Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Interleukin-2 and Oncolytic Virotherapy: A New Perspective in Cancer Therapy

Author(s): Parisa Shiri Aghbash, Reyhaneh Rasizadeh, Amir Hossein Yari, Shiva Lahouti, Habib MotieGhader, Javid Sadri Nahand, Taher Entezari-Maleki and Hossein Bannazadeh Baghi*

Volume 23, Issue 18, 2023

Published on: 04 September, 2023

Page: [2008 - 2026] Pages: 19

DOI: 10.2174/1871520623666230727095154

Price: $65

Abstract

By triggering immune responses in malignancies that have generally been linked to poor outcomes, immunotherapy has recently shown effectiveness. On the other hand, tumors provide an environment for cells that influence the body’s immunity against cancer. Malignant cells also express large amounts of soluble or membrane-bound ligands and immunosuppressive receptors. In this regard, the combination of oncolytic viruses with pro-inflammatory or inflammatory cytokines, including IL-2, can be a potential therapy for some malignancies. Indeed, oncolytic viruses cause the death of cancerous cells and destroy the tumor microenvironment. They result in the local release of threat signals and antigens associated with tumors. As a result, it causes lymphocyte activity and the accumulation of antigenpresenting cells which causes them to accumulate in the tumor environment and release cytokines and chemokines. In this study, we reviewed the functions of IL-2 as a crucial type of inflammatory cytokine in triggering immune responses, as well as the effect of its release and increased expression following combination therapy with oncolytic viruses in the process of malignant progression, as an essential therapeutic approach that should be taken into consideration going forward.

Graphical Abstract

[1]
Yousefi, H.; Yuan, J.; Keshavarz-Fathi, M.; Murphy, J.F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol., 2017, 13(10), 1001-1015.
[http://dx.doi.org/10.1080/1744666X.2017.1366315] [PMID: 28795649]
[2]
Leonard, W.J.; Depper, J.M.; Crabtree, G.R.; Rudikoff, S.; Pumphrey, J.; Robb, R.J.; Krönke, M.; Svetlik, P.B.; Peffer, N.J.; Waldmann, T.A.; Greene, W.C. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature, 1984, 311(5987), 626-631.
[http://dx.doi.org/10.1038/311626a0] [PMID: 6090948]
[3]
Choudhry, H. The effects of interleukin-2 on immune response regulation. Math. Med. Biol., 2018, 35(1), 79-119.
[4]
Waters, R.S.; Justin, S.A.P. SunPil, H.; Bibiana, B.; Tomas, G. The effects of interleukin-2 on immune response regulation. Math. Med. Biol., 2018, 35(1), 79-119.
[5]
(a) Bai, F.; Niu, Z.; Tian, H.; Li, S.; Lv, Z.; Zhang, T. et al. Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunology Letters, 2014, 159(1-2), 36-46.;
(b) Takehara, Y. et al., Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma. Clin. Immunol., 2013, 149(1), p. 1-10.
[6]
Aghbash, P.S.; Nima, H.; Javid, S.N.; Ali, S. Mohammad, Y.M.; Abouzar, B.; Hossein B.B. The role of Th17 cells in viral infections. Int. Immunopharmacol., 2021, 91, 107331.
[http://dx.doi.org/10.1016/j.intimp.2020.107331] [PMID: 33418239]
[7]
Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer, 2019, 120(1), 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y] [PMID: 30413827]
[8]
Ren, G.; Tian, G.; Liu, Y.; He, J.; Gao, X.; Yu, Y.; Liu, X.; Zhang, X.; Sun, T.; Liu, S.; Yin, J.; Li, D. Recombinant Newcastle disease virus encoding IL-12 and/or IL-2 as potential candidate for hepatoma carcinoma therapy. Technol. Cancer Res. Treat., 2016, 15(5), NP83-NP94.
[http://dx.doi.org/10.1177/1533034615601521] [PMID: 26303327]
[9]
McDermott, D.F.; Atkins, M.B. Application of IL-2 and other cytokines in renal cancer. Expert Opin. Biol. Ther., 2004, 4(4), 455-468.
[http://dx.doi.org/10.1517/14712598.4.4.455] [PMID: 15102596]
[10]
Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462.
[http://dx.doi.org/10.1080/2162402X.2016.1163462] [PMID: 27471638]
[11]
Moran, M.; Nickens, D.; Adcock, K.; Bennetts, M.; Desscan, A.; Charnley, N.; Fife, K. Sunitinib for metastatic renal cell carcinoma: A systematic review and meta-analysis of real-world and clinical trials data. Target. Oncol., 2019, 14(4), 405-416.
[http://dx.doi.org/10.1007/s11523-019-00653-5] [PMID: 31301015]
[12]
Fyfe, G.; Fisher, R.I.; Rosenberg, S.A.; Sznol, M.; Parkinson, D.R.; Louie, A.C. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol., 1995, 13(3), 688-696.
[http://dx.doi.org/10.1200/JCO.1995.13.3.688] [PMID: 7884429]
[13]
Skrombolas, D.; Frelinger, J.G. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev. Clin. Immunol., 2014, 10(2), 207-217.
[http://dx.doi.org/10.1586/1744666X.2014.875856] [PMID: 24410537]
[14]
Shevach, E.M. Application of IL-2 therapy to target T regulatory cell function. Trends Immunol., 2012, 33(12), 626-632.
[http://dx.doi.org/10.1016/j.it.2012.07.007] [PMID: 22951308]
[15]
Den Otter, W.; Jacobs, J.J.L.; Battermann, J.J.; Hordijk, G.J.; Krastev, Z.; Moiseeva, E.V.; Stewart, R.J.E.; Ziekman, P.G.P.M.; Koten, J.W. Local therapy of cancer with free IL-2. Cancer Immunol. Immunother., 2008, 57(7), 931-950.
[http://dx.doi.org/10.1007/s00262-008-0455-z] [PMID: 18256831]
[16]
Bell, C.J.M.; Sun, Y.; Nowak, U.M.; Clark, J.; Howlett, S.; Pekalski, M.L.; Yang, X.; Ast, O.; Waldhauer, I.; Freimoser-Grundschober, A.; Moessner, E.; Umana, P.; Klein, C.; Hosse, R.J.; Wicker, L.S.; Peterson, L.B. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J. Autoimmun., 2015, 56, 66-80.
[http://dx.doi.org/10.1016/j.jaut.2014.10.002] [PMID: 25457307]
[17]
Chulpanova, D.S.; Solovyeva, V.V.; James, V.; Arkhipova, S.S.; Gomzikova, M.O.; Garanina, E.E.; Akhmetzyanova, E.R.; Tazetdinova, L.G.; Khaiboullina, S.F.; Rizvanov, A.A. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering, 2020, 7(2), 59.
[http://dx.doi.org/10.3390/bioengineering7020059] [PMID: 32560387]
[18]
Liu, Z.; Ge, Y.; Wang, H.; Ma, C.; Feist, M.; Ju, S.; Guo, Z.S.; Bartlett, D.L. Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat. Commun., 2018, 9(1), 4682.
[http://dx.doi.org/10.1038/s41467-018-06954-z] [PMID: 30410056]
[19]
Pol, J.G.; Lévesque, S.; Workenhe, S.T.; Gujar, S.; Le Boeuf, F.; Clements, D.R.; Fahrner, J.E.; Fend, L.; Bell, J.C.; Mossman, K.L.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. OncoImmunology, 2018, 7(12), e1503032.
[http://dx.doi.org/10.1080/2162402X.2018.1503032] [PMID: 30524901]
[20]
Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to be noticed: Epigenetic regulation of immunogenic cell death for cancer immunotherapy. Front. Immunol., 2018, 9, 654.
[http://dx.doi.org/10.3389/fimmu.2018.00654] [PMID: 29666625]
[21]
Harrington, K.; Freeman, D.J.; Kelly, B.; Harper, J.; Soria, J.C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov., 2019, 18(9), 689-706.
[http://dx.doi.org/10.1038/s41573-019-0029-0] [PMID: 31292532]
[22]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[23]
Feist, M.; Zhu, Z.; Dai, E.; Ma, C.; Liu, Z.; Giehl, E.; Ravindranathan, R.; Kowalsky, S.J.; Obermajer, N.; Kammula, U.S.; Lee, A.J.H.; Lotze, M.T.; Guo, Z.S.; Bartlett, D.L. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther., 2021, 28(1-2), 98-111.
[http://dx.doi.org/10.1038/s41417-020-0189-4] [PMID: 32632271]
[24]
Suryawanashi, Y.R.; Zhang, T.; Woyczesczyk, H.M.; Christie, J.; Byers, E.; Kohler, S.; Eversole, R.; Mackenzie, C.; Essani, K. T-independent response mediated by oncolytic tanapoxvirus recombinants expressing interleukin-2 and monocyte chemoattractant protein-1 suppresses human triple negative breast tumors. Med. Oncol., 2017, 34(6), 112.
[http://dx.doi.org/10.1007/s12032-017-0973-7] [PMID: 28466296]
[25]
Matsuda, M.; Nimura, K.; Shimbo, T.; Hamasaki, T.; Yamamoto, T.; Matsumura, A.; Kaneda, Y. Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J. Neurooncol., 2011, 103(1), 19-31.
[http://dx.doi.org/10.1007/s11060-010-0355-x] [PMID: 20730616]
[26]
Havunen, R.; Santos, J.M.; Sorsa, S.; Rantapero, T.; Lumen, D.; Siurala, M.; Airaksinen, A.J.; Cervera-Carrascon, V.; Tähtinen, S.; Kanerva, A.; Hemminki, A. Abscopal effect in non-injected tumors achieved with cytokine-armed oncolytic adenovirus. Mol. Ther. Oncolytics, 2018, 11, 109-121.
[http://dx.doi.org/10.1016/j.omto.2018.10.005] [PMID: 30569015]
[27]
Dummer, R.; Rochlitz, C.; Velu, T.; Acres, B.; Limacher, J.M.; Bleuzen, P.; Lacoste, G.; Slos, P.; Romero, P.; Urosevic, M. Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma. Mol. Ther., 2008, 16(5), 985-994.
[http://dx.doi.org/10.1038/mt.2008.32] [PMID: 18388930]
[28]
Trudel, S.; Trachtenberg, J.; Toi, A.; Sweet, J.; Hua, Li Z.; Jewett, M.; Tshilias, J.; Zhuang, L.H.; Hitt, M.; Wan, Y.; Gauldie, J.; Graham, F.L.; Dancey, J.; Keith Stewart, A. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther., 2003, 10(10), 755-763.
[http://dx.doi.org/10.1038/sj.cgt.7700626] [PMID: 14502228]
[29]
Pol, J.G.; Caudana, P.; Paillet, J.; Piaggio, E.; Kroemer, G. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med., 2020, 217(1), e20191247.
[http://dx.doi.org/10.1084/jem.20191247] [PMID: 31611250]
[30]
Pol, J.G.; Workenhe, S.T.; Konda, P.; Gujar, S.; Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev., 2020, 56, 4-27.
[http://dx.doi.org/10.1016/j.cytogfr.2020.10.007] [PMID: 33183957]
[31]
Cervera-Carrascon, V.; Havunen, R.; Hemminki, A. Oncolytic adenoviruses: A game changer approach in the battle between cancer and the immune system. Expert Opin. Biol. Ther., 2019, 19(5), 443-455.
[http://dx.doi.org/10.1080/14712598.2019.1595582] [PMID: 30905206]
[32]
Santos, J.M.; Havunen, R.; Siurala, M.; Cervera-Carrascon, V.; Tähtinen, S.; Sorsa, S.; Anttila, M.; Karell, P.; Kanerva, A.; Hemminki, A. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int. J. Cancer, 2017, 141(7), 1458-1468.
[http://dx.doi.org/10.1002/ijc.30839] [PMID: 28614908]
[33]
Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther., 2021, 29(2), 505-520.
[http://dx.doi.org/10.1016/j.ymthe.2020.10.023] [PMID: 33130314]
[34]
Lawler, S.E.; Speranza, M.C.; Cho, C.F.; Chiocca, E.A. Oncolytic viruses in cancer treatment: A review. JAMA Oncol., 2017, 3(6), 841-849.
[http://dx.doi.org/10.1001/jamaoncol.2016.2064] [PMID: 27441411]
[35]
Schirrmacher, V. Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: A comparative analysis. Biomedicines, 2020, 8(3), 61.
[http://dx.doi.org/10.3390/biomedicines8030061] [PMID: 32188078]
[36]
Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513.
[http://dx.doi.org/10.1038/s41577-018-0014-6] [PMID: 29743717]
[37]
Yang, L.; Gu, X.; Yu, J.; Ge, S.; Fan, X. Oncolytic virotherapy: From bench to bedside. Front. Cell Dev. Biol., 2021, 9, 790150-790150.
[http://dx.doi.org/10.3389/fcell.2021.790150] [PMID: 34901031]
[38]
Gholami, S.; Marano, A.; Chen, N.G.; Aguilar, R.J.; Frentzen, A.; Chen, C.H.; Lou, E.; Fujisawa, S.; Eveno, C.; Belin, L.; Zanzonico, P.; Szalay, A.; Fong, Y. Erratum to: A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res. Treat., 2016, 156(3), 607-608.
[http://dx.doi.org/10.1007/s10549-016-3767-2] [PMID: 27026359]
[39]
Breitbach, C.J.; Paterson, J.M.; Lemay, C.G.; Falls, T.J.; McGuire, A.; Parato, K.A.; Stojdl, D.F.; Daneshmand, M.; Speth, K.; Kirn, D.; McCart, J.A.; Atkins, H.; Bell, J.C. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther., 2007, 15(9), 1686-1693.
[http://dx.doi.org/10.1038/sj.mt.6300215] [PMID: 17579581]
[40]
Ekeke, C.N. Intrapleural interleukin-2–expressing oncolytic virotherapy enhances acute antitumor effects and T-cell receptor diversity in malignant pleural disease. J. Thorac. Cardiovasc. Surg., 2022, 163(4), e313-e328.
[http://dx.doi.org/10.1016/j.jtcvs.2020.11.160] [PMID: 33485667]
[41]
Downs-Canner, S.; Guo, Z.S.; Ravindranathan, R.; Breitbach, C.J.; O’Malley, M.E.; Jones, H.L.; Moon, A.; McCart, J.A.; Shuai, Y.; Zeh, H.J.; Bartlett, D.L. Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol. Ther., 2016, 24(8), 1492-1501.
[http://dx.doi.org/10.1038/mt.2016.101] [PMID: 27203445]
[42]
Chhabra, N.; Kennedy, J. A review of cancer immunotherapy toxicity II: Adoptive cellular therapies, kinase inhibitors, monoclonal antibodies, and oncolytic viruses. J. Med. Toxicol., 2022, 18(1), 43-55.
[http://dx.doi.org/10.1007/s13181-021-00835-6] [PMID: 33821435]
[43]
Corrigan, P.A.; Beaulieu, C.; Patel, R.B.; Lowe, D.K. Talimogene laherparepvec: An oncolytic virus therapy for melanoma. Ann. Pharmacother., 2017, 51(8), 675-681.
[http://dx.doi.org/10.1177/1060028017702654] [PMID: 28351167]
[44]
Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; Logan, T.F.; Hauschild, A.; Lebbé, C.; Chen, L.; Kim, J.J.; Gansert, J.; Andtbacka, R.H.I.; Kaufman, H.L. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol., 2018, 36(17), 1658-1667.
[http://dx.doi.org/10.1200/JCO.2017.73.7379] [PMID: 28981385]
[45]
Freedman, J.D.; Duffy, M.R.; Lei-Rossmann, J.; Muntzer, A.; Scott, E.M.; Hagel, J.; Campo, L.; Bryant, R.J.; Verrill, C.; Lambert, A.; Miller, P.; Champion, B.R.; Seymour, L.W.; Fisher, K.D. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res., 2018, 78(24), 6852-6865.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1750] [PMID: 30449733]
[46]
Busse, D.; de la Rosa, M.; Hobiger, K.; Thurley, K.; Flossdorf, M.; Scheffold, A.; Höfer, T. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. USA, 2010, 107(7), 3058-3063.
[http://dx.doi.org/10.1073/pnas.0812851107] [PMID: 20133667]
[47]
Liu, W.; Dai, E.; Liu, Z.; Ma, C.; Guo, Z.S.; Bartlett, D.L. In situ therapeutic cancer vaccination with an oncolytic virus expressing membrane-tethered IL-2. Mol. Ther. Oncolytics, 2020, 17, 350-360.
[http://dx.doi.org/10.1016/j.omto.2020.04.006] [PMID: 32405533]
[48]
Guo, Z.S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W.J.; He, Y.; Liu, Z.; Bartlett, D.L. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J. Immunother. Cancer, 2019, 7(1), 6.
[http://dx.doi.org/10.1186/s40425-018-0495-7] [PMID: 30626434]
[49]
Torres-Domínguez, L.E.; McFadden, G. Poxvirus oncolytic virotherapy. Expert Opin. Biol. Ther., 2019, 19(6), 561-573.
[http://dx.doi.org/10.1080/14712598.2019.1600669] [PMID: 30919708]
[50]
Zeh, H.J.; Downs-Canner, S.; McCart, J.A.; Guo, Z.S.; Rao, U.N.M.; Ramalingam, L.; Thorne, S.H.; Jones, H.L.; Kalinski, P.; Wieckowski, E.; O’Malley, M.E.; Daneshmand, M.; Hu, K.; Bell, J.C.; Hwang, T.H.; Moon, A.; Breitbach, C.J.; Kirn, D.H.; Bartlett, D.L. First-in-man study of western reserve strain oncolytic vaccinia virus: Safety, systemic spread, and antitumor activity. Mol. Ther., 2015, 23(1), 202-214.
[http://dx.doi.org/10.1038/mt.2014.194] [PMID: 25292189]
[51]
Pearl, T.M.; Markert, J.M.; Cassady, K.A.; Ghonime, M.G. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol. Ther. Oncolytics, 2019, 13, 14-21.
[http://dx.doi.org/10.1016/j.omto.2019.03.001] [PMID: 30997392]
[52]
Rajani, K.; Parrish, C.; Kottke, T.; Thompson, J.; Zaidi, S.; Ilett, L.; Shim, K.G.; Diaz, R.M.; Pandha, H.; Harrington, K.; Coffey, M.; Melcher, A.; Vile, R. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol. Ther., 2016, 24(1), 166-174.
[http://dx.doi.org/10.1038/mt.2015.156] [PMID: 26310630]
[53]
McCart, J.A.; Ward, J.M.; Lee, J.; Hu, Y.; Alexander, H.R.; Libutti, S.K.; Moss, B.; Bartlett, D.L. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res., 2001, 61(24), 8751-8757.
[PMID: 11751395]
[54]
Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.S.; Falls, T.; Burns, J.; Garcia, V.; Kanji, F.; Evgin, L.; Hu, K.; Paradis, F.; Knowles, S.; Hwang, T.H.; Vanderhyden, B.C.; Auer, R.; Kirn, D.H.; Bell, J.C. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther., 2012, 20(4), 749-758.
[http://dx.doi.org/10.1038/mt.2011.276] [PMID: 22186794]
[55]
Bai, F.L.; Yu, Y.H.; Tian, H.; Ren, G.P.; Wang, H.; Zhou, B.; Han, X.H.; Yu, Q.Z.; Li, D.S. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol. Ther., 2014, 15(9), 1226-1238.
[http://dx.doi.org/10.4161/cbt.29686] [PMID: 24971746]
[56]
Qin, H.; Valentino, J.; Manna, S.; Tripathi, P.K.; Bhattacharya-Chatterjee, M.; Foon, K.A.; O’Malley, B.W., Jr; Chatterjee, S.K. Gene therapy for head and neck cancer using vaccinia virus expressing IL-2 in a murine model, with evidence of immune suppression. Mol. Ther., 2001, 4(6), 551-558.
[http://dx.doi.org/10.1006/mthe.2001.0493] [PMID: 11735339]
[57]
Ekeke, C.N.; Russell, K.L.; Joubert, K.; Bartlett, D.L.; Luketich, J.D.; Soloff, A.C.; Guo, Z.S.; Lotze, M.T.; Dhupar, R. Fighting fire with fire: oncolytic virotherapy for thoracic malignancies. Ann. Surg. Oncol., 2021, 28(5), 2715-2727.
[http://dx.doi.org/10.1245/s10434-020-09477-4] [PMID: 33575873]
[58]
Ross, S.H.; Cantrell, D.A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol., 2018, 36(1), 411-433.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053352] [PMID: 29677473]
[59]
Suraweera, C.D.; Anasir, M.I.; Chugh, S.; Javorsky, A.; Impey, R.E.; Hasan Zadeh, M.; Soares da Costa, T.P.; Hinds, M.G.; Kvansakul, M. Structural insight into tanapoxvirus-mediated inhibition of apoptosis. FEBS J., 2020, 287(17), 3733-3750.
[http://dx.doi.org/10.1111/febs.15365] [PMID: 32412687]
[60]
Gschwandtner, M.; Derler, R.; Midwood, K.S. More than just attractive: How CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol., 2019, 10, 2759.
[http://dx.doi.org/10.3389/fimmu.2019.02759] [PMID: 31921102]
[61]
Zhang, T.; Kordish, D.H.; Suryawanshi, Y.R.; Eversole, R.R.; Kohler, S.; Mackenzie, C.D.; Essani, K. Oncolytic tanapoxvirus expressing interleukin-2 is capable of inducing the regression of human melanoma tumors in the absence of T cells. Curr. Cancer Drug Targets, 2018, 18(6), 577-591.
[http://dx.doi.org/10.2174/1568009617666170630143931] [PMID: 28669340]
[62]
Dempe, S.; Lavie, M.; Struyf, S.; Bhat, R.; Verbeke, H.; Paschek, S.; Berghmans, N.; Geibig, R.; Rommelaere, J.; Van Damme, J.; Dinsart, C. Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: Implication of leucocyte recruitment. Cancer Immunol. Immunother., 2012, 61(11), 2113-2123.
[http://dx.doi.org/10.1007/s00262-012-1279-4] [PMID: 22576056]
[63]
Angelova, A.L.; Aprahamian, M.; Grekova, S.P.; Hajri, A.; Leuchs, B.; Giese, N.A.; Dinsart, C.; Herrmann, A.; Balboni, G.; Rommelaere, J.; Raykov, Z. Improvement of gemcitabine-based therapy of pancreatic carcinoma by means of oncolytic parvovirus H-1PV. Clin. Cancer Res., 2009, 15(2), 511-519.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1088] [PMID: 19147756]
[64]
Elankumaran, S.; Rockemann, D.; Samal, S.K. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J. Virol., 2006, 80(15), 7522-7534.
[http://dx.doi.org/10.1128/JVI.00241-06] [PMID: 16840332]
[65]
Zeng, J.; Fournier, P.; Schirrmacher, V. Induction of interferon-α and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology, 2002, 297(1), 19-30.
[http://dx.doi.org/10.1006/viro.2002.1413] [PMID: 12083832]
[66]
Sampath, P.; Thorne, S.H. Arming viruses in multi-mechanistic oncolytic viral therapy: Current research and future developments, with emphasis on poxviruses. Oncolytic Virother., 2013, 3, 1-9.
[PMID: 27512659]
[67]
Hu, J.; Wang, H.; Gu, J.; Liu, X.; Zhou, X. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim. Biophys. Sin., 2018, 50(10), 1018-1027.
[http://dx.doi.org/10.1093/abbs/gmy096] [PMID: 30137199]
[68]
Wu, Y.; He, J.; Geng, J.; An, Y.; Ye, X.; Yan, S.; Yu, Q.; Yin, J.; Zhang, Z.; Li, D. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. Eur. J. Pharmacol., 2017, 802, 85-92.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.042] [PMID: 28246027]
[69]
Mohamed Amin, Z.; Che Ani, M.A.; Tan, S.W.; Yeap, S.K.; Alitheen, N.B.; Syed Najmuddin, S.U.F.; Kalyanasundram, J.; Chan, S.C.; Veerakumarasivam, A.; Chia, S.L.; Yusoff, K. Evaluation of a recombinant Newcastle disease virus expressing human IL12 against human breast cancer. Sci. Rep., 2019, 9(1), 13999.
[http://dx.doi.org/10.1038/s41598-019-50222-z] [PMID: 31570732]
[70]
Li, P.; Zhang, H.; Ji, L.; Wang, Z. A review of clinical and preclinical studies on therapeutic strategies using interleukin-12 in cancer therapy and the protective role of interleukin-12 in hematological recovery in chemoradiotherapy. Med. Sci. Monit., 2020, 26, e923855-e1.
[http://dx.doi.org/10.12659/MSM.923855] [PMID: 32811803]
[71]
Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy. Cells, 2020, 9(2), 400.
[http://dx.doi.org/10.3390/cells9020400] [PMID: 32050597]
[72]
Lee, S.H.; Fragoso, M.F.; Biron, C.A. Cutting edge: A novel mechanism bridging innate and adaptive immunity: IL-12 induction of CD25 to form high-affinity IL-2 receptors on NK cells. J. Immunol., 2012, 189(6), 2712-2716.
[http://dx.doi.org/10.4049/jimmunol.1201528] [PMID: 22888135]
[73]
Gollob, J.A.; Veenstra, K.G.; Parker, R.A.; Mier, J.W.; McDermott, D.F.; Clancy, D.; Tutin, L.; Koon, H.; Atkins, M.B. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J. Clin. Oncol., 2003, 21(13), 2564-2573.
[http://dx.doi.org/10.1200/JCO.2003.12.119] [PMID: 12829677]
[74]
Zaki, M.H.; Wysocka, M.; Everetts, S.E.; Rook, A.H.; Wang, K.S.; French, L.E.; Ritz, J. Synergistic enhancement of cell-mediated immunity by interleukin-12 plus interleukin-2: Basis for therapy of cutaneous T cell lymphoma. J. Invest. Dermatol., 2002, 118(2), 366-371.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01646.x] [PMID: 11841558]
[75]
Bradburn, M.J.; Clark, T.G.; Love, S.B.; Altman, D.G. Survival analysis part III: Multivariate data analysis – choosing a model and assessing its adequacy and fit. Br. J. Cancer, 2003, 89(4), 605-611.
[http://dx.doi.org/10.1038/sj.bjc.6601120] [PMID: 12915864]
[76]
Zamarin, D. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med, 2014, 6(226), 226ra32-226ra32.
[http://dx.doi.org/10.1126/scitranslmed.3008095]
[77]
Santos, J.M.; Cervera-Carrascon, V.; Havunen, R.; Zafar, S.; Siurala, M.; Sorsa, S.; Anttila, M.; Kanerva, A.; Hemminki, A. Adenovirus coding for interleukin-2 and tumor necrosis factor alpha replaces lymphodepleting chemotherapy in adoptive T cell therapy. Mol. Ther., 2018, 26(9), 2243-2254.
[http://dx.doi.org/10.1016/j.ymthe.2018.06.001] [PMID: 30017877]
[78]
Tähtinen, S.; Blattner, C.; Vähä-Koskela, M.; Saha, D.; Siurala, M.; Parviainen, S.; Utikal, J.; Kanerva, A.; Umansky, V.; Hemminki, A. T-cell therapy enabling adenoviruses coding for IL2 and TNFα induce systemic immunomodulation in mice with spontaneous melanoma. J. Immunother., 2016, 39(9), 343-354.
[http://dx.doi.org/10.1097/CJI.0000000000000144] [PMID: 27741089]
[79]
Havunen, R.; Siurala, M.; Sorsa, S.; Grönberg-Vähä-Koskela, S.; Behr, M.; Tähtinen, S.; Santos, J.M.; Karell, P.; Rusanen, J.; Nettelbeck, D.M.; Ehrhardt, A.; Kanerva, A.; Hemminki, A. Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol. Ther. Oncolytics, 2017, 4, 77-86.
[http://dx.doi.org/10.1016/j.omto.2016.12.004] [PMID: 28345026]
[80]
Siurala, M.; Havunen, R.; Saha, D.; Lumen, D.; Airaksinen, A.J.; Tähtinen, S.; Cervera-Carrascon, V.; Bramante, S.; Parviainen, S.; Vähä-Koskela, M.; Kanerva, A.; Hemminki, A. Adenoviral delivery of tumor necrosis factor-α and interleukin-2 enables successful adoptive cell therapy of immunosuppressive melanoma. Mol. Ther., 2016, 24(8), 1435-1443.
[http://dx.doi.org/10.1038/mt.2016.137] [PMID: 27357626]
[81]
Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov., 2015, 14(9), 642-662.
[http://dx.doi.org/10.1038/nrd4663] [PMID: 26323545]
[82]
Farassati, F.; Yang, A.D.; Lee, P.W.K. Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat. Cell Biol., 2001, 3(8), 745-750.
[http://dx.doi.org/10.1038/35087061] [PMID: 11483960]
[83]
Liu, B.L.; Robinson, M.; Han, Z-Q.; Branston, R.H.; English, C.; Reay, P.; McGrath, Y.; Thomas, S.K.; Thornton, M.; Bullock, P.; Love, C.A.; Coffin, R.S. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther., 2003, 10(4), 292-303.
[http://dx.doi.org/10.1038/sj.gt.3301885] [PMID: 12595888]
[84]
Goldsmith, K.; Chen, W.; Johnson, D.C.; Hendricks, R.L. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J. Exp. Med., 1998, 187(3), 341-348.
[http://dx.doi.org/10.1084/jem.187.3.341] [PMID: 9449714]
[85]
Tomazin, R.; van Schoot, N.E.G.; Goldsmith, K.; Jugovic, P.; Sempé, P.; Früh, K.; Johnson, D.C. Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol., 1998, 72(3), 2560-2563.
[http://dx.doi.org/10.1128/JVI.72.3.2560-2563.1998] [PMID: 9499125]
[86]
Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788.
[http://dx.doi.org/10.1200/JCO.2014.58.3377] [PMID: 26014293]
[87]
Harrow, S.; Papanastassiou, V.; Harland, J.; Mabbs, R.; Petty, R.; Fraser, M.; Hadley, D.; Patterson, J.; Brown, S.M.; Rampling, R. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: Safety data and long-term survival. Gene Ther., 2004, 11(22), 1648-1658.
[http://dx.doi.org/10.1038/sj.gt.3302289] [PMID: 15334111]
[88]
Streby, K.A.; Geller, J.I.; Currier, M.A.; Warren, P.S.; Racadio, J.M.; Towbin, A.J.; Vaughan, M.R.; Triplet, M.; Ott-Napier, K.; Dishman, D.J.; Backus, L.R.; Stockman, B.; Brunner, M.; Simpson, K.; Spavin, R.; Conner, J.; Cripe, T.P. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin. Cancer Res., 2017, 23(14), 3566-3574.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2900] [PMID: 28495911]
[89]
Fukuhara, H.; Todo, T. Oncolytic herpes simplex virus type 1 and host immune responses. Curr. Cancer Drug Targets, 2007, 7(2), 149-155.
[http://dx.doi.org/10.2174/156800907780058907] [PMID: 17346106]
[90]
Uche, I.K.; Kousoulas, K.G.; Rider, P.J.F. The effect of herpes simplex virus-type-1 (HSV-1) oncolytic immunotherapy on the tumor microenvironment. Viruses, 2021, 13(7), 1200.
[http://dx.doi.org/10.3390/v13071200] [PMID: 34206677]
[91]
Liu, Z.; Ravindranathan, R.; Kalinski, P.; Guo, Z.S.; Bartlett, D.L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun., 2017, 8(1), 14754.
[http://dx.doi.org/10.1038/ncomms14754] [PMID: 28345650]
[92]
Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front. Immunol., 2020, 11, 683.
[http://dx.doi.org/10.3389/fimmu.2020.00683] [PMID: 32411132]
[93]
Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium signaling and cardiac arrhythmias. Circ. Res., 2017, 120(12), 1969-1993.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310083] [PMID: 28596175]
[94]
Cho, H.K. Reduction of immune inhibitory myeloid derived suppressor cells by low dose sunitinib combined with a cancer vaccine to provide therapeutic benefit to tumor-bearing mice; American Society of Clinical Oncology, 2017.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e23084]
[95]
Thomas, M.A.; Spencer, J.F.; La Regina, M.C.; Dhar, D.; Tollefson, A.E.; Toth, K.; Wold, W.S.M. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res., 2006, 66(3), 1270-1276.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3497] [PMID: 16452178]
[96]
Medler, T.R.; Cotechini, T.; Coussens, L.M. Immune response to cancer therapy: Mounting an effective antitumor response and mechanisms of resistance. Trends Cancer, 2015, 1(1), 66-75.
[http://dx.doi.org/10.1016/j.trecan.2015.07.008] [PMID: 26457331]
[97]
Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[98]
Santos, J.M.; Heiniö, C.; Cervera-Carrascon, V.; Quixabeira, D.C.A.; Siurala, M.; Havunen, R.; Butzow, R.; Zafar, S.; de Gruijl, T.; Lassus, H.; Kanerva, A.; Hemminki, A. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J. Immunother. Cancer, 2020, 8(1), e000188.
[http://dx.doi.org/10.1136/jitc-2019-000188] [PMID: 31940588]
[99]
Klebanoff, C.; Khong, H.; Antony, P.; Palmer, D.; Restifo, N. Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol., 2005, 26(2), 111-117.
[http://dx.doi.org/10.1016/j.it.2004.12.003] [PMID: 15668127]
[100]
Rosenberg, S.A.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; Hughes, M.S.; Phan, G.Q.; Citrin, D.E.; Restifo, N.P.; Robbins, P.F.; Wunderlich, J.R.; Morton, K.E.; Laurencot, C.M.; Steinberg, S.M.; White, D.E.; Dudley, M.E. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res., 2011, 17(13), 4550-4557.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0116] [PMID: 21498393]
[101]
Dudley, M.E.; Wunderlich, J.R.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Restifo, N.P.; Royal, R.E.; Kammula, U.; White, D.E.; Mavroukakis, S.A.; Rogers, L.J.; Gracia, G.J.; Jones, S.A.; Mangiameli, D.P.; Pelletier, M.M.; Gea-Banacloche, J.; Robinson, M.R.; Berman, D.M.; Filie, A.C.; Abati, A.; Rosenberg, S.A. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol., 2005, 23(10), 2346-2357.
[http://dx.doi.org/10.1200/JCO.2005.00.240] [PMID: 15800326]
[102]
Aranda, F.; Buqué, A.; Bloy, N.; Castoldi, F.; Eggermont, A.; Cremer, I.; Fridman, W.H.; Fucikova, J.; Galon, J.; Spisek, R.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Adoptive cell transfer for oncological indications. OncoImmunology, 2015, 4(11), e1046673.
[http://dx.doi.org/10.1080/2162402X.2015.1046673] [PMID: 26451319]
[103]
Rosenberg, S.A. IL-2: The first effective immunotherapy for human cancer. J. Immunol., 2014, 192(12), 5451-5458.
[http://dx.doi.org/10.4049/jimmunol.1490019] [PMID: 24907378]
[104]
Khammari, A.; Nguyen, J.M.; Saint-Jean, M.; Knol, A.C.; Pandolfino, M.C.; Quereux, G.; Brocard, A.; Peuvrel, L.; Saiagh, S.; Bataille, V.; Limacher, J.M.; Dreno, B. Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients. Cancer Immunol. Immunother., 2015, 64(7), 805-815.
[http://dx.doi.org/10.1007/s00262-015-1691-7] [PMID: 25846669]
[105]
Stewart, A.K.; Lassam, N.J.; Quirt, I.C.; Bailey, D.J.; Rotstein, L.E.; Krajden, M.; Dessureault, S.; Gallinger, S.; Cappe, D.; Wan, Y.; Addison, C.L.; Moen, R.C.; Gauldie, J.; Graham, F.L. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther., 1999, 6(3), 350-363.
[http://dx.doi.org/10.1038/sj.gt.3300833] [PMID: 10435085]
[106]
Vassilev, L.; Ranki, T.; Joensuu, T.; Jäger, E.; Karbach, J.; Wahle, C.; Partanen, K.; Kairemo, K.; Alanko, T.; Turkki, R.; Linder, N.; Lundin, J.; Ristimäki, A.; Kankainen, M.; Hemminki, A.; Backman, C.; Dienel, K.; von Euler, M.; Haavisto, E.; Hakonen, T.; Juhila, J.; Jäderberg, M.; Priha, P.; Vuolanto, A.; Pesonen, S. Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8+ T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. OncoImmunology, 2015, 4(7), e1017702.
[http://dx.doi.org/10.1080/2162402X.2015.1017702] [PMID: 26140248]
[107]
Endo, Y.; Sakai, R.; Ouchi, M.; Onimatsu, H.; Hioki, M.; Kagawa, S.; Uno, F.; Watanabe, Y.; Urata, Y.; Tanaka, N.; Fujiwara, T. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 2008, 27(17), 2375-2381.
[http://dx.doi.org/10.1038/sj.onc.1210884] [PMID: 17982491]
[108]
Sang, Y.; Miller, L.C.; Blecha, F. Macrophage polarization in virus-host interactions. J. Clin. Cell. Immunol., 2015, 6(2), 311.
[PMID: 26213635]
[109]
Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol., 2012, 12(3), 180-190.
[http://dx.doi.org/10.1038/nri3156] [PMID: 22343569]
[110]
Ahmadzadeh, M.; Rosenberg, S.A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood, 2006, 107(6), 2409-2414.
[http://dx.doi.org/10.1182/blood-2005-06-2399] [PMID: 16304057]
[111]
Rabinovici, R.; Feuerstein, G.; Abdullah, F.; Whiteford, M.; Borboroglu, P.; Sheikh, E.; Phillip, D.R.; Ovadia, P.; Bobroski, L.; Bagasra, O.; Neville, L.F. Locally produced tumor necrosis factor-α mediates interleukin-2-induced lung injury. Circ. Res., 1996, 78(2), 329-336.
[http://dx.doi.org/10.1161/01.RES.78.2.329] [PMID: 8575077]
[112]
Reya, T.; Contractor, N.V.; Couzens, M.S.; Wasik, M.A.; Emerson, S.G.; Carding, S.R. Abnormal myelocytic cell development in interleukin-2 (IL-2)-deficient mice: Evidence for the involvement of IL-2 in myelopoiesis. Blood, 1998, 91(8), 2935-2947.
[http://dx.doi.org/10.1182/blood.V91.8.2935.2935_2935_2947] [PMID: 9531604]
[113]
Mahmud, A.; Feely, J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension, 2005, 46(5), 1118-1122.
[http://dx.doi.org/10.1161/01.HYP.0000185463.27209.b0] [PMID: 16216991]
[114]
Guzik, T.J.; Hoch, N.E.; Brown, K.A.; McCann, L.A.; Rahman, A.; Dikalov, S.; Goronzy, J.; Weyand, C.; Harrison, D.G. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J. Exp. Med., 2007, 204(10), 2449-2460.
[http://dx.doi.org/10.1084/jem.20070657] [PMID: 17875676]
[115]
Sivakumar, P.V.; Garcia, R.; Waggie, K.S.; Anderson-Haley, M.; Nelson, A.; Hughes, S.D. Comparison of vascular leak syndrome in mice treated with IL21 or IL2. Comp. Med., 2013, 63(1), 13-21.
[PMID: 23561933]
[116]
Huang, C.M.; Elin, R.J.; Ruddel, M.; Sliva, C.; Lotze, M.T.; Rosenberg, S.A. Changes in laboratory results for cancer patients treated with interleukin-2. Clin. Chem., 1990, 36(3), 431-434.
[http://dx.doi.org/10.1093/clinchem/36.3.431] [PMID: 2311209]
[117]
Kradin, R.; Lazarus, D.S.; Dubinett, S.M.; Gifford, J.; Grove, B.; Kurnick, J.T.; Preffer, F.I.; Pinto, C.E.; Davidson, E.; Callahan, R.; Strauss, H.W. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet, 1989, 333(8638), 577-580.
[http://dx.doi.org/10.1016/S0140-6736(89)91609-7] [PMID: 2564111]
[118]
Dudley, M.E.; Gross, C.A.; Langhan, M.M.; Garcia, M.R.; Sherry, R.M.; Yang, J.C.; Phan, G.Q.; Kammula, U.S.; Hughes, M.S.; Citrin, D.E.; Restifo, N.P.; Wunderlich, J.R.; Prieto, P.A.; Hong, J.J.; Langan, R.C.; Zlott, D.A.; Morton, K.E.; White, D.E.; Laurencot, C.M.; Rosenberg, S.A. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res., 2010, 16(24), 6122-6131.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1297] [PMID: 20668005]
[119]
Besser, M.J.; Shapira-Frommer, R.; Itzhaki, O.; Treves, A.J.; Zippel, D.B.; Levy, D.; Kubi, A.; Shoshani, N.; Zikich, D.; Ohayon, Y.; Ohayon, D.; Shalmon, B.; Markel, G.; Yerushalmi, R.; Apter, S.; Ben-Nun, A.; Ben-Ami, E.; Shimoni, A.; Nagler, A.; Schachter, J. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res., 2013, 19(17), 4792-4800.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0380] [PMID: 23690483]
[120]
Ellebaek, E.; Iversen, T.Z.; Junker, N.; Donia, M.; Engell-Noerregaard, L.; Met, Ö.; Hölmich, L.R.; Andersen, R.S.; Hadrup, S.R.; Andersen, M.H. thor Straten, P.; Svane, I.M. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J. Transl. Med., 2012, 10(1), 169.
[http://dx.doi.org/10.1186/1479-5876-10-169] [PMID: 22909342]
[121]
Ge, M.Q.; Ho, A.W.S.; Tang, Y.; Wong, K.H.S.; Chua, B.Y.L.; Gasser, S.; Kemeny, D.M. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. J. Immunol., 2012, 189(5), 2099-2109.
[http://dx.doi.org/10.4049/jimmunol.1103474] [PMID: 22869906]
[122]
Kline, J.; Zhang, L.; Battaglia, L.; Cohen, K.S.; Gajewski, T.F. Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. J. Immunol., 2012, 188(6), 2630-2642.
[http://dx.doi.org/10.4049/jimmunol.1100845] [PMID: 22312128]
[123]
Zhang, B.; Karrison, T.; Rowley, D.A.; Schreiber, H. IFN-γ and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest., 2008, 118(4), 1398-1404.
[http://dx.doi.org/10.1172/JCI33522] [PMID: 18317595]
[124]
Ranki, T.; Pesonen, S.; Hemminki, A.; Partanen, K.; Kairemo, K.; Alanko, T.; Lundin, J.; Linder, N.; Turkki, R.; Ristimäki, A.; Jäger, E.; Karbach, J.; Wahle, C.; Kankainen, M.; Backman, C.; von Euler, M.; Haavisto, E.; Hakonen, T.; Heiskanen, R.; Jaderberg, M.; Juhila, J.; Priha, P.; Suoranta, L.; Vassilev, L.; Vuolanto, A.; Joensuu, T. Phase I study with ONCOS-102 for the treatment of solid tumors – an evaluation of clinical response and exploratory analyses of immune markers. J. Immunother. Cancer, 2016, 4(1), 17.
[http://dx.doi.org/10.1186/s40425-016-0121-5] [PMID: 26981247]
[125]
Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The other side of CAR T-cell therapy: Cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39(39), 433-444.
[http://dx.doi.org/10.1200/EDBK_238691] [PMID: 31099694]
[126]
Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; Kirkwood, J.M.; Gajewski, T.F.; Chen, L.; Gorski, K.S.; Anderson, A.A.; Diede, S.J.; Lassman, M.E.; Gansert, J.; Hodi, F.S.; Long, G.V. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell, 2017, 170(6), 1109-1119.e10.
[http://dx.doi.org/10.1016/j.cell.2017.08.027] [PMID: 28886381]
[127]
Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell, 2017, 32(2), 253-267.e5.
[http://dx.doi.org/10.1016/j.ccell.2017.07.006] [PMID: 28810147]
[128]
Dupic, T.; Marcou, Q.; Walczak, A.M.; Mora, T. Genesis of the αβ T-cell receptor. PLOS Comput. Biol., 2019, 15(3), e1006874.
[http://dx.doi.org/10.1371/journal.pcbi.1006874] [PMID: 30830899]
[129]
Rosati, E.; Dowds, C.M.; Liaskou, E.; Henriksen, E.K.K.; Karlsen, T.H.; Franke, A. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol., 2017, 17(1), 61.
[http://dx.doi.org/10.1186/s12896-017-0379-9] [PMID: 28693542]
[130]
Aghbash, P.S.; Hemmat, N.; Fathi, H.; Baghi, H.B. Monoclonal antibodies in cervical malignancy-related HPV. Front. Oncol., 2022, 12, 904790.
[http://dx.doi.org/10.3389/fonc.2022.904790] [PMID: 36276117]
[131]
Gujar, S.; Bell, J.; Diallo, J.S. SnapShot: Cancer immunotherapy with oncolytic viruses. Cell, 2019, 176(5), 1240-1240.e1.
[http://dx.doi.org/10.1016/j.cell.2019.01.051] [PMID: 30794777]
[132]
Russell, S.J.; Barber, G.N. Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell, 2018, 33(4), 599-605.
[http://dx.doi.org/10.1016/j.ccell.2018.03.011] [PMID: 29634947]
[133]
Chaurasiya, S.; Chen, N.G.; Fong, Y. Oncolytic viruses and immunity. Curr. Opin. Immunol., 2018, 51, 83-90.
[http://dx.doi.org/10.1016/j.coi.2018.03.008] [PMID: 29550660]
[134]
Yun, C.O.; Hong, J.; Yoon, A.R. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front. Immunol., 2022, 13, 953410.
[http://dx.doi.org/10.3389/fimmu.2022.953410] [PMID: 36091031]
[135]
Laurie, S.A.; Bell, J.C.; Atkins, H.L.; Roach, J.; Bamat, M.K.; O’Neil, J.D.; Roberts, M.S.; Groene, W.S.; Lorence, R.M. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin. Cancer Res., 2006, 12(8), 2555-2562.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2038] [PMID: 16638865]
[136]
Morris, D.G.; Feng, X.; DiFrancesco, L.M.; Fonseca, K.; Forsyth, P.A.; Paterson, A.H.; Coffey, M.C.; Thompson, B. REO-001: A phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin®) in patients with advanced solid tumors. Invest. New Drugs, 2013, 31(3), 696-706.
[http://dx.doi.org/10.1007/s10637-012-9865-z] [PMID: 22886613]
[137]
Dillon, M.F.; Hill, A.D.K.; Quinn, C.M.; McDermott, E.W.; O’Higgins, N. A pathologic assessment of adequate margin status in breast-conserving therapy. Ann. Surg. Oncol., 2006, 13(3), 333-339.
[http://dx.doi.org/10.1245/ASO.2006.03.098] [PMID: 16474911]
[138]
Nemunaitis, J.; Senzer, N.; Sarmiento, S.; Zhang, Y-A.; Arzaga, R.; Sands, B.; Maples, P.; Tong, A.W. A phase I trial of intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer Gene Ther., 2007, 14(11), 885-893.
[http://dx.doi.org/10.1038/sj.cgt.7701080] [PMID: 17704755]
[139]
Bramante, S.; Koski, A.; Liikanen, I.; Vassilev, L.; Oksanen, M.; Siurala, M.; Heiskanen, R.; Hakonen, T.; Joensuu, T.; Kanerva, A.; Pesonen, S.; Hemminki, A. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. OncoImmunology, 2016, 5(2), e1078057.
[http://dx.doi.org/10.1080/2162402X.2015.1078057] [PMID: 27057453]
[140]
Li, J-L.; Liu, H-L.; Zhang, X-R.; Xu, J-P.; Hu, W-K.; Liang, M.; Chen, S-Y.; Hu, F.; Chu, D-T. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther., 2009, 16(3), 376-382.
[http://dx.doi.org/10.1038/gt.2008.179] [PMID: 19092859]
[141]
Luo, C.; Wang, P.; He, S.; Zhu, J.; Shi, Y.; Wang, J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front. Oncol., 2022, 12, 919072.
[http://dx.doi.org/10.3389/fonc.2022.919072] [PMID: 35795050]
[142]
Xia, C.; Zhang, Z.; Xue, Y.; Wang, P.; Liu, Y. Mechanisms of the increase in the permeability of the blood–tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J. Neurooncol., 2009, 94(1), 41-50.
[http://dx.doi.org/10.1007/s11060-009-9812-9] [PMID: 19234812]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy