Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Thermal Instability of Commercial Dual-axis MEMS Accelerometers

Author(s): Sergiusz Łuczak*, Maciej Zams and Paweł Pieńczuk

Volume 15, Issue 3, 2023

Published on: 08 September, 2023

Page: [208 - 214] Pages: 7

DOI: 10.2174/1876402915666230731124513

Price: $65

Abstract

Introduction: Thermal drifts of MEMS sensors are one of their biggest shortcomings. However, experimental studies may offer a solution while striving for the reduction of related errors.

Objective: The aim was to determine the thermal drifts of MEMS accelerometers associated with the offset voltage and the scale factor and then to propose a way of reducing the resultant errors.

Methods: Four commercial dual-axis MEMS accelerometers (two pieces of ADXL 202E and two pieces of ADXL 203 by Analog Devices Inc.) with analog outputs were experimentally tested with respect to their thermal instability, employing two computer-controlled test rigs that provided a stable orientation of the accelerometers.

Results: It was found that the thermal drifts of the offset voltage generated by the tested accelerometers were considerable, resulting in respective errors of about 14 mg (ADXL 202E) or 7 mg (ADXL 203), whereas catalog values of drifts of the scale factor were much lower.

Conclusion: The determined values are smaller than their counterparts specified in the relevant manufacturer datasheets; significant differences exist between the tested pieces of the two accelerometers (40% or 78%) as well as between the two sensitive axes of a single accelerometer (84% or 80%), this can be taken into consideration while striving for a higher accuracy of an acceleration measurement.

Graphical Abstract

[1]
Martínez, J.; Asiain, D.; Beltrán, J.R. Lightweight thermal compensation technique for MEMS capacitive accelerometer oriented to quasi-static measurements. Sensors, 2021, 21(9), 3117.
[http://dx.doi.org/10.3390/s21093117] [PMID: 33946219]
[2]
Łuczak, S.; Wierciak, J.; Credo, W. Effects of natural aging in biaxial MEMS accelerometers. IEEE Sens. J., 2021, 21(2), 1305-1314.
[http://dx.doi.org/10.1109/JSEN.2020.3017897]
[3]
Qiang, D.; Gang, J.; Wei, S.; De, Z.; Bo, P. Relationship between temperature drift and thermal expansion of sensing structure in sandwich micro-accelerometer. Micro Nanosyst., 2014, 6(1), 50-54.
[http://dx.doi.org/10.2174/187640290601140919144733]
[4]
Łuczak, S.; Oleksiuk, W. Increasing accuracy of tilt measurements. Gongcheng Lixue, 2007, 14(1), 143-154.
[5]
Łuczak, S. Tilt Measurements in BMW Motorcycles. In: Recent Global Research and Education: Technological Challenges; Jabłoński, R.; Szewczyk, R., Eds.; Springer International Publishing: Cham, 2017; pp. 287-293.
[http://dx.doi.org/10.1007/978-3-319-46490-9_39]
[6]
STMicroelectronics. LIS3DSH MEMS Digital Output Motion Sensor: Ultra-Low-Power High-Performance Three-Axis “Nano” Accelerometer. Available from: cdn.sparkfun.com/assets/learn_tutorials/5/9/6/LIS3DH_AppNote_DocID_18198rev1.pdf (Accessed on: April 7, 2023).
[7]
Pieniazek, J.; Ciecinski, P. . Thermal hysteresis in inertial sensors Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, ItalyJune 22- 242020, pp. 54-59.
[http://dx.doi.org/10.1109/MetroAeroSpace48742.2020.9160243]
[8]
Ruzza, G.; Guerriero, L.; Revellino, P.; Guadagno, F.M. A low-cost chamber prototype for automatic thermal analysis of MEMS IMU sensors in tilt measurements perspective. Sensors, 2019, 19(12), 2705.
[http://dx.doi.org/10.3390/s19122705] [PMID: 31208118]
[9]
Łuczak, S.; Zams, M.; Bagiński, K. Selected aging effects in triaxial MEMS accelerometers. J. Sens., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/5184907]
[10]
Osman, S.E.; Zarog, M. Optimized V-shaped beam micro-electrothermal actuator using Particle Swarm Optimization (PSO) technique. Micro Nanosyst., 2019, 11(1), 62-67.
[http://dx.doi.org/10.2174/1876402911666190208162346]
[11]
Yang, D.; Woo, J.K.; Lee, S.; Mitchell, J.; Challoner, A.D.; Najafi, K. A micro oven-control system for inertial sensors. J. Microelectromech. Syst., 2017, 26(3), 507-518.
[http://dx.doi.org/10.1109/JMEMS.2017.2692770]
[12]
Horton, M.; Kitchin, C. Dual axis tilt sensor based on micromachined accelerometers. Sensors, 1996, 13(4), 91-94.
[13]
Reducing accelerometer temperature drift with crystal ovens. Sensors, 1996, 13(4), 92.
[14]
Brown, W.C. . Miniature Crystal Ovens: Their Uses, Limitations, and Specifications; Application note No. 146-003; ISOtemp Research Inc., Charlottesville, USA
[15]
Dragnevski, K.I. A brief overview of in-situ mechanical testing in the environmental scanning electron microscope. Micro Nanosyst., 2012, 4(2), 92-96.
[http://dx.doi.org/10.2174/1876402911204020092]
[16]
Niu, X.; Li, Y.; Zhang, H.; Wang, Q.; Ban, Y. Fast thermal calibration of low-grade inertial sensors and inertial measurement units. Sensors, 2013, 13(9), 12192-12217.
[http://dx.doi.org/10.3390/s130912192] [PMID: 24036581]
[17]
Ruzza, G.; Guerriero, L.; Revellino, P.; Guadagno, F.M. Thermal compensation of low-cost MEMS accelerometers for tilt measurements. Sensors, 2018, 18(8), 2536.
[http://dx.doi.org/10.3390/s18082536] [PMID: 30072680]
[18]
Liu, M.; Chi, B.; Liu, Y.; Dong, J. A closed-loop MEMS accelerometer with capacitive sensing interface ASIC. Int. J. Electron., 2013, 100(1), 21-35.
[http://dx.doi.org/10.1080/00207217.2012.669719]
[19]
Łuczak, S. Dual-axis test rig for MEMS tilt sensors. Metrol. Meas. Syst., 2014, 21(2), 351-362.
[http://dx.doi.org/10.2478/mms-2014-0030]
[20]
Precision ±1.7 g, ±5 g, ±18 g Single-/Dual-Axis iMEMS® Accelerometer, ADXL103/ ADXL203. Analog Devices Inc., Norwood, MA. Available from: analog.com/media/en/technical-documentation/data-sheets/adxl103_203.pdf (Accessed on: April 7, 2023).
[21]
Low-Cost ±2g Dual Axis Accelerometer with Digital Output, ADXL 202E. Analog Devices Inc., Norwood, MA. Available from: analog.com/media/en/technical-documentation/datasheets/ADXL202E.pdf (Accessed on: April 7, 2023).
[22]
Tahmasebipour, M.; Vafaie, A. A highly sensitive three axis piezoelectric microaccelerometer for high bandwidth applications. Micro Nanosyst., 2018, 9(2), 111-120.
[http://dx.doi.org/10.2174/1876402910666180118124845]
[23]
Łuczak, S. Single-axis tilt measurements realized by means of MEMS accelerometers. Gongcheng Lixue, 2011, 18(5/6), 341-351. Available from: http://www.engineeringmechanics.cz/pdf/18_5_341.pdf
[24]
Łuczak, S. Specific Measurements of Tilt with MEMS Accelerometers. In: Mechatronics. Recent Technological and Scientific Advances; Jabloński, R.; Brezina, T., Eds.; Springer-Verlag: Berlin, Heidelberg, 2012; pp. 705-711.
[http://dx.doi.org/10.1007/978-3-642-23244-2_85]
[25]
Bütefisch, S.; Schoft, A.; Büttgenbach, S. Three-axes monolithic silicon low-g accelerometer. J. Microelectromech. Syst., 2000, 9(4), 551-556.
[http://dx.doi.org/10.1109/84.896778]
[26]
The SCA103T differential inclinometer series, Datasheet, Murata Electronics Oy. 2000.
[27]
Programmable Dual-Axis Inclinometer/Accelerometer ADIS 16201. Analog Devices Inc., Norwood, MA Datasheet. 2006.
[28]
LSM9DS1 iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D magnetometer Datasheet, STMicroelectronics. 2015.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy