]
Rosell, D.R.; Futterman, S.E.; McMaster, A.; Siever, L.J. Schizotypal personality disorder: A current review. Curr. Psychiatry Rep., 2014, 16(7), 452.
[http://dx.doi.org/10.1007/s11920-014-0452-1] [PMID: 24828284]
[28]
Nordentoft, M.; Thorup, A.; Petersen, L.; Øhlenschlæger, J.; Melau, M.; Christensen, T.Ø.; Krarup, G.; Jørgensen, P.; Jeppesen, P. Transition rates from schizotypal disorder to psychotic disorder for first-contact patients included in the OPUS trial. A randomized clinical trial of integrated treatment and standard treatment. Schizophr. Res., 2006, 83(1), 29-40.
[http://dx.doi.org/10.1016/j.schres.2006.01.002] [PMID: 16504481]
[29]
Woods, S.W.; Addington, J.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; Heinssen, R.; Perkins, D.O.; Seidman, L.J.; Tsuang, M.T.; Walker, E.F.; McGlashan, T.H. Validity of the prodromal risk syndrome for first psychosis: findings from the North American Prodrome Longitudinal Study. Schizophr. Bull., 2009, 35(5), 894-908.
[http://dx.doi.org/10.1093/schbul/sbp027] [PMID: 19386578]
[30]
Fusar-Poli, P. The clinical high-risk state for psychosis (CHR-P), version II. Schizophr. Bull., 2017, 43(1), 44-47.
[http://dx.doi.org/10.1093/schbul/sbw158] [PMID: 28053129]
[31]
Catalan, A. Salazar de, P.G.; Aymerich, C.; Damiani, S.; Sordi, V.; Radua, J.; Oliver, D.; McGuire, P.; Giuliano, A.J.; Stone, W.S.; Fusar-Poli, P. Neurocognitive functioning in individuals at clinical high risk for psychosis. JAMA Psychiatry, 2021, 78(8), 859-867.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.1290] [PMID: 34132736]
[32]
Fusar-Poli, P.; Spencer, T.; De Micheli, A.; Curzi, V.; Nandha, S.; McGuire, P. Outreach and support in South-London (OASIS) 2001—2020: Twenty years of early detection, prognosis and preventive care for young people at risk of psychosis. Eur. Neuropsychopharmacol., 2020, 39, 111-122.
[http://dx.doi.org/10.1016/j.euroneuro.2020.08.002] [PMID: 32921544]
[33]
Kotlicka-Antczak, M.; Podgórski, M.; Oliver, D.; Maric, N.P.; Valmaggia, L.; Fusar-Poli, P. Worldwide implementation of clinical services for the prevention of psychosis: The IEPA early intervention in mental health survey. Early Interv. Psychiatry, 2020, 14(6), 741-750.
[http://dx.doi.org/10.1111/eip.12950] [PMID: 32067369]
[34]
Estradé, A.; Salazar de Pablo, G.; Zanotti, A.; Wood, S.; Fisher, H.L.; Fusar-Poli, P. Public health primary prevention implemented by clinical high-risk services for psychosis. Transl. Psychiatry, 2022, 12(1), 43.
[http://dx.doi.org/10.1038/s41398-022-01805-4] [PMID: 35091529]
[35]
Salazar de Pablo, G.; Estradé, A.; Cutroni, M.; Andlauer, O.; Fusar-Poli, P. Establishing a clinical service to prevent psychosis: What, how and when? Systematic review. Transl. Psychiatry, 2021, 11(1), 43.
[http://dx.doi.org/10.1038/s41398-020-01165-x] [PMID: 33441556]
[36]
Oliver, D.; Arribas, M.; Radua, J.; Salazar de Pablo, G.; De Micheli, A.; Spada, G.; Mensi, M.M.; Kotlicka-Antczak, M.; Borgatti, R.; Solmi, M.; Shin, J.I.; Woods, S.W.; Addington, J.; McGuire, P.; Fusar-Poli, P. Prognostic accuracy and clinical utility of psychometric instruments for individuals at clinical high-risk of psychosis: A systematic review and meta-analysis. Mol. Psychiatry, 2022, 27(9), 3670-3678.
[http://dx.doi.org/10.1038/s41380-022-01611-w] [PMID: 35665763]
[37]
Salazar de Pablo, G.; Radua, J.; Pereira, J.; Bonoldi, I.; Arienti, V.; Besana, F.; Soardo, L.; Cabras, A.; Fortea, L.; Catalan, A.; Vaquerizo-Serrano, J.; Coronelli, F.; Kaur, S.; Da Silva, J.; Shin, J.I.; Solmi, M.; Brondino, N.; Politi, P.; McGuire, P.; Fusar-Poli, P. Probability of transition to psychosis in individuals at clinical high risk. JAMA Psychiatry, 2021, 78(9), 970-978.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0830] [PMID: 34259821]
[38]
Fusar-Poli, P.; Cappucciati, M.; Borgwardt, S.; Woods, S.W.; Addington, J.; Nelson, B.; Nieman, D.H.; Stahl, D.R.; Rutigliano, G.; Riecher-Rössler, A.; Simon, A.E.; Mizuno, M.; Lee, T.Y.; Kwon, J.S.; Lam, M.M.L.; Perez, J.; Keri, S.; Amminger, P.; Metzler, S.; Kawohl, W.; Rössler, W.; Lee, J.; Labad, J.; Ziermans, T.; An, S.K.; Liu, C.C.; Woodberry, K.A.; Braham, A.; Corcoran, C.; McGorry, P.; Yung, A.R.; McGuire, P.K. Heterogeneity of psychosis risk within individuals at clinical high risk. JAMA Psychiatry, 2016, 73(2), 113-120.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.2324] [PMID: 26719911]
[39]
Provenzani, U.; Salazar de Pablo, G.; Arribas, M.; Pillmann, F.; Fusar-Poli, P. Clinical outcomes in brief psychotic episodes: A systematic review and meta-analysis. Epidemiol. Psychiatr. Sci., 2021, 30, e71.
[http://dx.doi.org/10.1017/S2045796021000548] [PMID: 35698876]
[40]
Fusar-Poli, P.; Salazar de Pablo, G.; Rajkumar, R.P.; López-Díaz, Á.; Malhotra, S.; Heckers, S.; Lawrie, S.M.; Pillmann, F. Diagnosis, prognosis, and treatment of brief psychotic episodes: A review and research agenda. Lancet Psychiatry, 2022, 9(1), 72-83.
[http://dx.doi.org/10.1016/S2215-0366(21)00121-8] [PMID: 34856200]
[41]
Minichino, A.; Rutigliano, G.; Merlino, S.; Davies, C.; Oliver, D.; De Micheli, A.; Patel, R.; McGuire, P.; Fusar-Poli, P. Unmet needs in patients with brief psychotic disorders: Too ill for clinical high risk services and not ill enough for first episode services. Eur. Psychiatry, 2019, 57, 26-32.
[http://dx.doi.org/10.1016/j.eurpsy.2018.12.006] [PMID: 30658277]
[42]
Fusar-Poli, P.; Cappucciati, M.; De Micheli, A.; Rutigliano, G.; Bonoldi, I.; Tognin, S.; Ramella-Cravaro, V.; Castagnini, A.; McGuire, P. Diagnostic and prognostic significance of brief limited intermittent psychotic symptoms (BLIPS) in individuals at ultra high risk. Schizophr. Bull., 2017, 43(1), 48-56.
[http://dx.doi.org/10.1093/schbul/sbw151] [PMID: 28053130]
[43]
Salazar de Pablo, G.; Besana, F.; Arienti, V.; Catalan, A.; Vaquerizo-Serrano, J.; Cabras, A.; Pereira, J.; Soardo, L.; Coronelli, F.; Kaur, S.; da Silva, J.; Oliver, D.; Petros, N.; Moreno, C.; Gonzalez-Pinto, A.; Díaz-Caneja, C.M.; Shin, J.I.; Politi, P.; Solmi, M.; Borgatti, R.; Mensi, M.M.; Arango, C.; Correll, C.U.; McGuire, P.; Fusar-Poli, P. Longitudinal outcome of attenuated positive symptoms, negative symptoms, functioning and remission in people at clinical high risk for psychosis: A meta-analysis. EClinicalMedicine, 2021, 36, 100909.
[http://dx.doi.org/10.1016/j.eclinm.2021.100909] [PMID: 34189444]
[44]
Salazar de Pablo, G.; Soardo, L.; Cabras, A.; Pereira, J.; Kaur, S.; Besana, F.; Arienti, V.; Coronelli, F.; Shin, J.I.; Solmi, M.; Petros, N.; Carvalho, A.F.; McGuire, P.; Fusar-Poli, P. Clinical outcomes in individuals at clinical high risk of psychosis who do not transition to psychosis: A meta-analysis. Epidemiol. Psychiatr. Sci., 2022, 31, e9.
[http://dx.doi.org/10.1017/S2045796021000639] [PMID: 35042573]
[45]
Salazar de Pablo, G.; Woods, S.W.; Drymonitou, G.; de Diego, H.; Fusar-Poli, P. Prevalence of individuals at clinical high-risk of psychosis in the general population and clinical samples: Systematic review and meta-analysis. Brain Sci., 2021, 11(11), 1544.
[http://dx.doi.org/10.3390/brainsci11111544] [PMID: 34827543]
[46]
Dragioti, E.; Radua, J.; Solmi, M.; Arango, C.; Oliver, D.; Cortese, S.; Jones, P.B.; Il Shin, J.; Correll, C.U.; Fusar-Poli, P. Global population attributable fraction of potentially modifiable risk factors for mental disorders: A meta-umbrella systematic review. Mol. Psychiatry, 2022, 27(8), 3510-3519.
[http://dx.doi.org/10.1038/s41380-022-01586-8] [PMID: 35484237]
[47]
Perkins, D.O. Evaluating and treating the prodromal stage of schizophrenia. Curr. Psychiatry Rep., 2004, 6(4), 289-295.
[http://dx.doi.org/10.1007/s11920-004-0079-8] [PMID: 15260945]
[48]
Häfner, H.; Riecher-Rössler, A.; Maurer, K.; Fätkenheuer, B.; Löffler, W. First onset and early symptomatology of schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci., 1992, 242(2-3), 109-118.
[http://dx.doi.org/10.1007/BF02191557] [PMID: 1486099]
[49]
Norman, R.M.G.; Malla, A.K. Prodromal symptoms of relapse in schizophrenia: A review. Schizophr. Bull., 1995, 21(4), 527-539.
[http://dx.doi.org/10.1093/schbul/21.4.527] [PMID: 8749881]
[50]
Yung, A.R.; McGorry, P.D. The initial prodrome in psychosis: Descriptive and qualitative aspects. Aust. N. Z. J. Psychiatry, 1996, 30(5), 587-599.
[http://dx.doi.org/10.3109/00048679609062654] [PMID: 8902166]
[51]
Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; Kahn, R.; Krebs, M.O.; Leboyer, M.; Lewis, D.; Marin, O.; Marin, P.; Meyer-Lindenberg, A.; McGorry, P.; McGuire, P.; Owen, M.J.; Patterson, P.; Sawa, A.; Spedding, M.; Uhlhaas, P.; Vaccarino, F.; Wahlestedt, C.; Weinberger, D. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov., 2016, 15(7), 485-515.
[http://dx.doi.org/10.1038/nrd.2016.28] [PMID: 26939910]
[52]
Psychosis and schizophrenia in adults: prevention and management. In: NICE Clinical Guidelines; National Institute for Health and Care Excellence (NICE): London, 2014.
[53]
Fusar-Poli, P.; Borgwardt, S.; Bechdolf, A.; Addington, J.; Riecher-Rössler, A.; Schultze-Lutter, F.; Keshavan, M.; Wood, S.; Ruhrmann, S.; Seidman, L.J.; Valmaggia, L.; Cannon, T.; Velthorst, E.; De Haan, L.; Cornblatt, B.; Bonoldi, I.; Birchwood, M.; McGlashan, T.; Carpenter, W.; McGorry, P.; Klosterkötter, J.; McGuire, P.; Yung, A. The psychosis high-risk state: A comprehensive state-of-the-art review. JAMA Psychiatry, 2013, 70(1), 107-120.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.269] [PMID: 23165428]
[54]
Perkins, D.O.; Gu, H.; Boteva, K.; Lieberman, J.A. Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: A critical review and meta-analysis. Am. J. Psychiatry, 2005, 162(10), 1785-1804.
[http://dx.doi.org/10.1176/appi.ajp.162.10.1785] [PMID: 16199825]
[55]
Altamura, A.C.; Serati, M.; Buoli, M. Is duration of illness really influencing outcome in major psychoses? Nord. J. Psychiatry, 2015, 69(6), 1685-1699.
[http://dx.doi.org/10.3109/08039488.2014.990919] [PMID: 25768662]
[56]
Penttilä, M.; Jääskeläinen, E.; Hirvonen, N.; Isohanni, M.; Miettunen, J. Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: Sstematic review and meta-analysis. Br. J. Psychiatry, 2014, 205(2), 88-94.
[http://dx.doi.org/10.1192/bjp.bp.113.127753] [PMID: 25252316]
[57]
Boonstra, N.; Klaassen, R.; Sytema, S.; Marshall, M.; De Haan, L.; Wunderink, L.; Wiersma, D. Duration of untreated psychosis and negative symptoms — A systematic review and meta-analysis of individual patient data. Schizophr. Res., 2012, 142(1-3), 12-19.
[http://dx.doi.org/10.1016/j.schres.2012.08.017] [PMID: 23025994]
[58]
Singh, S.P. Outcome measures in early psychosis. Br. J. Psychiatry, 2007, 191(S50), s58-s63.
[http://dx.doi.org/10.1192/bjp.191.50.s58] [PMID: 18019046]
[59]
Cuesta, M.J.; García de Jalón, E.; Campos, M.S.; Ibáñez, B.; Sánchez-Torres, A.M.; Peralta, V. Duration of untreated negative and positive symptoms of psychosis and cognitive impairment in first episode psychosis. Schizophr. Res., 2012, 141(2-3), 222-227.
[http://dx.doi.org/10.1016/j.schres.2012.08.019] [PMID: 22989921]
[60]
Schimmelmann, B.G.; Huber, C.G.; Lambert, M.; Cotton, S.; McGorry, P.D.; Conus, P. Impact of duration of untreated psychosis on pre-treatment, baseline, and outcome characteristics in an epidemiological first-episode psychosis cohort. J. Psychiatr. Res., 2008, 42(12), 982-990.
[http://dx.doi.org/10.1016/j.jpsychires.2007.12.001] [PMID: 18199456]
[61]
Marshall, M.; Lewis, S.; Lockwood, A.; Drake, R.; Jones, P.; Croudace, T. Association between duration of untreated psychosis and outcome in cohorts of first-episode patients: A systematic review. Arch. Gen. Psychiatry, 2005, 62(9), 975-983.
[http://dx.doi.org/10.1001/archpsyc.62.9.975] [PMID: 16143729]
[62]
Oliver, D.; Davies, C.; Crossland, G.; Lim, S.; Gifford, G.; McGuire, P.; Fusar-Poli, P. Can we reduce the duration of untreated psychosis? a systematic review and meta-analysis of controlled interventional studies. Schizophr. Bull., 2018, 44(6), 1362-1372.
[http://dx.doi.org/10.1093/schbul/sbx166] [PMID: 29373755]
[63]
Howes, O.D.; Whitehurst, T.; Shatalina, E.; Townsend, L.; Onwordi, E.C.; Mak, T.L.A.; Arumuham, A.; O’Brien, O.; Lobo, M.; Vano, L.; Zahid, U.; Butler, E.; Osugo, M. The clinical significance of duration of untreated psychosis: An umbrella review and random‐effects meta‐analysis. World Psychiatry, 2021, 20(1), 75-95.
[http://dx.doi.org/10.1002/wps.20822] [PMID: 33432766]
[64]
van Os, J. ‘Salience syndrome’ replaces ‘schizophrenia’ in DSM-V and ICD-11: psychiatry’s evidence-based entry into the 21st century? Acta Psychiatr. Scand., 2009, 120(5), 363-372.
[http://dx.doi.org/10.1111/j.1600-0447.2009.01456.x] [PMID: 19807717]
[65]
van Os, J.; Hanssen, M.; Bijl, R.V.; Ravelli, A. Strauss (1969) revisited: A psychosis continuum in the general population? Schizophr. Res., 2000, 45(1-2), 11-20.
[http://dx.doi.org/10.1016/S0920-9964(99)00224-8] [PMID: 10978868]
[66]
van Os, J.; Linscott, R.J. Introduction: The extended psychosis phenotype-relationship with schizophrenia and with ultrahigh risk status for psychosis. Schizophr. Bull., 2012, 38(2), 227-230.
[http://dx.doi.org/10.1093/schbul/sbr188] [PMID: 22355185]
[67]
Staines, L.; Healy, C.; Coughlan, H.; Clarke, M.; Kelleher, I.; Cotter, D.; Cannon, M. Psychotic experiences in the general population, a review; definition, risk factors, outcomes and interventions. Psychol. Med., 2022, 52(15), 3297-3308.
[http://dx.doi.org/10.1017/S0033291722002550] [PMID: 36004805]
[68]
Fusar-Poli, P.; Raballo, A.; Parnas, J. What is an attenuated psychotic symptom? on the importance of the context. Schizophr. Bull., 2017, 43(4), 687-692.
[PMID: 28039421]
[69]
Linscott, R.J.; van Os, J. An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: On the pathway from proneness to persistence to dimensional expression across mental disorders. Psychol. Med., 2012, 1-17.
[PMID: 22850401]
[70]
McGrath, J.J.; Saha, S.; Al-Hamzawi, A.; Alonso, J.; Bromet, E.J.; Bruffaerts, R.; Caldas-de-Almeida, J.M.; Chiu, W.T.; de Jonge, P.; Fayyad, J.; Florescu, S.; Gureje, O.; Haro, J.M.; Hu, C.; Kovess-Masfety, V.; Lepine, J.P.; Lim, C.C.W.; Mora, M.E.M.; Navarro-Mateu, F.; Ochoa, S.; Sampson, N.; Scott, K.; Viana, M.C.; Kessler, R.C. Psychotic experiences in the general population. JAMA Psychiatry, 2015, 72(7), 697-705.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.0575] [PMID: 26018466]
[71]
Kelleher, I.; Connor, D.; Clarke, M.C.; Devlin, N.; Harley, M.; Cannon, M. Prevalence of psychotic symptoms in childhood and adolescence: A systematic review and meta-analysis of population-based studies. Psychol. Med., 2012, 42(9), 1857-1863.
[http://dx.doi.org/10.1017/S0033291711002960] [PMID: 22225730]
[72]
De Loore, E.; Gunther, N.; Drukker, M.; Feron, F.; Sabbe, B.; Deboutte, D.; van Os, J.; Myin-Germeys, I. Persistence and outcome of auditory hallucinations in adolescence: A longitudinal general population study of 1800 individuals. Schizophr. Res., 2011, 127(1-3), 252-256.
[http://dx.doi.org/10.1016/j.schres.2011.01.015] [PMID: 21315559]
[73]
Dominguez, M.D.G.; Wichers, M.; Lieb, R.; Wittchen, H.U.; van Os, J. Evidence that onset of clinical psychosis is an outcome of progressively more persistent subclinical psychotic experiences: an 8-year cohort study. Schizophr. Bull., 2011, 37(1), 84-93.
[http://dx.doi.org/10.1093/schbul/sbp022] [PMID: 19460881]
[74]
Downs, J.M.; Cullen, A.E.; Barragan, M.; Laurens, K.R. Persisting psychotic-like experiences are associated with both externalising and internalising psychopathology in a longitudinal general population child cohort. Schizophr. Res., 2013, 144(1-3), 99-104.
[http://dx.doi.org/10.1016/j.schres.2012.12.009] [PMID: 23321428]
[75]
Thapar, A.; Heron, J.; Jones, R.B.; Owen, M.J.; Lewis, G.; Zammit, S. Trajectories of change in self-reported psychotic-like experiences in childhood and adolescence. Schizophr. Res., 2012, 140(1-3), 104-109.
[http://dx.doi.org/10.1016/j.schres.2012.06.024] [PMID: 22789670]
[76]
Healy, C.; Brannigan, R.; Dooley, N.; Coughlan, H.; Clarke, M.; Kelleher, I.; Cannon, M. Childhood and adolescent psychotic experiences and risk of mental disorder: A systematic review and meta-analysis. Psychol. Med., 2019, 49(10), 1589-1599.
[http://dx.doi.org/10.1017/S0033291719000485] [PMID: 31088578]
[77]
Yates, K.; Lång, U.; Cederlöf, M.; Boland, F.; Taylor, P.; Cannon, M.; McNicholas, F.; DeVylder, J.; Kelleher, I. Association of psychotic experiences with subsequent risk of suicidal ideation, suicide attempts, and suicide deaths. JAMA Psychiatry, 2019, 76(2), 180-189.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3514] [PMID: 30484818]
[78]
Schultze-Lutter, F.; Renner, F.; Paruch, J.; Julkowski, D.; Klosterkötter, J.; Ruhrmann, S. Self-reported psychotic-like experiences are a poor estimate of clinician-rated attenuated and frank delusions and hallucinations. Psychopathology, 2014, 47(3), 194-201.
[http://dx.doi.org/10.1159/000355554] [PMID: 24192655]
[79]
Varese, F.; Smeets, F.; Drukker, M.; Lieverse, R.; Lataster, T.; Viechtbauer, W.; Read, J.; van Os, J.; Bentall, R.P. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr. Bull., 2012, 38(4), 661-671.
[http://dx.doi.org/10.1093/schbul/sbs050] [PMID: 22461484]
[80]
Radua, J.; Ramella-Cravaro, V.; Ioannidis, J.P.A.; Reichenberg, A.; Phiphopthatsanee, N.; Amir, T.; Yenn Thoo, H.; Oliver, D.; Davies, C.; Morgan, C.; McGuire, P.; Murray, R.M.; Fusar-Poli, P. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry, 2018, 17(1), 49-66.
[http://dx.doi.org/10.1002/wps.20490] [PMID: 29352556]
[81]
Pastore, A.; de Girolamo, G.; Tafuri, S.; Tomasicchio, A.; Margari, F. Traumatic experiences in childhood and adolescence: A meta-analysis of prospective studies assessing risk for psychosis. Eur. Child Adolesc. Psychiatry, 2022, 31(2), 215-228.
[http://dx.doi.org/10.1007/s00787-020-01574-9] [PMID: 32577908]
[82]
Davies, C.; Segre, G.; Estradé, A.; Radua, J.; De Micheli, A.; Provenzani, U.; Oliver, D.; Salazar de Pablo, G.; Ramella-Cravaro, V.; Besozzi, M.; Dazzan, P.; Miele, M.; Caputo, G.; Spallarossa, C.; Crossland, G.; Ilyas, A.; Spada, G.; Politi, P.; Murray, R.M.; McGuire, P.; Fusar-Poli, P. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis. Lancet Psychiatry, 2020, 7(5), 399-410.
[http://dx.doi.org/10.1016/S2215-0366(20)30057-2] [PMID: 32220288]
[83]
Arango, C.; Dragioti, E.; Solmi, M.; Cortese, S.; Domschke, K.; Murray, R.M.; Jones, P.B.; Uher, R.; Carvalho, A.F.; Reichenberg, A.; Shin, J.I.I.; Andreassen, O.A.; Correll, C.U.; Fusar-Poli, P. Risk and protective factors for mental disorders beyond genetics: An evidence‐based atlas. World Psychiatry, 2021, 20(3), 417-436.
[http://dx.doi.org/10.1002/wps.20894] [PMID: 34505386]
[84]
Pignon, B.; Lajnef, M.; Kirkbride, J.B.; Peyre, H.; Ferchiou, A.; Richard, J.R.; Baudin, G.; Tosato, S.; Jongsma, H.; de Haan, L.; Tarricone, I.; Bernardo, M.; Velthorst, E.; Braca, M.; Arango, C.; Arrojo, M.; Bobes, J.; Del-Ben, C.M.; Di Forti, M.; Gayer-Anderson, C.; Jones, P.B.; La Cascia, C.; Lasalvia, A.; Menezes, P.R.; Quattrone, D.; Sanjuán, J.; Selten, J.P.; Tortelli, A.; Llorca, P.M.; van Os, J.; Rutten, B.P.F.; Murray, R.M.; Morgan, C.; Leboyer, M.; Szöke, A.; Schürhoff, F. The independent effects of psychosocial stressors on subclinical psychosis: Findings from the multinational EU-GEI study. Schizophr. Bull., 2021, 47(6), 1674-1684.
[http://dx.doi.org/10.1093/schbul/sbab060] [PMID: 34009318]
[85]
Fusar-Poli, P.; Tantardini, M.; De Simone, S.; Ramella-Cravaro, V.; Oliver, D.; Kingdon, J.; Kotlicka-Antczak, M.; Valmaggia, L.; Lee, J.; Millan, M.J.; Galderisi, S.; Balottin, U.; Ricca, V.; McGuire, P. Deconstructing vulnerability for psychosis: Meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. Eur. Psychiatry, 2017, 40, 65-75.
[http://dx.doi.org/10.1016/j.eurpsy.2016.09.003] [PMID: 27992836]
[86]
Kraan, T.C.; Ising, H.K.; Fokkema, M.; Velthorst, E.; van den Berg, D.P.G.; Kerkhoven, M.; Veling, W.; Smit, F.; Linszen, D.H.; Nieman, D.H.; Wunderink, L.; Boonstra, N.; Klaassen, R.M.C.; Dragt, S.; Rietdijk, J.; de Haan, L.; van der Gaag, M. The effect of childhood adversity on 4-year outcome in individuals at ultra high risk for psychosis in the dutch early detection intervention evaluation (EDIE-NL) trial. Psychiatry Res., 2017, 247, 55-62.
[http://dx.doi.org/10.1016/j.psychres.2016.11.014] [PMID: 27863320]
[87]
Kraan, T.C.; Velthorst, E.; Themmen, M.; Valmaggia, L.; Kempton, M.J.; McGuire, P.; van Os, J.; Rutten, B.P.F.; Smit, F.; de Haan, L.; van der Gaag, M.; Study, E.U.G.E.I.H.R. Child maltreatment and clinical outcome in individuals at ultra-high risk for psychosis in the EU-GEI high risk study. Schizophr. Bull., 2018, 44(3), 584-592.
[http://dx.doi.org/10.1093/schbul/sbw162] [PMID: 28666366]
[88]
Peh, O.H.; Rapisarda, A.; Lee, J. Childhood adversities in people at ultra-high risk (UHR) for psychosis: A systematic review and meta-analysis. Psychol. Med., 2019, 49(7), 1089-1101.
[http://dx.doi.org/10.1017/S003329171800394X] [PMID: 30616701]
[89]
Liu, Y.; Mendonça, M.; Cannon, M.; Jones, P.B.; Lewis, G.; Thompson, A.; Zammit, S.; Wolke, D. Testing the independent and joint contribution of exposure to neurodevelopmental adversity and childhood trauma to risk of psychotic experiences in adulthood. Schizophr. Bull., 2021, 47(3), 776-784.
[http://dx.doi.org/10.1093/schbul/sbaa174] [PMID: 33331643]
[90]
Lataster, J.; Myin-Germeys, I.; Lieb, R.; Wittchen, H.U.; van Os, J. Adversity and psychosis: A 10-year prospective study investigating synergism between early and recent adversity in psychosis. Acta Psychiatr. Scand., 2012, 125(5), 388-399.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01805.x] [PMID: 22128839]
[91]
Brown, G.W.; Birley, J.L.T. Crises and life changes and the onset of schizophrenia. J. Health Soc. Behav., 1968, 9(3), 203-214.
[http://dx.doi.org/10.2307/2948405] [PMID: 5676853]
[92]
Beards, S.; Gayer-Anderson, C.; Borges, S.; Dewey, M.E.; Fisher, H.L.; Morgan, C. Life events and psychosis: A review and meta-analysis. Schizophr. Bull., 2013, 39(4), 740-747.
[http://dx.doi.org/10.1093/schbul/sbt065] [PMID: 23671196]
[93]
Cullen, A.E.; Fisher, H.L.; Roberts, R.E.; Pariante, C.M.; Laurens, K.R. Daily stressors and negative life events in children at elevated risk of developing schizophrenia. Br. J. Psychiatry, 2014, 204(5), 354-360.
[http://dx.doi.org/10.1192/bjp.bp.113.127001] [PMID: 24627296]
[94]
Trotman, H.D.; Holtzman, C.W.; Walker, E.F.; Addington, J.M.; Bearden, C.E.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; Heinssen, R.K.; Mathalon, D.H.; Tsuang, M.T.; Perkins, D.O.; Seidman, L.J.; Woods, S.W.; McGlashan, T.H. Stress exposure and sensitivity in the clinical high-risk syndrome: Initial findings from the North American Prodrome Longitudinal Study (NAPLS). Schizophr. Res., 2014, 160(1-3), 104-109.
[http://dx.doi.org/10.1016/j.schres.2014.09.017] [PMID: 25443665]
[95]
Cullen, A.E.; Addington, J.; Bearden, C.E.; Stone, W.S.; Seidman, L.J.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; Mathalon, D.H.; McGlashan, T.H.; Perkins, D.O.; Tsuang, M.T.; Woods, S.W.; Walker, E.F. Stressor-cortisol concordance among individuals at clinical high-risk for psychosis: Novel findings from the NAPLS cohort. Psychoneuroendocrinology, 2020, 115, 104649.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104649] [PMID: 32197198]
[96]
Cannon, T.D.; Yu, C.; Addington, J.; Bearden, C.E.; Cadenhead, K.S.; Cornblatt, B.A.; Heinssen, R.; Jeffries, C.D.; Mathalon, D.H.; McGlashan, T.H.; Perkins, D.O.; Seidman, L.J.; Tsuang, M.T.; Walker, E.F.; Woods, S.W.; Kattan, M.W. An individualized risk calculator for research in prodromal psychosis. Am. J. Psychiatry, 2016, 173(10), 980-988.
[http://dx.doi.org/10.1176/appi.ajp.2016.15070890] [PMID: 27363508]
[97]
Solhan, M.B.; Trull, T.J.; Jahng, S.; Wood, P.K. Clinical assessment of affective instability: Comparing EMA indices, questionnaire reports, and retrospective recall. Psychol. Assess., 2009, 21(3), 425-436.
[http://dx.doi.org/10.1037/a0016869] [PMID: 19719353]
[98]
Larson, R.; Csikszentmihalyi, M. The experience sampling method. In: Flow and the Foundations of Positive Psychology; Springer: Dordrecht, 2014.
[http://dx.doi.org/10.1007/978-94-017-9088-8_2]
[99]
Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological momentary assessment. Annu. Rev. Clin. Psychol., 2008, 4(1), 1-32.
[http://dx.doi.org/10.1146/annurev.clinpsy.3.022806.091415] [PMID: 18509902]
[100]
Wright, A.C.; Browne, J.; Skiest, H.; Bhiku, K.; Baker, J.T.; Cather, C. The relationship between conventional clinical assessments and momentary assessments of symptoms and functioning in schizophrenia spectrum disorders: A systematic review. Schizophr. Res., 2021, 232, 11-27.
[http://dx.doi.org/10.1016/j.schres.2021.04.010] [PMID: 34004382]
[101]
Bell, I.H.; Lim, M.H.; Rossell, S.L.; Thomas, N. Ecological momentary assessment and intervention in the treatment of psychotic disorders: A systematic review. Psychiatr. Serv., 2017, 68(11), 1172-1181.
[http://dx.doi.org/10.1176/appi.ps.201600523] [PMID: 28669284]
[102]
Myin-Germeys, I.; van Os, J.; Schwartz, J.E.; Stone, A.A.; Delespaul, P.A. Emotional reactivity to daily life stress in psychosis. Arch. Gen. Psychiatry, 2001, 58(12), 1137-1144.
[http://dx.doi.org/10.1001/archpsyc.58.12.1137] [PMID: 11735842]
[103]
Myin-Germeys, I.; Delespaul, P.H.; Van Os, J. Behavioural sensitization to daily life stress in psychosis. Psychol. Med., 2005, 35(5), 733-741.
[http://dx.doi.org/10.1017/S0033291704004179] [PMID: 15918350]
[104]
Palmier-Claus, J.E.; Dunn, G.; Lewis, S.W. Emotional and symptomatic reactivity to stress in individuals at ultra-high risk of developing psychosis. Psychol. Med., 2012, 42(5), 1003-1012.
[http://dx.doi.org/10.1017/S0033291711001929] [PMID: 22067414]
[105]
Paetzold, I.; Myin-Germeys, I.; Schick, A.; Nelson, B.; Velthorst, E.; Schirmbeck, F.; van Os, J.; Morgan, C.; Hartmann, J.; van der Gaag, M.; de Haan, L.; Valmaggia, L.; McGuire, P.; Kempton, M.; Reininghaus, U. Stress reactivity as a putative mechanism linking childhood trauma with clinical outcomes in individuals at ultra-high-risk for psychosis: Findings from the EU-GEI High Risk Study. Epidemiol. Psychiatr. Sci., 2021, 30, e40.
[http://dx.doi.org/10.1017/S2045796021000251] [PMID: 34044905]
[106]
Collip, D.; Wigman, J.T.W.; Myin-Germeys, I.; Jacobs, N.; Derom, C.; Thiery, E.; Wichers, M.; van Os, J. From epidemiology to daily life: linking daily life stress reactivity to persistence of psychotic experiences in a longitudinal general population study. PLoS One, 2013, 8(4), e62688.
[http://dx.doi.org/10.1371/journal.pone.0062688] [PMID: 23626848]
[107]
Anglin, D.M.; Ereshefsky, S.; Klaunig, M.J.; Bridgwater, M.A.; Niendam, T.A.; Ellman, L.M.; DeVylder, J.; Thayer, G.; Bolden, K.; Musket, C.W.; Grattan, R.E.; Lincoln, S.H.; Schiffman, J.; Lipner, E.; Bachman, P.; Corcoran, C.M.; Mota, N.B.; van der Ven, E. From womb to neighborhood: A racial analysis of social determinants of psychosis in the United States. Am. J. Psychiatry, 2021, 178(7), 599-610.
[http://dx.doi.org/10.1176/appi.ajp.2020.20071091] [PMID: 33934608]
[108]
Betancourt, T.S.; Newnham, E.A.; Birman, D.; Lee, R.; Ellis, B.H.; Layne, C.M. Comparing trauma exposure, mental health needs, and service utilization across clinical samples of refugee, immigrant, and u.s.-origin children. J. Trauma. Stress, 2017, 30(3), 209-218.
[http://dx.doi.org/10.1002/jts.22186] [PMID: 28585740]
[109]
Eisenman, D.P.; Gelberg, L.; Liu, H.; Shapiro, M.F. Mental health and health-related quality of life among adult Latino primary care patients living in the United States with previous exposure to political violence. JAMA, 2003, 290(5), 627-634.
[http://dx.doi.org/10.1001/jama.290.5.627] [PMID: 12902366]
[110]
Cleary, S.D.; Snead, R.; Dietz-Chavez, D.; Rivera, I.; Edberg, M.C. Immigrant trauma and mental health outcomes among latino youth. J. Immigr. Minor. Health, 2018, 20(5), 1053-1059.
[http://dx.doi.org/10.1007/s10903-017-0673-6] [PMID: 29139024]
[111]
Lopez, D.; Altamirano, O.; Weisman de Mamani, A. The association between perceived racial discrimination and subclinical symptoms of psychosis. J. Ment. Health, 2022, 31(1), 14-21.
[http://dx.doi.org/10.1080/09638237.2020.1793120] [PMID: 32662709]
[112]
Fusar-Poli, P.; Rutigliano, G.; Stahl, D.; Schmidt, A.; Ramella-Cravaro, V.; Hitesh, S.; McGuire, P. Deconstructing pretest risk enrichment to optimize prediction of psychosis in individuals at clinical high risk. JAMA Psychiatry, 2016, 73(12), 1260-1267.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.2707] [PMID: 27784037]
[113]
Oliver, D.; Reilly, T.J.; Baccaredda Boy, O.; Petros, N.; Davies, C.; Borgwardt, S.; McGuire, P.; Fusar-Poli, P. What causes the onset of psychosis in individuals at clinical high risk? a meta-analysis of risk and protective factors. Schizophr. Bull., 2022, 46(1), 110-120.
[PMID: 31219164]
[114]
Thompson, J.L.; Kelly, M.; Kimhy, D.; Harkavy-Friedman, J.M.; Khan, S.; Messinger, J.W.; Schobel, S.; Goetz, R.; Malaspina, D.; Corcoran, C. Childhood trauma and prodromal symptoms among individuals at clinical high risk for psychosis. Schizophr. Res., 2009, 108(1-3), 176-181.
[http://dx.doi.org/10.1016/j.schres.2008.12.005] [PMID: 19174322]
[115]
Geros, H.; Sizer, H.; Mifsud, N.; Reynolds, S.; Kim, D.J.; Eaton, S.; McGorry, P.; Nelson, B.; O’Donoghue, B. Migrant status and identification as ultra‐high risk for psychosis and transitioning to a psychotic disorder. Acta Psychiatr. Scand., 2020, 141(1), 52-59.
[http://dx.doi.org/10.1111/acps.13099] [PMID: 31520527]
[116]
Moore, D.; Castagnini, E.; Mifsud, N.; Geros, H.; Sizer, H.; Addington, J.; van der Gaag, M.; Nelson, B.; McGorry, P.; O’Donoghue, B. The associations between migrant status and ethnicity and the identification of individuals at ultra-high risk for psychosis and transition to psychosis: A systematic review. Soc. Psychiatry Psychiatr. Epidemiol., 2021, 56(11), 1923-1941.
[http://dx.doi.org/10.1007/s00127-021-02047-3] [PMID: 33641006]
[117]
Nerhus, M.; Berg, A.O.; Haram, M.; Kvitland, L.R.; Andreassen, O.A.; Melle, I. Migrant background and ethnic minority status as predictors for duration of untreated psychosis. Early Interv. Psychiatry, 2015, 9(1), 61-65.
[http://dx.doi.org/10.1111/eip.12106] [PMID: 24225002]
[118]
Boonstra, N.; Sterk, B.; Wunderink, L.; Sytema, S.; De Haan, L.; Wiersma, D. Association of treatment delay, migration and urbanicity in psychosis. Eur. Psychiatry, 2012, 27(7), 500-505.
[http://dx.doi.org/10.1016/j.eurpsy.2011.05.001] [PMID: 21705200]
[119]
Lindert, J.; Schouler-Ocak, M.; Heinz, A.; Priebe, S. Mental health, health care utilisation of migrants in Europe. Eur. Psychiatry, 2008, 23(S1), s114-s20.
[http://dx.doi.org/10.1016/S0924-9338(08)70057-9] [PMID: 18371575]
[120]
Jensen, N.K.; Norredam, M.; Priebe, S.; Krasnik, A. How do general practitioners experience providing care to refugees with mental health problems? A qualitative study from Denmark. BMC Fam. Pract., 2013, 14(1), 17.
[http://dx.doi.org/10.1186/1471-2296-14-17] [PMID: 23356401]
[121]
Vargas, T.; Damme, K.S.F.; Osborne, K.J.; Mittal, V.A. Differentiating kinds of systemic stressors with relation to psychotic-like experiences in late childhood and early adolescence: the stimulation, discrepancy, and deprivation model of psychosis. Clin. Psychol. Sci., 2022, 10(2), 291-309.
[http://dx.doi.org/10.1177/21677026211016415] [PMID: 35402089]
[122]
Robinson, T.; Ali, M.U.; Easterbrook, B.; Hall, W.; Jutras-Aswad, D.; Fischer, B. Risk-thresholds for the association between frequency of cannabis use and the development of psychosis: A systematic review and meta-analysis. Psychol. Med., 2022, 1-11.
[http://dx.doi.org/10.1017/S0033291722000502] [PMID: 35321777]
[123]
Orsolini, L.; Chiappini, S.; Papanti, D.; De Berardis, D.; Corkery, J.M.; Schifano, F. The bridge between classical and “synthetic”/chemical psychoses: Towards a clinical, psychopathological, and therapeutic perspective. Front. Psychiatry, 2019, 10, 851.
[http://dx.doi.org/10.3389/fpsyt.2019.00851] [PMID: 31849723]
[124]
Hjorthøj, C.; Larsen, M.O.; Starzer, M.S.K.; Nordentoft, M. Annual incidence of cannabis-induced psychosis, other substance-induced psychoses and dually diagnosed schizophrenia and cannabis use disorder in Denmark from 1994 to 2016. Psychol. Med., 2021, 51(4), 617-622.
[http://dx.doi.org/10.1017/S0033291719003532] [PMID: 31839011]
[125]
Rognli, E.B.; Taipale, H.; Hjorthøj, C.; Mittendorfer-Rutz, E.; Bramness, J.G.; Heiberg, I.H.; Niemelä, S. Annual incidence of substance-induced psychoses in Scandinavia from 2000 to 2016. Psychol. Med., 2022, 1-10.
[http://dx.doi.org/10.1017/S003329172200229X] [PMID: 35983644]
[126]
De Berardis, D.; De Filippis, S.; Masi, G.; Vicari, S.; Zuddas, A. A neurodevelopment approach for a transitional model of early onset schizophrenia. Brain Sci., 2021, 11(2), 275.
[http://dx.doi.org/10.3390/brainsci11020275] [PMID: 33672396]
[127]
van der Steur, S.J.; Batalla, A.; Bossong, M.G. Factors moderating the association between cannabis use and psychosis risk: A systematic review. Brain Sci., 2020, 10(2), 97.
[http://dx.doi.org/10.3390/brainsci10020097] [PMID: 32059350]
[128]
Barzilay, R.; Pries, L.K.; Moore, T.M.; Gur, R.E.; van Os, J.; Rutten, B.P.F.; Guloksuz, S. Exposome and trans-syndromal developmental trajectories toward psychosis. Biol. Psychiatry Global Open Sci., 2022, 2(3), 197-205.
[http://dx.doi.org/10.1016/j.bpsgos.2022.05.001] [PMID: 36325037]
[129]
Cougnard, A.; Marcelis, M.; Myin-Germeys, I.; De Graaf, R.; Vollebergh, W.; Krabbendam, L.; Lieb, R.; Wittchen, H.U.; Henquet, C.; Spauwen, J.; Van Os, J. Does normal developmental expression of psychosis combine with environmental risk to cause persistence of psychosis? A psychosis proneness–persistence model. Psychol. Med., 2007, 37(4), 513-527.
[http://dx.doi.org/10.1017/S0033291706009731] [PMID: 17288646]
[130]
Carlyle, M.; Constable, T.; Walter, Z.C.; Wilson, J.; Newland, G.; Hides, L. Cannabis-induced dysphoria/paranoia mediates the link between childhood trauma and psychotic-like experiences in young cannabis users. Schizophr. Res., 2021, 238, 178-184.
[http://dx.doi.org/10.1016/j.schres.2021.10.011] [PMID: 34717186]
[131]
Harley, M.; Kelleher, I.; Clarke, M.; Lynch, F.; Arseneault, L.; Connor, D.; Fitzpatrick, C.; Cannon, M. Cannabis use and childhood trauma interact additively to increase the risk of psychotic symptoms in adolescence. Psychol. Med., 2010, 40(10), 1627-1634.
[http://dx.doi.org/10.1017/S0033291709991966] [PMID: 19995476]
[132]
Day, F.; Pariante, C.M. Stress and cortisol in the pre-psychotic phases.Vulnerability to psychosis: from neurosciences to psychopathology Fusar-Poli, P.; Borgwardt, S.; McGuire, P., Eds.; Psychology Press: Hove, East Sussex ; , 2012.
[133]
Krugers, H.J.; Karst, H.; Joels, M. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance. Front. Cell. Neurosci., 2012, 6, 15.
[http://dx.doi.org/10.3389/fncel.2012.00015] [PMID: 22509154]
[134]
Laryea, G.; Schütz, G.; Muglia, L.J. Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol. Endocrinol., 2013, 27(10), 1655-1665.
[http://dx.doi.org/10.1210/me.2013-1187] [PMID: 23979842]
[135]
Pariante, C.M. Pituitary volume in psychosis: the first review of the evidence. J. Psychopharmacol., 2008, 22(S2), 76-81.
[http://dx.doi.org/10.1177/0269881107084020] [PMID: 18709702]
[136]
Zipursky, A.R.; Whittle, S.; Yücel, M.; Lorenzetti, V.; Wood, S.J.; Lubman, D.I.; Simmons, J.G.; Allen, N.B. Pituitary volume prospectively predicts internalizing symptoms in adolescence. J. Child Psychol. Psychiatry, 2011, 52(3), 315-323.
[http://dx.doi.org/10.1111/j.1469-7610.2010.02337.x] [PMID: 21073460]
[137]
Girshkin, L.; Matheson, S.L.; Shepherd, A.M.; Green, M.J. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology, 2014, 49, 187-206.
[http://dx.doi.org/10.1016/j.psyneuen.2014.07.013] [PMID: 25108162]
[138]
Misiak, B.; Pruessner, M.; Samochowiec, J.; Wiśniewski, M.; Reginia, A.; Stańczykiewicz, B. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front. Neuroendocrinol., 2021, 62, 100930.
[http://dx.doi.org/10.1016/j.yfrne.2021.100930] [PMID: 34171354]
[139]
Hubbard, D.B.; Miller, B.J. Meta-analysis of blood cortisol levels in individuals with first-episode psychosis. Psychoneuroendocrinology, 2019, 104, 269-275.
[http://dx.doi.org/10.1016/j.psyneuen.2019.03.014] [PMID: 30909008]
[140]
Ciufolini, S.; Dazzan, P.; Kempton, M.J.; Pariante, C.; Mondelli, V. HPA axis response to social stress is attenuated in schizophrenia but normal in depression: Evidence from a meta-analysis of existing studies. Neurosci. Biobehav. Rev., 2014, 47, 359-368.
[http://dx.doi.org/10.1016/j.neubiorev.2014.09.004] [PMID: 25246294]
[141]
Zorn, J.V.; Schür, R.R.; Boks, M.P.; Kahn, R.S.; Joëls, M.; Vinkers, C.H. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology, 2017, 77, 25-36.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.036] [PMID: 28012291]
[142]
Berger, M.; Kraeuter, A.K.; Romanik, D.; Malouf, P.; Amminger, G.P.; Sarnyai, Z. Cortisol awakening response in patients with psychosis: Systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2016, 68, 157-166.
[http://dx.doi.org/10.1016/j.neubiorev.2016.05.027] [PMID: 27229759]
[143]
Dauvermann, M.R.; Donohoe, G. Cortisol stress response in psychosis from the high-risk to the chronic stage: A systematic review. Ir. J. Psychol. Med., 2019, 36(4), 305-315.
[http://dx.doi.org/10.1017/ipm.2019.27] [PMID: 31317845]
[144]
Andrade, E.H.; Rizzo, L.B.; Noto, C.; Ota, V.K.; Gadelha, A.; Daruy-Filho, L.; Tasso, B.C.; Mansur, R.B.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Grassi-Oliveira, R.; Brietzke, E. Hair cortisol in drug-naïve first-episode individuals with psychosis. Rev. Bras. Psiquiatr., 2016, 38(1), 11-16.
[http://dx.doi.org/10.1590/1516-4446-2014-1634] [PMID: 26814837]
[145]
van den Heuvel, L.L.; Smit, A.M.; Stalder, T.; Kirschbaum, C.; Seedat, S.; Emsley, R. Hair cortisol levels in schizophrenia and metabolic syndrome. Early Interv. Psychiatry, 2022, 16(8), 902-911.
[http://dx.doi.org/10.1111/eip.13238] [PMID: 34978366]
[146]
Chaumette, B.; Kebir, O.; Mam-Lam-Fook, C.; Morvan, Y.; Bourgin, J.; Godsil, B.P.; Plaze, M.; Gaillard, R.; Jay, T.M.; Krebs, M.O. Salivary cortisol in early psychosis: New findings and meta-analysis. Psychoneuroendocrinology, 2016, 63, 262-270.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.007] [PMID: 26520686]
[147]
Pruessner, M.; Béchard-Evans, L.; Boekestyn, L.; Iyer, S.N.; Pruessner, J.C.; Malla, A.K. Attenuated cortisol response to acute psychosocial stress in individuals at ultra-high risk for psychosis. Schizophr. Res., 2013, 146(1-3), 79-86.
[http://dx.doi.org/10.1016/j.schres.2013.02.019] [PMID: 23510595]
[148]
Walter, E.E.; Fernandez, F.; Snelling, M.; Barkus, E. Stress induced cortisol release and schizotypy. Psychoneuroendocrinology, 2018, 89, 209-215.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.012] [PMID: 29414034]
[149]
van Leeuwen, J.M.C.; Vink, M.; Fernández, G.; Hermans, E.J.; Joëls, M.; Kahn, R.S.; Vinkers, C.H. At-risk individuals display altered brain activity following stress. Neuropsychopharmacology, 2018, 43(9), 1954-1960.
[http://dx.doi.org/10.1038/s41386-018-0026-8] [PMID: 29483659]
[150]
Heinze, K.; Lin, A.; Reniers, R.L.E.P.; Wood, S.J. Longer-term increased cortisol levels in young people with mental health problems. Psychiatry Res., 2016, 236, 98-104.
[http://dx.doi.org/10.1016/j.psychres.2015.12.025] [PMID: 26749569]
[151]
Söder, E.; Clamor, A.; Lincoln, T.M. Hair cortisol concentrations as an indicator of potential HPA axis hyperactivation in risk for psychosis. Schizophr. Res., 2019, 212, 54-61.
[http://dx.doi.org/10.1016/j.schres.2019.08.012] [PMID: 31455519]
[152]
Worthington, M.A.; Walker, E.F.; Addington, J.; Bearden, C.E.; Cadenhead, K.S.; Cornblatt, B.A.; Mathalon, D.H.; McGlashan, T.H.; Perkins, D.O.; Seidman, L.J.; Tsuang, M.T.; Woods, S.W.; Cannon, T.D. Incorporating cortisol into the NAPLS2 individualized risk calculator for prediction of psychosis. Schizophr. Res., 2021, 227, 95-100.
[http://dx.doi.org/10.1016/j.schres.2020.09.022] [PMID: 33046334]
[153]
Cullen, A.E.; Fisher, H.L.; Gullet, N.; Fraser, E.R.; Roberts, R.E.; Zahid, U.; To, M.; Yap, N.H.; Zunszain, P.A.; Pariante, C.M.; Wood, S.J.; McGuire, P.; Murray, R.M.; Mondelli, V.; Laurens, K.R. Cortisol levels in childhood associated with emergence of attenuated psychotic symptoms in early adulthood. Biol. Psychiatry, 2022, 91(2), 226-235.
[http://dx.doi.org/10.1016/j.biopsych.2021.08.009] [PMID: 34715990]
[154]
Nordholm, D.; Krogh, J.; Mondelli, V.; Dazzan, P.; Pariante, C.; Nordentoft, M. Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: A systematic review and meta-analysis. Psychoneuroendocrinology, 2013, 38(11), 2394-2404.
[http://dx.doi.org/10.1016/j.psyneuen.2013.06.030] [PMID: 23890984]
[155]
Saunders, T.S.; Mondelli, V.; Cullen, A.E. Pituitary volume in individuals at elevated risk for psychosis: A systematic review and meta-analysis. Schizophr. Res., 2019, 213, 23-31.
[http://dx.doi.org/10.1016/j.schres.2018.12.026] [PMID: 30600112]
[156]
Garner, B.; Pariante, C.M.; Wood, S.J.; Velakoulis, D.; Phillips, L.; Soulsby, B.; Brewer, W.J.; Smith, D.J.; Dazzan, P.; Berger, G.E.; Yung, A.R.; van den Buuse, M.; Murray, R.; McGorry, P.D.; Pantelis, C. Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biol. Psychiatry, 2005, 58(5), 417-423.
[http://dx.doi.org/10.1016/j.biopsych.2005.04.018] [PMID: 16026767]
[157]
Cullen, A.E.; Rai, S.; Vaghani, M.S.; Mondelli, V.; McGuire, P. Cortisol responses to naturally occurring psychosocial stressors across the psychosis spectrum: A systematic review and meta-analysis. Front. Psychiatry, 2020, 11(11), 513.
[http://dx.doi.org/10.3389/fpsyt.2020.00513] [PMID: 32595532]
[158]
Collip, D.; Nicolson, N.A.; Lardinois, M.; Lataster, T.; van Os, J.; Myin-Germeys, I. Daily cortisol, stress reactivity and psychotic experiences in individuals at above average genetic risk for psychosis. Psychol. Med., 2011, 41(11), 2305-2315.
[http://dx.doi.org/10.1017/S0033291711000602] [PMID: 21733219]
[159]
Vaessen, T.; Kasanova, Z.; Hernaus, D.; Lataster, J.; Collip, D.; van Nierop, M.; Myin-Germeys, I. Overall cortisol, diurnal slope, and stress reactivity in psychosis: An experience sampling approach. Psychoneuroendocrinology, 2018, 96, 61-68.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.007] [PMID: 29906787]
[160]
Leboyer, M.; Oliveira, J.; Tamouza, R.; Groc, L. Is it time for immunopsychiatry in psychotic disorders? Psychopharmacology, 2016, 233(9), 1651-1660.
[http://dx.doi.org/10.1007/s00213-016-4266-1] [PMID: 26988846]
[161]
Zefferino, R.; Di Gioia, S.; Conese, M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav., 2021, 11(2), e01960.
[http://dx.doi.org/10.1002/brb3.1960] [PMID: 33295155]
[162]
Mondelli, V. From stress to psychosis: Whom, how, when and why? Epidemiol. Psychiatr. Sci., 2014, 23(3), 215-218.
[http://dx.doi.org/10.1017/S204579601400033X] [PMID: 24905592]
[163]
Orsolini, L.; Sarchione, F.; Vellante, F.; Fornaro, M.; Matarazzo, I.; Martinotti, G.; Valchera, A.; Di Nicola, M.; Carano, A.; Di Giannantonio, M.; Perna, G.; Olivieri, L.; De Berardis, D. Protein-C reactive as biomarker predictor of schizophrenia phases of illness? a systematic review. Curr. Neuropharmacol., 2018, 16(5), 583-606.
[http://dx.doi.org/10.2174/1570159X16666180119144538] [PMID: 29357805]
[164]
Heurich, M.; Föcking, M.; Mongan, D.; Cagney, G.; Cotter, D.R. Dysregulation of complement and coagulation pathways: Emerging mechanisms in the development of psychosis. Mol. Psychiatry, 2022, 27(1), 127-140.
[http://dx.doi.org/10.1038/s41380-021-01197-9] [PMID: 34226666]
[165]
Al-Diwani, A.A.J.; Pollak, T.A.; Irani, S.R.; Lennox, B.R. Psychosis: An autoimmune disease? Immunology, 2017, 152(3), 388-401.
[http://dx.doi.org/10.1111/imm.12795] [PMID: 28704576]
[166]
Choudhury, Z.; Lennox, B. Maternal immune activation and schizophrenia–evidence for an immune priming disorder. Front. Psychiatry, 2021, 12, 585742.
[http://dx.doi.org/10.3389/fpsyt.2021.585742] [PMID: 33679468]
[167]
Carlsson, E.; Frostell, A.; Ludvigsson, J.; Faresjö, M. Psychological stress in children may alter the immune response. J. Immunol., 2014, 192(5), 2071-2081.
[http://dx.doi.org/10.4049/jimmunol.1301713] [PMID: 24501202]
[168]
Khandaker, G.M.; Pearson, R.M.; Zammit, S.; Lewis, G.; Jones, P.B. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: A population-based longitudinal study. JAMA Psychiatry, 2014, 71(10), 1121-1128.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1332] [PMID: 25133871]
[169]
Föcking, M.; Sabherwal, S.; Cates, H.M.; Scaife, C.; Dicker, P.; Hryniewiecka, M.; Wynne, K.; Rutten, B.P.F.; Lewis, G.; Cannon, M.; Nestler, E.J.; Heurich, M.; Cagney, G.; Zammit, S.; Cotter, D.R. Complement pathway changes at age 12 are associated with psychotic experiences at age 18 in a longitudinal population-based study: Evidence for a role of stress. Mol. Psychiatry, 2021, 26(2), 524-533.
[http://dx.doi.org/10.1038/s41380-018-0306-z] [PMID: 30635638]
[170]
Pillinger, T.; Osimo, E.F.; Brugger, S.; Mondelli, V.; McCutcheon, R.A.; Howes, O.D. A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr. Bull., 2019, 45(5), 1120-1133.
[http://dx.doi.org/10.1093/schbul/sby160] [PMID: 30407606]
[171]
Miller, B.J.; Gassama, B.; Sebastian, D.; Buckley, P.; Mellor, A. Meta-analysis of lymphocytes in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry, 2013, 73(10), 993-999.
[http://dx.doi.org/10.1016/j.biopsych.2012.09.007] [PMID: 23062357]
[172]
Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry, 2011, 70(7), 663-671.
[http://dx.doi.org/10.1016/j.biopsych.2011.04.013] [PMID: 21641581]
[173]
Mondelli, V.; Ciufolini, S.; Belvederi Murri, M.; Bonaccorso, S.; Di Forti, M.; Giordano, A.; Marques, T.R.; Zunszain, P.A.; Morgan, C.; Murray, R.M.; Pariante, C.M.; Dazzan, P. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr. Bull., 2015, 41(5), 1162-1170.
[http://dx.doi.org/10.1093/schbul/sbv028] [PMID: 25829375]
[174]
Steiner, J.; Jacobs, R.; Panteli, B.; Brauner, M.; Schiltz, K.; Bahn, S.; Herberth, M.; Westphal, S.; Gos, T.; Walter, M.; Bernstein, H.G.; Myint, A.M.; Bogerts, B. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci., 2010, 260(7), 509-518.
[http://dx.doi.org/10.1007/s00406-010-0098-x] [PMID: 20107825]
[175]
Di Nicola, M.; Cattaneo, A.; Hepgul, N.; Di Forti, M.; Aitchison, K.J.; Janiri, L.; Murray, R.M.; Dazzan, P.; Pariante, C.M.; Mondelli, V. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav. Immun., 2013, 31, 90-95.
[http://dx.doi.org/10.1016/j.bbi.2012.06.010] [PMID: 22749891]
[176]
Corsi-Zuelli, F.; Loureiro, C.M.; Shuhama, R.; Fachim, H.A.; Menezes, P.R.; Louzada-Junior, P.; Mondelli, V.; Del-Ben, C.M. Cytokine profile in first-episode psychosis, unaffected siblings and community-based controls: The effects of familial liability and childhood maltreatment. Psychol. Med., 2020, 50(7), 1139-1147.
[http://dx.doi.org/10.1017/S0033291719001016] [PMID: 31064423]
[177]
Misiak, B.; Bartoli, F.; Carrà, G.; Stańczykiewicz, B.; Gładka, A.; Frydecka, D.; Samochowiec, J.; Jarosz, K.; Hadryś, T.; Miller, B.J. Immune-inflammatory markers and psychosis risk: A systematic review and meta-analysis. Psychoneuroendocrinology, 2021, 127, 105200.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105200] [PMID: 33740587]
[178]
Perkins, D.O.; Jeffries, C.D.; Addington, J.; Bearden, C.E.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; Mathalon, D.H.; McGlashan, T.H.; Seidman, L.J.; Tsuang, M.T.; Walker, E.F.; Woods, S.W.; Heinssen, R. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: Preliminary results from the NAPLS project. Schizophr. Bull., 2015, 41(2), 419-428.
[http://dx.doi.org/10.1093/schbul/sbu099] [PMID: 25103207]
[179]
Mongan, D.; Focking, M.; Healy, C.; Susai, S.R.; Heurich, M.; Wynne, K.; Nelson, B.; McGorry, P.D.; Amminger, G.P.; Nordentoft, M.; Krebs, M.O.; Riecher-Rossler, A.; Bressan, R.A.; Barrantes-Vidal, N.; Borgwardt, S.; Ruhrmann, S.; Sachs, G.; Pantelis, C.; van der Gaag, M.; de Haan, L.; Valmaggia, L.; Pollak, T.A.; Kempton, M.J.; Rutten, B.P.F.; Whelan, R.; Cannon, M.; Zammit, S.; Cagney, G.; Cotter, D.R.; McGuire, P. European network of national schizophrenia networks studying gene-environment interactions high risk study, g. development of proteomic prediction models for transition to psychotic disorder in the clinical high-risk state and psychotic experiences in adolescence. JAMA Psychiatry, 2021, 78(1), 77-90.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.2459] [PMID: 32857162]
[180]
Pollak, T.A.; Kempton, M.J.; Iyegbe, C.; Vincent, A.; Irani, S.R.; Coutinho, E.; Menassa, D.A.; Jacobson, L.; de Haan, L.; Ruhrmann, S.; Sachs, G.; Riecher-Rössler, A.; Krebs, M.O.; Amminger, P.; Glenthøj, B.; Barrantes-Vidal, N.; van Os, J.; Rutten, B.P.F.; Bressan, R.A.; van der Gaag, M.; Yolken, R.; Hotopf, M.; Valmaggia, L.; Stone, J.; David, A.S.; Calem, M.; Tognin, S.; Modinos, G.; de Haan, L.; van der Gaag, M.; Velthorst, E.; Kraan, T.C.; van Dam, D.S.; Burger, N.; Nelson, B.; McGorry, P.; Pantelis, C.; Politis, A.; Goodall, J.; Borgwardt, S.; Ittig, S.; Studerus, E.; Smieskova, R.; Gadelha, A.; Brietzke, E.; Asevedo, G.; Asevedo, E.; Zugman, A.; Rosa, A.; Racioppi, A.; Monsonet, M.; Hinojosa-Marqués, L.; Kwapil, T.R.; Kazes, M.; Daban, C.; Bourgin, J.; Gay, O.; Mam-Lam-Fook, C.; Nordholm, D.; Randers, L.; Krakauer, K.; Glenthøj, L.; Nordentoft, M.; Gebhard, D.; Arnhold, J.; Klosterkötter, J.; Lasser, I.; Winklbaur, B.; Delespaul, P.A.; van Os, J.; McGuire, P. Clinical, cognitive and neuroanatomical associations of serum NMDAR autoantibodies in people at clinical high risk for psychosis. Mol. Psychiatry, 2021, 26(6), 2590-2604.
[http://dx.doi.org/10.1038/s41380-020-00899-w] [PMID: 33077853]
[181]
Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8(4), 383-395.
[http://dx.doi.org/10.31887/DCNS.2006.8.4/ssmith] [PMID: 17290797]
[182]
McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23.
[http://dx.doi.org/10.1038/npp.2015.171] [PMID: 26076834]
[183]
Lupien, S.J.; Juster, R.P.; Raymond, C.; Marin, M.F. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front. Neuroendocrinol., 2018, 49, 91-105.
[http://dx.doi.org/10.1016/j.yfrne.2018.02.001] [PMID: 29421159]
[184]
Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445.
[http://dx.doi.org/10.1038/nrn2639] [PMID: 19401723]
[185]
Filiano, A.J.; Xu, Y.; Tustison, N.J.; Marsh, R.L.; Baker, W.; Smirnov, I.; Overall, C.C.; Gadani, S.P.; Turner, S.D.; Weng, Z.; Peerzade, S.N.; Chen, H.; Lee, K.S.; Scott, M.M.; Beenhakker, M.P.; Litvak, V.; Kipnis, J. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature, 2016, 535(7612), 425-429.
[http://dx.doi.org/10.1038/nature18626] [PMID: 27409813]
[186]
Howes, O.D.; McCutcheon, R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: A reconceptualization. Transl. Psychiatry, 2017, 7(2), e1024.
[http://dx.doi.org/10.1038/tp.2016.278] [PMID: 28170004]
[187]
Reynolds, R.M.; Labad, J.; Buss, C.; Ghaemmaghami, P.; Räikkönen, K. Transmitting biological effects of stress in utero: Implications for mother and offspring. Psychoneuroendocrinology, 2013, 38(9), 1843-1849.
[http://dx.doi.org/10.1016/j.psyneuen.2013.05.018] [PMID: 23810315]
[188]
Humphreys, K.L.; Camacho, M.C.; Roth, M.C.; Estes, E.C. Prenatal stress exposure and multimodal assessment of amygdala–medial prefrontal cortex connectivity in infants. Dev. Cogn. Neurosci., 2020, 46, 100877.
[http://dx.doi.org/10.1016/j.dcn.2020.100877] [PMID: 33220629]
[189]
Sandman, C.A.; Curran, M.M.; Davis, E.P.; Glynn, L.M.; Head, K.; Baram, T.Z. Cortical thinning and neuropsychiatric outcomes in children exposed to prenatal adversity: A role for placental CRH? Am. J. Psychiatry, 2018, 175(5), 471-479.
[http://dx.doi.org/10.1176/appi.ajp.2017.16121433] [PMID: 29495899]
[190]
Paquola, C.; Bennett, M.R.; Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neurosci. Biobehav. Rev., 2016, 69, 299-312.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.011] [PMID: 27531235]
[191]
Heany, S.J.; Groenewold, N.A.; Uhlmann, A.; Dalvie, S.; Stein, D.J.; Brooks, S.J. The neural correlates of Childhood Trauma Questionnaire scores in adults: A meta-analysis and review of functional magnetic resonance imaging studies. Dev. Psychopathol., 2018, 30(4), 1475-1485.
[http://dx.doi.org/10.1017/S0954579417001717]] [PMID: 29224580]
[192]
Herringa, R.J.; Birn, R.M.; Ruttle, P.L.; Burghy, C.A.; Stodola, D.E.; Davidson, R.J.; Essex, M.J. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc. Natl. Acad. Sci., 2013, 110(47), 19119-19124.
[http://dx.doi.org/10.1073/pnas.1310766110] [PMID: 24191026]
[193]
Rapado-Castro, M.; Whittle, S.; Pantelis, C.; Thompson, A.; Nelson, B.; Ganella, E.P.; Lin, A.; Reniers, R.L.E.P.; McGorry, P.D.; Yung, A.R.; Wood, S.J.; Bartholomeusz, C.F. Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk? Schizophr. Res., 2020, 224, 116-125.
[http://dx.doi.org/10.1016/j.schres.2020.09.017] [PMID: 33071072]
[194]
LoPilato, A.M.; Goines, K.; Addington, J.; Bearden, C.E.; Cadenhead, K.S.; Cannon, T.D.; Cornblatt, B.A.; Mathalon, D.H.; McGlashan, T.H.; Seidman, L.; Perkins, D.O.; Tsuang, M.T.; Woods, S.W.; Walker, E.F. Impact of childhood adversity on corticolimbic volumes in youth at clinical high-risk for psychosis. Schizophr. Res., 2019, 213, 48-55.
[http://dx.doi.org/10.1016/j.schres.2019.01.048] [PMID: 30745068]
[195]
Allen, P.; Azis, M.; Modinos, G.; Bossong, M.G.; Bonoldi, I.; Samson, C.; Quinn, B.; Kempton, M.J.; Howes, O.D.; Stone, J.M.; Calem, M.; Perez, J.; Bhattacharayya, S.; Broome, M.R.; Grace, A.A.; Zelaya, F.; McGuire, P. Increased resting hippocampal and basal ganglia perfusion in people at ultra high risk for psychosis: Replication in a second cohort. Schizophr. Bull., 2018, 44(6), 1323-1331.
[http://dx.doi.org/10.1093/schbul/sbx169] [PMID: 29294102]
[196]
Mondelli, V.; Pariante, C.M.; Navari, S.; Aas, M.; D’Albenzio, A.; Di Forti, M.; Handley, R.; Hepgul, N.; Marques, T.R.; Taylor, H.; Papadopoulos, A.S.; Aitchison, K.J.; Murray, R.M.; Dazzan, P. Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophr. Res., 2010, 119(1-3), 75-78.
[http://dx.doi.org/10.1016/j.schres.2009.12.021] [PMID: 20071148]
[197]
Mondelli, V.; Cattaneo, A.; Murri, M.B.; Di Forti, M.; Handley, R.; Hepgul, N.; Miorelli, A.; Navari, S.; Papadopoulos, A.S.; Aitchison, K.J.; Morgan, C.; Murray, R.M.; Dazzan, P.; Pariante, C.M. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: A pathway to smaller hippocampal volume. J. Clin. Psychiatry, 2011, 72(12), 1677-1684.
[http://dx.doi.org/10.4088/JCP.10m06745] [PMID: 21672499]
[198]
Pruessner, M.; Lepage, M.; Collins, D.L.; Pruessner, J.C.; Joober, R.; Malla, A.K. Reduced hippocampal volume and hypothalamus–pituitary–adrenal axis function in first episode psychosis: Evidence for sex differences. Neuroimage Clin., 2015, 7, 195-202.
[http://dx.doi.org/10.1016/j.nicl.2014.12.001] [PMID: 25610781]
[199]
Pruessner, M.; Bechard-Evans, L.; Pira, S.; Joober, R.; Collins, D.L.; Pruessner, J.C.; Malla, A.K. Interplay of hippocampal volume and hypothalamus-pituitary-adrenal axis function as markers of stress vulnerability in men at ultra-high risk for psychosis. Psychol. Med., 2017, 47(3), 471-483.
[http://dx.doi.org/10.1017/S0033291716002658] [PMID: 27774914]
[200]
Kose, M.; Pariante, C.M.; Dazzan, P.; Mondelli, V. The role of peripheral inflammation in clinical outcome and brain imaging abnormalities in psychosis: A systematic review. Front. Psychiatry, 2021, 12, 612471.
[http://dx.doi.org/10.3389/fpsyt.2021.612471] [PMID: 33679475]
[201]
Quidé, Y.; Girshkin, L.; Watkeys, O.J.; Carr, V.J.; Green, M.J. The relationship between cortisol reactivity and emotional brain function is differently moderated by childhood trauma, in bipolar disorder, schizophrenia and healthy individuals. Eur. Arch. Psychiatry Clin. Neurosci., 2021, 271(6), 1089-1109.
[http://dx.doi.org/10.1007/s00406-020-01190-3] [PMID: 32926285]
[202]
Cannon, T.D.; Chung, Y.; He, G.; Sun, D.; Jacobson, A.; van Erp, T.G.M.; McEwen, S.; Addington, J.; Bearden, C.E.; Cadenhead, K.; Cornblatt, B.; Mathalon, D.H.; McGlashan, T.; Perkins, D.; Jeffries, C.; Seidman, L.J.; Tsuang, M.; Walker, E.; Woods, S.W.; Heinssen, R. Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol. Psychiatry, 2015, 77(2), 147-157.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.023] [PMID: 25034946]
[203]
Mauri, M.; Sinforiani, E.; Bono, G.; Vignati, F.; Berselli, M.E.; Attanasio, R.; Nappi, G. Memory impairment in Cushing’s disease. Acta Neurol. Scand., 1993, 87(1), 52-55.
[http://dx.doi.org/10.1111/j.1600-0404.1993.tb04075.x] [PMID: 8424312]
[204]
Resmini, E.; Santos, A.; Gómez-Anson, B.; Vives, Y.; Pires, P.; Crespo, I.; Portella, M.J.; de Juan-Delago, M.; Barahona, M.J.; Webb, S.M. Verbal and visual memory performance and hippocampal volumes, measured by 3-Tesla magnetic resonance imaging, in patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab., 2012, 97(2), 663-671.
[http://dx.doi.org/10.1210/jc.2011-2231] [PMID: 22162471]
[205]
Bourdeau, I.; Bard, C.; Noël, B.; Leclerc, I.; Cordeau, M.P.; Bélair, M.; Lesage, J.; Lafontaine, L.; Lacroix, A. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J. Clin. Endocrinol. Metab., 2002, 87(5), 1949-1954.
[PMID: 11994323]
[206]
Starkman, M.N. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration. Endocrinol. Metab. Clin. North Am., 2013, 42(3), 477-488.
[http://dx.doi.org/10.1016/j.ecl.2013.05.010] [PMID: 24011881]
[207]
Resmini, E.; Santos, A.; Webb, S.M. Cortisol excess and the brain. Front. Horm. Res., 2016, 46, 74-86.
[http://dx.doi.org/10.1159/000443868] [PMID: 27210466]
[208]
Lupien, S.J.; Schwartz, G.; Ng, Y.K.; Fiocco, A.; Wan, N.; Pruessner, J.C.; Meaney, M.J.; Nair, N.P. The douglas hospital longitudinal study of normal and pathological aging: Summary of findings. J. Psychiatry Neurosci., 2005, 30(5), 328-334.
[PMID: 16151537]
[209]
Zheng, B.; Tal, R.; Yang, Z.; Middleton, L.; Udeh-Momoh, C. Cortisol hypersecretion and the risk of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res. Rev., 2020, 64, 101171.
[http://dx.doi.org/10.1016/j.arr.2020.101171] [PMID: 32971258]
[210]
Green, M.F.; Horan, W.P.; Lee, J. Nonsocial and social cognition in schizophrenia: Current evidence and future directions. World Psychiatry, 2019, 18(2), 146-161.
[http://dx.doi.org/10.1002/wps.20624] [PMID: 31059632]
[211]
Fusar-Poli, P.; Deste, G.; Smieskova, R.; Barlati, S.; Yung, A.R.; Howes, O.; Stieglitz, R.D.; Vita, A.; McGuire, P.; Borgwardt, S. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch. Gen. Psychiatry, 2012, 69(6), 562-571.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1592] [PMID: 22664547]
[212]
Millman, Z.B.; Roemer, C.; Vargas, T.; Schiffman, J.; Mittal, V.A.; Gold, J.M. Neuropsychological performance among individuals at clinical high-risk for psychosis vs putatively low-risk peers with other psychopathology: A systematic review and meta-analysis. Schizophr. Bull., 2022, 48(5), 999-1010.
[http://dx.doi.org/10.1093/schbul/sbac031] [PMID: 35333372]
[213]
Havelka, D.; Prikrylova-Kucerova, H.; Prikryl, R.; Ceskova, E. Cognitive impairment and cortisol levels in first-episode schizophrenia patients. Stress, 2016, 19(4), 383-389.
[http://dx.doi.org/10.1080/10253890.2016.1193146] [PMID: 27320489]
[214]
Aas, M.; Pizzagalli, D.A.; Laskemoen, J.F.; Reponen, E.J.; Ueland, T.; Melle, I.; Agartz, I.; Steen, N.E.; Andreassen, O.A. Elevated hair cortisol is associated with childhood maltreatment and cognitive impairment in schizophrenia and in bipolar disorders. Schizophr. Res., 2019, 213, 65-71.
[http://dx.doi.org/10.1016/j.schres.2019.01.011] [PMID: 30660575]
[215]
Aas, M.; Dazzan, P.; Fisher, H.L.; Morgan, C.; Morgan, K.; Reichenberg, A.; Zanelli, J.; Fearon, P.; Jones, P.B.; Murray, R.M.; Pariante, C.M. Childhood trauma and cognitive function in first-episode affective and non-affective psychosis. Schizophr. Res., 2011, 129(1), 12-19.
[http://dx.doi.org/10.1016/j.schres.2011.03.017] [PMID: 21601792]
[216]
Cullen, A.E.; Zunszain, P.A.; Dickson, H.; Roberts, R.E.; Fisher, H.L.; Pariante, C.M.; Laurens, K.R. Cortisol awakening response and diurnal cortisol among children at elevated risk for schizophrenia: Relationship to psychosocial stress and cognition. Psychoneuroendocrinology, 2014, 46(100), 1-13.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.010] [PMID: 24882153]
[217]
Labad, J.; Gutiérrez-Zotes, A.; Creus, M.; Montalvo, I.; Cabezas, Á.; Solé, M.; Ortega, L.; Algora, M.J.; Sánchez-Gistau, V.; Vilella, E. Hypothalamic-pituitary-adrenal axis measures and cognitive abilities in early psychosis: Are there sex differences? Psychoneuroendocrinology, 2016, 72, 54-62.
[http://dx.doi.org/10.1016/j.psyneuen.2016.06.006] [PMID: 27344379]
[218]
Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry, 2015, 2(3), 258-270.
[http://dx.doi.org/10.1016/S2215-0366(14)00122-9] [PMID: 26359903]
[219]
Morrens, M.; Overloop, C.; Coppens, V.; Loots, E.; Van Den Noortgate, M.; Vandenameele, S.; Leboyer, M.; De Picker, L. The relationship between immune and cognitive dysfunction in mood and psychotic disorder: A systematic review and a meta-analysis. Mol. Psychiatry, 2022, 27(8), 3237-3246.
[http://dx.doi.org/10.1038/s41380-022-01582-y] [PMID: 35484245]
[220]
Patlola, S.R.; Donohoe, G.; McKernan, D.P. The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2023, 121, 110668.
[http://dx.doi.org/10.1016/j.pnpbp.2022.110668] [PMID: 36283512]
[221]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[222]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[223]
Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3), 337-340.
[http://dx.doi.org/10.1016/j.cell.2016.01.013] [PMID: 26824647]
[224]
Dinan, T.G.; Cryan, J.F. Brain-gut-microbiota axis and mental health. Psychosom. Med., 2017, 79(8), 920-926.
[http://dx.doi.org/10.1097/PSY.0000000000000519] [PMID: 28806201]
[225]
de Weerth, C. Do bacteria shape our development? crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev., 2017, 83, 458-471.
[http://dx.doi.org/10.1016/j.neubiorev.2017.09.016] [PMID: 28918360]
[226]
Hantsoo, L.; Zemel, B.S. Stress gets into the belly: Early life stress and the gut microbiome. Behav. Brain Res., 2021, 414, 113474.
[http://dx.doi.org/10.1016/j.bbr.2021.113474] [PMID: 34280457]
[227]
Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The role of the gut microbiome in the development of schizophrenia. Schizophr. Res., 2021, 234, 4-23.
[http://dx.doi.org/10.1016/j.schres.2020.02.010] [PMID: 32336581]
[228]
Zijlmans, M.A.C.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 2015, 53, 233-245.
[http://dx.doi.org/10.1016/j.psyneuen.2015.01.006] [PMID: 25638481]
[229]
Jašarević, E.; Howerton, C.L.; Howard, C.D.; Bale, T.L. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology, 2015, 156(9), 3265-3276.
[http://dx.doi.org/10.1210/en.2015-1177] [PMID: 26079804]
[230]
Flannery, J.E.; Stagaman, K.; Burns, A.R.; Hickey, R.J.; Roos, L.E.; Giuliano, R.J.; Fisher, P.A.; Sharpton, T.J. Gut feelings begin in childhood: The gut metagenome correlates with early environment, caregiving, and behavior. MBio, 2020, 11(1), e02780-e19.
[http://dx.doi.org/10.1128/mBio.02780-19] [PMID: 31964729]
[231]
Reid, B.M.; Horne, R.; Donzella, B.; Szamosi, J.C.; Coe, C.L.; Foster, J.A.; Gunnar, M.R. Microbiota‐immune alterations in adolescents following early life adversity: A proof of concept study. Dev. Psychobiol., 2021, 63(5), 851-863.
[http://dx.doi.org/10.1002/dev.22061] [PMID: 33249563]
[232]
Bailey, M.T.; Coe, C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol., 1999, 35(2), 146-155.
[http://dx.doi.org/10.1002/(SICI)1098-2302(199909)35:2<146:AID-DEV7>3.0.CO;2-G] [PMID: 10461128]
[233]
O’Mahony, S.M.; Marchesi, J.R.; Scully, P.; Codling, C.; Ceolho, A.M.; Quigley, E.M.M.; Cryan, J.F.; Dinan, T.G. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry, 2009, 65(3), 263-267.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.026] [PMID: 18723164]
[234]
Vangay, P.; Johnson, A.J.; Ward, T.L.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Hillmann, B.M.; Lucas, S.K.; Beura, L.K.; Thompson, E.A.; Till, L.M.; Batres, R.; Paw, B.; Pergament, S.L.; Saenyakul, P.; Xiong, M.; Kim, A.D.; Kim, G.; Masopust, D.; Martens, E.C.; Angkurawaranon, C.; McGready, R.; Kashyap, P.C.; Culhane-Pera, K.A.; Knights, D. US immigration westernizes the human gut microbiome. Cell, 2018, 175(4), 962-972.e10.
[http://dx.doi.org/10.1016/j.cell.2018.10.029] [PMID: 30388453]
[235]
Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Ferrario, C.; van Sinderen, D.; Ventura, M. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. Microbiol., 2017, 19(4), 1379-1390.
[http://dx.doi.org/10.1111/1462-2920.13692] [PMID: 28198087]
[236]
Luczynski, P.; McVey Neufeld, K.A.; Oriach, C.S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol., 2016, 19(8), pyw020.
[http://dx.doi.org/10.1093/ijnp/pyw020] [PMID: 26912607]
[237]
Degroote, S.; Hunting, D.J.; Baccarelli, A.A.; Takser, L. Maternal gut and fetal brain connection: Increased anxiety and reduced social interactions in wistar rat offspring following peri-conceptional antibiotic exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 76-82.
[http://dx.doi.org/10.1016/j.pnpbp.2016.06.010] [PMID: 27346743]
[238]
Leclercq, S.; Mian, F.M.; Stanisz, A.M.; Bindels, L.B.; Cambier, E.; Ben-Amram, H.; Koren, O.; Forsythe, P.; Bienenstock, J. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun., 2017, 8(1), 15062.
[http://dx.doi.org/10.1038/ncomms15062] [PMID: 28375200]
[239]
Lieberman, J.A.; Girgis, R.R.; Brucato, G.; Moore, H.; Provenzano, F.; Kegeles, L.; Javitt, D.; Kantrowitz, J.; Wall, M.M.; Corcoran, C.M.; Schobel, S.A.; Small, S.A. Hippocampal dysfunction in the pathophysiology of schizophrenia: A selective review and hypothesis for early detection and intervention. Mol. Psychiatry, 2018, 23(8), 1764-1772.
[http://dx.doi.org/10.1038/mp.2017.249] [PMID: 29311665]
[240]
Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress, 2016, 4, 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[241]
Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 2015, 232(10), 1793-1801.
[http://dx.doi.org/10.1007/s00213-014-3810-0] [PMID: 25449699]
[242]
Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2(4), 256-261.
[http://dx.doi.org/10.4161/gmic.2.4.16108] [PMID: 21983070]
[243]
de Weerth, C.; Zijl, R.H.; Buitelaar, J.K. Development of cortisol circadian rhythm in infancy. Early Hum. Dev., 2003, 73(1-2), 39-52.
[http://dx.doi.org/10.1016/S0378-3782(03)00074-4] [PMID: 12932892]
[244]
de Weerth, C.; Fuentes, S.; Puylaert, P.; de Vos, W.M. Intestinal microbiota of infants with colic: development and specific signatures. Pediatrics, 2013, 131(2), e550-e558.
[http://dx.doi.org/10.1542/peds.2012-1449] [PMID: 23319531]
[245]
Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, K.M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med., 2017, 23(3), 314-326.
[http://dx.doi.org/10.1038/nm.4272] [PMID: 28112736]
[246]
Underwood, M.A.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res., 2015, 77(1-2), 229-235.
[http://dx.doi.org/10.1038/pr.2014.156] [PMID: 25303277]
[247]
Dinan, T.G.; Stilling, R.M.; Stanton, C.; Cryan, J.F. Collective unconscious: How gut microbes shape human behavior. J. Psychiatr. Res., 2015, 63, 1-9.
[http://dx.doi.org/10.1016/j.jpsychires.2015.02.021] [PMID: 25772005]
[248]
Dinan, T.G.; Kennedy, P.J.; Morais, L.H.; Murphy, A.; Long-Smith, C.M.; Moloney, G.M.; Bastiaanssen, T.F.S.; Allen, A.P.; Collery, A.; Mullins, D.; Cusack, A.M.; Berding, K.; O’Toole, P.W.; Clarke, G.; Stanton, C.; Cryan, J.F. Altered stress responses in adults born by Caesarean section. Neurobiol. Stress, 2022, 16, 100425.
[http://dx.doi.org/10.1016/j.ynstr.2021.100425] [PMID: 35024387]
[249]
Dalla Costa, G.; Romeo, M.; Esposito, F.; Sangalli, F.; Colombo, B.; Radaelli, M.; Moiola, L.; Comi, G.; Martinelli, V. Caesarean section and infant formula feeding are associated with an earlier age of onset of multiple sclerosis. Mult. Scler. Relat. Disord., 2019, 33, 75-77.
[http://dx.doi.org/10.1016/j.msard.2019.05.010] [PMID: 31158806]
[250]
O’Neill, S.M.; Curran, E.A.; Dalman, C.; Kenny, L.C.; Kearney, P.M.; Clarke, G.; Cryan, J.F.; Dinan, T.G.; Khashan, A.S. Birth by caesarean section and the risk of adult psychosis: A population-based cohort study. Schizophr. Bull., 2016, 42(3), 633-641.
[http://dx.doi.org/10.1093/schbul/sbv152] [PMID: 26615187]
[251]
Safadi, J.M.; Quinton, A.M.G.; Lennox, B.R.; Burnet, P.W.J.; Minichino, A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol. Psychiatry, 2022, 27(1), 141-153.
[http://dx.doi.org/10.1038/s41380-021-01032-1] [PMID: 33558650]
[252]
Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry, 2021, 78(12), 1343-1354.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.2573] [PMID: 34524405]
[253]
Zhu, F.; Guo, R.; Wang, W.; Ju, Y.; Wang, Q.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; Jie, Z.; Zhao, B.; Xiao, L.; Yang, L.; Zhang, T.; Liu, B.; Guo, L.; He, X.; Chen, Y.; Chen, C.; Gao, C.; Xu, X.; Yang, H.; Wang, J.; Dang, Y.; Madsen, L.; Brix, S.; Kristiansen, K.; Jia, H.; Ma, X. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry, 2020, 25(11), 2905-2918.
[http://dx.doi.org/10.1038/s41380-019-0475-4] [PMID: 31391545]
[254]
Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; Zhou, X.; Gui, S.; Perry, S.W.; Wong, M.L.; Licinio, J.; Wei, H.; Xie, P. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv., 2019, 5(2), eaau8317.
[http://dx.doi.org/10.1126/sciadv.aau8317] [PMID: 30775438]
[255]
Schwarz, E.; Maukonen, J.; Hyytiäinen, T.; Kieseppä, T.; Orešič, M.; Sabunciyan, S.; Mantere, O.; Saarela, M.; Yolken, R.; Suvisaari, J. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res., 2018, 192, 398-403.
[http://dx.doi.org/10.1016/j.schres.2017.04.017] [PMID: 28442250]
[256]
He, Y.; Kosciolek, T.; Tang, J.; Zhou, Y.; Li, Z.; Ma, X.; Zhu, Q.; Yuan, N.; Yuan, L.; Li, C.; Jin, K.; Knight, R.; Tsuang, M.T.; Chen, X. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur. Psychiatry, 2018, 53, 37-45.
[http://dx.doi.org/10.1016/j.eurpsy.2018.05.011] [PMID: 29870894]
[257]
Yuan, X.; Zhang, P.; Wang, Y.; Liu, Y.; Li, X.; Kumar, B.U.; Hei, G.; Lv, L.; Huang, X.F.; Fan, X.; Song, X. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr. Res., 2018, 201, 299-306.
[http://dx.doi.org/10.1016/j.schres.2018.05.017] [PMID: 29859859]
[258]
Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, 30(6), 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[259]
Petta, I.; Fraussen, J.; Somers, V.; Kleinewietfeld, M. Interrelation of diet, gut microbiome, and autoantibody production. Front. Immunol., 2018, 9, 439.
[http://dx.doi.org/10.3389/fimmu.2018.00439] [PMID: 29559977]
[260]
Kim, M.; Kim, C.H. Regulation of humoral immunity by gut microbial products. Gut Microbes, 2017, 8(4), 392-399.
[http://dx.doi.org/10.1080/19490976.2017.1299311] [PMID: 28332901]
[261]
Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112((Pt B)), 399-412.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002]
[262]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[263]
Minichino, A.; Jackson, M.A.; Francesconi, M.; Steves, C.J.; Menni, C.; Burnet, P.W.J.; Lennox, B.R. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Mol. Psychiatry, 2021, 26(11), 6269-6276.
[http://dx.doi.org/10.1038/s41380-021-01147-5] [PMID: 34002020]
[264]
Sudo, N. Microbiome, HPA axis and production of endocrine hormones in the gut. Adv. Exp. Med. Biol., 2014, 817, 177-194.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_8] [PMID: 24997034]
[265]
Mondelli, V.; Dazzan, P.; Hepgul, N.; Di Forti, M.; Aas, M.; D’Albenzio, A.; Di Nicola, M.; Fisher, H.; Handley, R.; Marques, T.R.; Morgan, C.; Navari, S.; Taylor, H.; Papadopoulos, A.; Aitchison, K.J.; Murray, R.M.; Pariante, C.M. Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis: The role of stress and of antipsychotic treatment. Schizophr. Res., 2010, 116(2-3), 234-242.
[http://dx.doi.org/10.1016/j.schres.2009.08.013] [PMID: 19751968]
[266]
Cohrs, S.; Röher, C.; Jordan, W.; Meier, A.; Huether, G.; Wuttke, W.; Rüther, E.; Rodenbeck, A. The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology, 2006, 185(1), 11-18.
[http://dx.doi.org/10.1007/s00213-005-0279-x] [PMID: 16432682]
[267]
Zhang, X.Y.; Zhou, D.F.; Cao, L.Y.; Wu, G.Y.; Shen, Y.C. Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology, 2005, 30(8), 1532-1538.
[http://dx.doi.org/10.1038/sj.npp.1300756] [PMID: 15886721]
[268]
Capuzzi, E.; Bartoli, F.; Crocamo, C.; Clerici, M.; Carrà, G. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis. Neurosci. Biobehav. Rev., 2017, 77, 122-128.
[http://dx.doi.org/10.1016/j.neubiorev.2017.03.003] [PMID: 28285148]
[269]
Seeman, M.V. The gut microbiome and antipsychotic treatment response. Behav. Brain Res., 2021, 396, 112886.
[http://dx.doi.org/10.1016/j.bbr.2020.112886] [PMID: 32890599]
[270]
Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; Patil, K.R.; Bork, P.; Typas, A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555(7698), 623-628.
[http://dx.doi.org/10.1038/nature25979] [PMID: 29555994]
[271]
Price, L.H.; Malison, R.T.; McDougle, C.J.; Pelton, G.H. Antiglucocorticoids as treatments for depression. CNS Drugs, 1996, 5(5), 311-320.
[http://dx.doi.org/10.2165/00023210-199605050-00001] [PMID: 26071044]
[272]
Garner, B.; Phillips, L.J.; Bendall, S.; Hetrick, S.E. Antiglucocorticoid and related treatments for psychosis. Cochrane Database Syst. Rev., 2016, 1(1), CD006995.
[PMID: 26725721]
[273]
DeBattista, C.; Belanoff, J.; Glass, S.; Khan, A.; Horne, R.L.; Blasey, C.; Carpenter, L.L.; Alva, G. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol. Psychiatry, 2006, 60(12), 1343-1349.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.034] [PMID: 16889757]
[274]
Lombardo, G.; Enache, D.; Gianotti, L.; Schatzberg, A.F.; Young, A.H.; Pariante, C.M.; Mondelli, V. Baseline cortisol and the efficacy of antiglucocorticoid treatment in mood disorders: A meta-analysis. Psychoneuroendocrinology, 2019, 110, 104420.
[http://dx.doi.org/10.1016/j.psyneuen.2019.104420] [PMID: 31499391]
[275]
Nitta, M.; Kishimoto, T.; Müller, N.; Weiser, M.; Davidson, M.; Kane, J.M.; Correll, C.U. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull., 2013, 39(6), 1230-1241.
[http://dx.doi.org/10.1093/schbul/sbt070] [PMID: 23720576]
[276]
Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders – A comprehensive systematic review and meta-analysis. Brain Behav. Immun., 2020, 90, 364-380.
[http://dx.doi.org/10.1016/j.bbi.2020.08.028] [PMID: 32890697]
[277]
Girgis, R.R.; Ciarleglio, A.; Choo, T.; Haynes, G.; Bathon, J.M.; Cremers, S.; Kantrowitz, J.T.; Lieberman, J.A.; Brown, A.S. A randomized, double-blind, placebo-controlled clinical trial of tocilizumab, an interleukin-6 receptor antibody, for residual symptoms in schizophrenia. Neuropsychopharmacology, 2018, 43(6), 1317-1323.
[http://dx.doi.org/10.1038/npp.2017.258] [PMID: 29090685]
[278]
Miller, B.J.; Goldsmith, D.R. Towards an immunophenotype of schizophrenia: Progress, potential mechanisms, and future directions. Neuropsychopharmacology, 2017, 42(1), 299-317.
[http://dx.doi.org/10.1038/npp.2016.211] [PMID: 27654215]
[279]
Lee, Y.; Subramaniapillai, M.; Brietzke, E.; Mansur, R.B.; Ho, R.C.; Yim, S.J.; McIntyre, R.S. Anti-cytokine agents for anhedonia: Targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther. Adv. Psychopharmacol., 2018, 8(12), 337-348.
[http://dx.doi.org/10.1177/2045125318791944] [PMID: 30524702]
[280]
Berding, K.; Cryan, J.F. Microbiota-targeted interventions for mental health. Curr. Opin. Psychiatry, 2022, 35(1), 3-9.
[http://dx.doi.org/10.1097/YCO.0000000000000758] [PMID: 34750307]
[281]
Mörkl, S.; Butler, M.I.; Holl, A.; Cryan, J.F.; Dinan, T.G. Probiotics and the microbiota-gut-brain axis: Focus on psychiatry. Curr. Nutr. Rep., 2020, 9(3), 171-182.
[http://dx.doi.org/10.1007/s13668-020-00313-5] [PMID: 32406013]
[282]
Minichino, A.; Brondino, N.; Solmi, M.; Del Giovane, C.; Fusar-Poli, P.; Burnet, P.; Cipriani, A.; Lennox, B.R. The gut-microbiome as a target for the treatment of schizophrenia: A systematic review and meta-analysis of randomised controlled trials of add-on strategies. Schizophr. Res., 2021, 234, 58-70.
[http://dx.doi.org/10.1016/j.schres.2020.02.012] [PMID: 32295752]
[283]
Sepede, G.; Spano, M.C.; Lorusso, M.; De Berardis, D.; Salerno, R.M.; Di Giannantonio, M.; Gambi, F. Sustained attention in psychosis: Neuroimaging findings. World J. Radiol., 2014, 6(6), 261-273.
[http://dx.doi.org/10.4329/wjr.v6.i6.261] [PMID: 24976929]
[284]
Mazza, M.; Caroppo, E.; De Berardis, D.; Marano, G.; Avallone, C.; Kotzalidis, G.D.; Janiri, D.; Moccia, L.; Simonetti, A.; Conte, E.; Martinotti, G.; Janiri, L.; Sani, G. Psychosis in women: Time for personalized treatment. J. Pers. Med., 2021, 11(12), 1279.
[http://dx.doi.org/10.3390/jpm11121279] [PMID: 34945748]
[285]
Oliver, D.; Spada, G.; Englund, A.; Chesney, E.; Radua, J.; Reichenberg, A.; Uher, R.; McGuire, P.; Fusar-Poli, P. Real-world digital implementation of the Psychosis Polyrisk Score (PPS): A pilot feasibility study. Schizophr. Res., 2020, 226, 176-183.
[http://dx.doi.org/10.1016/j.schres.2020.04.015] [PMID: 32340785]
[286]
Oliver, D.; Radua, J.; Reichenberg, A.; Uher, R.; Fusar-Poli, P. Psychosis Polyrisk Score (PPS) for the detection of individuals at-risk and the prediction of their outcomes. Front. Psychiatry, 2019, 10, 174.
[http://dx.doi.org/10.3389/fpsyt.2019.00174] [PMID: 31057431]
[287]
Baldwin, H.; Loebel-Davidsohn, L.; Oliver, D.; Salazar de Pablo, G.; Stahl, D.; Riper, H.; Fusar-Poli, P. Real-world implementation of precision psychiatry: A systematic review of barriers and facilitators. Brain Sci., 2022, 12(7), 934.
[http://dx.doi.org/10.3390/brainsci12070934] [PMID: 35884740]
[288]
Salazar de Pablo, G.; Studerus, E.; Vaquerizo-Serrano, J.; Irving, J.; Catalan, A.; Oliver, D.; Baldwin, H.; Danese, A.; Fazel, S.; Steyerberg, E.W.; Stahl, D.; Fusar-Poli, P. Implementing precision psychiatry: A systematic review of individualized prediction models for clinical practice. Schizophr. Bull., 2021, 47(2), 284-297.
[http://dx.doi.org/10.1093/schbul/sbaa120] [PMID: 32914178]
[289]
Meehan, A.J.; Lewis, S.J.; Fazel, S.; Fusar-Poli, P.; Steyerberg, E.W.; Stahl, D.; Danese, A. Clinical prediction models in psychiatry: A systematic review of two decades of progress and challenges. Mol. Psychiatry, 2022, 27(6), 2700-2708.
[http://dx.doi.org/10.1038/s41380-022-01528-4] [PMID: 35365801]
[290]
Pries, L.K.; Lage-Castellanos, A.; Delespaul, P.; Kenis, G.; Luykx, J.J.; Lin, B.D.; Richards, A.L.; Akdede, B.; Binbay, T.; Altinyazar, V.; Yalinçetin, B.; Gümüş-Akay, G.; Cihan, B.; Soygür, H.; Ulaş, H.; Cankurtaran, E.Ş.; Kaymak, S.U.; Mihaljevic, M.M.; Petrovic, S.A.; Mirjanic, T.; Bernardo, M.; Cabrera, B.; Bobes, J.; Saiz, P.A.; García-Portilla, M.P.; Sanjuan, J.; Aguilar, E.J.; Santos, J.L.; Jiménez-López, E.; Arrojo, M.; Carracedo, A.; López, G.; González-Peñas, J.; Parellada, M.; Maric, N.P.; Atbaşoğlu, C.; Ucok, A.; Alptekin, K.; Saka, M.C.; Alizadeh, B.Z.; van Amelsvoort, T.; Bruggeman, R.; Cahn, W.; de Haan, L.; Luykx, J.J.; van Winkel, R.; Rutten, B.P.F.; van Os, J.; Arango, C.; O’Donovan, M.; Rutten, B.P.F.; van Os, J.; Guloksuz, S. Estimating exposome score for schizophrenia using predictive modeling approach in two independent samples: The results from the EUGEI study. Schizophr. Bull., 2019, 45(5), 960-965.
[http://dx.doi.org/10.1093/schbul/sbz054] [PMID: 31508804]
[291]
Jeon, E.J.; Kang, S.H.; Piao, Y.H.; Kim, S.W.; Kim, J.J.; Lee, B.J.; Yu, J.C.; Lee, K.Y.; Won, S.H.; Lee, S.H.; Kim, S.H.; Kim, E.T.; Kim, C.T.; Oliver, D.; Fusar-Poli, P.; Rami, F.Z.; Chung, Y.C. Development of the korea-polyenvironmental risk score for psychosis. Psychiatry Investig., 2022, 19(3), 197-206.
[http://dx.doi.org/10.30773/pi.2021.0328] [PMID: 35196829]
[292]
Oliver, D. The importance of external validation to advance precision psychiatry. Lancet Reg. Health Eur., 2022, 22, 100498.
[http://dx.doi.org/10.1016/j.lanepe.2022.100498] [PMID: 36061494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy