Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Venetoclax Synergizes Sunitinib in Renal Cell Carcincoma through Inhibition of Bcl-2

Author(s): Yuanjia Tang, Tao Song, Liangkui Gao* and Fei Mao*

Volume 23, Issue 18, 2023

Published on: 06 September, 2023

Page: [2027 - 2034] Pages: 8

DOI: 10.2174/1871520623666230815143303

Price: $65

Abstract

Aims: More effective treatment options for patients with renal cell carcinoma (RCC) are needed, in particular advanced RCC.

Background: Sunitinib, a multitarget tyrosine kinase inhibitor, is a first-line treatment of metastatic RCC. However, the management of sunitinib-induced adverse events and resistance is complex. In hematological malignancies, effective targeting of anti-apoptotic proteins such as Bcl-2 has been achieved, but limited progress has been made in solid tumors.

Objective: This work systematically investigated the therapeutic potential of the combination of sunitinib and venetoclax, a Bcl-2 inhibitor, in preclinical RCC models.

Methods: Quantitative analysis of drug interactions was performed. Cell viability was examined after drug treatment or Bcl-2 siRNA depletion. RCC xenograft mouse model was applied to validate the efficacy of sunitinib and venetoclax.

Results: A strong synergistic interaction between sunitinib and venetoclax was observed across a range of different dose levels in all tested RCC cell lines. Sequential treatment studies show that the sequential addition of venetoclax and then sunitinib is superior to concurrent treatment and the sequential addition of sunitinib and then venetoclax in decreasing RCC cell viability. The sensitivity of RCC cell lines to venetoclax treatment negatively correlates with their Bcl-2 levels. Specific depletion of Bcl-2 mimics the synergistic effects of venetoclax with sunitinib. Treatment of mice implanted with high Bcl-2-expressing RCC cells reveals that a combination of venetoclax and sunitinib at a non-toxic dose displays complete regression of tumor growth throughout the whole duration of treatment.

Conclusion: Our work demonstrates that inhibiting Bcl-2 by venetoclax synergistically enhances sunitinib’s efficacy in RCC. Venetoclax holds great potential as a viable option for clinical use.

Graphical Abstract

[1]
Klatte, T.; Rossi, S.H.; Stewart, G.D. Prognostic factors and prognostic models for renal cell carcinoma: A literature review. World J. Urol., 2018, 36(12), 1943-1952.
[http://dx.doi.org/10.1007/s00345-018-2309-4] [PMID: 29713755]
[2]
Zhao, J.; Eyzaguirre, E. Clear cell papillary renal cell carcinoma. Arch. Pathol. Lab. Med., 2019, 143(9), 1154-1158.
[http://dx.doi.org/10.5858/arpa.2018-0121-RS] [PMID: 30672334]
[3]
Porta, C.; Schmidinger, M. Renal cell carcinoma treatment after first-line combinations. Lancet Oncol., 2019, 20(10), 1332-1334.
[http://dx.doi.org/10.1016/S1470-2045(19)30510-8] [PMID: 31427203]
[4]
Hahn, A.W.; Klaassen, Z.; Agarwal, N.; Haaland, B.; Esther, J.; Ye, X.Y.; Wang, X.; Pal, S.K.; Wallis, C.J.D. First-line treatment of metastatic renal cell carcinoma: A systematic review and network meta-analysis. Eur. Urol. Oncol., 2019, 2(6), 708-715.
[http://dx.doi.org/10.1016/j.euo.2019.09.002] [PMID: 31588018]
[5]
Joosten, S.C.; Hamming, L.; Soetekouw, P.M.; Aarts, M.J.; Veeck, J.; van Engeland, M.; Tjan-Heijnen, V.C. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta, 2015, 1855(1), 1-16.
[PMID: 25446042]
[6]
Sharma, R.; Kadife, E.; Myers, M.; Kannourakis, G.; Prithviraj, P.; Ahmed, N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res., 2021, 40(1), 186.
[http://dx.doi.org/10.1186/s13046-021-01961-3] [PMID: 34099013]
[7]
Guerra, V.A.; DiNardo, C.; Konopleva, M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract. Res. Clin. Haematol., 2019, 32(2), 145-153.
[http://dx.doi.org/10.1016/j.beha.2019.05.008] [PMID: 31203996]
[8]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[9]
Timucin, A.C.; Basaga, H.; Kutuk, O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med. Res. Rev., 2019, 39(1), 146-175.
[http://dx.doi.org/10.1002/med.21516] [PMID: 29846950]
[10]
Nordin, N.; Abd Ghani, M.F.; Othman, R. Molecular docking study of naturally derived flavonoids with antiapoptotic BCL-2 and BCLXL proteins toward ovarian cancer treatment. J. Pharm. Bioallied Sci., 2020, 12(6 2), 676-175.
[http://dx.doi.org/10.4103/jpbs.JPBS_272_19] [PMID: 33828360]
[11]
Song, S.; Chen, Q.; Li, Y.; Lei, G.; Scott, A.; Huo, L.; Li, C.Y.; Estrella, J.S.; Correa, A.; Pizzi, M.P.; Ma, L.; Jin, J.; Liu, B.; Wang, Y.; Xiao, L.; Hofstetter, W.L.; Lee, J.H.; Weston, B.; Bhutani, M.; Shanbhag, N.; Johnson, R.L.; Gan, B.; Wei, S.; Ajani, J.A. Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut, 2021, 70(12), 2238-2248.
[http://dx.doi.org/10.1136/gutjnl-2020-321175] [PMID: 33487592]
[12]
Maji, S.; Panda, S.; Samal, S.K.; Shriwas, O.; Rath, R.; Pellecchia, M.; Emdad, L.; Das, S.K.; Fisher, P.B.; Dash, R. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv. Cancer Res., 2018, 137, 37-75.
[http://dx.doi.org/10.1016/bs.acr.2017.11.001] [PMID: 29405977]
[13]
Kausch, I.; Jiang, H.; Thode, B.; Doehn, C.; Krüger, S.; Jocham, D. Inhibition of bcl-2 enhances the efficacy of chemotherapy in renal cell carcinoma. Eur. Urol., 2005, 47(5), 703-709.
[http://dx.doi.org/10.1016/j.eururo.2004.11.013] [PMID: 15826766]
[14]
Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the right cell line for renal cell cancer research. Mol. Cancer, 2016, 15(1), 83.
[http://dx.doi.org/10.1186/s12943-016-0565-8] [PMID: 27993170]
[15]
Yadav, B.; Wennerberg, K.; Aittokallio, T.; Tang, J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput. Struct. Biotechnol. J., 2015, 13, 504-513.
[http://dx.doi.org/10.1016/j.csbj.2015.09.001] [PMID: 26949479]
[16]
Kontos, C.; Christodoulou, M.I.; Scorilas, A. Apoptosis-related BCL2-family members: Key players in chemotherapy. Anticancer. Agents Med. Chem., 2014, 14(3), 353-374.
[http://dx.doi.org/10.2174/18715206113139990091] [PMID: 23848200]
[17]
Cardenas, L.M.; Deluce, J.E.; Khan, S.; Gulam, O.; Maleki Vareki, S.; Fernandes, R.; Lalani, A.K.A. Next wave of targets in the treatment of advanced renal cell carcinoma. Curr. Oncol., 2022, 29(8), 5426-5441.
[http://dx.doi.org/10.3390/curroncol29080429] [PMID: 36005167]
[18]
Jia, Y.; Han, L.; Ramage, C.L.; Wang, Z.; Wang, C.C.; Yang, L.; Colla, S.; Ma, H.; Zhang, W.; Andreeff, M.; Daver, N.; Jain, N.; Jain, N.; Pemmaraju, N.; Bhalla, K.; Mustjoki, S.; Zhang, P.; Zheng, G.; Zhou, D.; Zhang, Q.; Konopleva, M. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica, 2023.
[19]
Daver, N.G.; Dail, M.; Garcia, J.S.; Jonas, B.A.; Yee, K.W.L.; Kelly, K.R.; Vey, N.; Assouline, S.; Roboz, G.J.; Paolini, S.; Pollyea, D.A.; Tafuri, A.; Brandwein, J.M.; Pigneux, A.; Powell, B.L.; Fenaux, P.; Olin, R.L.; Visani, G.; Martinelli, G.; Onishi, M.; Wang, J.; Huang, W.; Green, C.; Ott, M.G.; Hong, W.J.; Konopleva, M.Y.; Andreeff, M. Venetoclax and idasanutlin in relapsed/refractory AML: A nonrandomized, open-label phase 1b trial. Blood, 2023, 141(11), 1265-1276.
[http://dx.doi.org/10.1182/blood.2022016362] [PMID: 36265087]
[20]
Lew, T.E.; Seymour, J.F. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: lessons from monotherapy and chemotherapy combination. J. Hematol. Oncol., 2022, 15(1), 75.
[http://dx.doi.org/10.1186/s13045-022-01295-3] [PMID: 35659041]
[21]
Valko, Z.; Megyesfalvi, Z.; Schwendenwein, A.; Lang, C.; Paku, S.; Barany, N.; Ferencz, B.; Horvath-Rozsas, A.; Kovacs, I.; Schlegl, E.; Pozonec, V.; Boettiger, K.; Rezeli, M.; Marko-Varga, G.; Renyi-Vamos, F.; Hoda, M.A.; Klikovits, T.; Hoetzenecker, K.; Grusch, M.; Laszlo, V.; Dome, B.; Schelch, K. Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer. Br. J. Cancer, 2023, 128(10), 1850-1861.
[http://dx.doi.org/10.1038/s41416-023-02219-9] [PMID: 36918717]
[22]
Jin, J.; Xie, Y.; Zhang, J.S.; Wang, J.Q.; Dai, S.J.; He, W.; Li, S.Y.; Ashby, C.R., Jr; Chen, Z.S.; He, Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist. Updat., 2023, 67100929
[http://dx.doi.org/10.1016/j.drup.2023.100929] [PMID: 36739809]
[23]
Wang, D.; Jiang, Z.; Zhang, L. Concurrent and sequential administration of sunitinib malate and docetaxel in human non-small cell lung cancer cells and xenografts. Med. Oncol., 2012, 29(2), 600-606.
[http://dx.doi.org/10.1007/s12032-011-9905-0] [PMID: 21455800]
[24]
Porta, C.; Procopio, G.; Cartenì, G.; Sabbatini, R.; Bearz, A.; Chiappino, I.; Ruggeri, E.M.; Re, G.L.; Ricotta, R.; Zustovich, F.; Landi, L.; Calcagno, A.; Imarisio, I.; Verzoni, E.; Rizzo, M.; Paglino, C.; Guadalupi, V.; Bajetta, E. Sequential use of sorafenib and sunitinib in advanced renal-cell carcinoma (RCC): An Italian multicentre retrospective analysis of 189 patient cases. BJU Int., 2011, 108(8b), E250-E257.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10186.x] [PMID: 21599821]
[25]
O’Farrell, A.C.; Jarzabek, M.A.; Lindner, A.U.; Carberry, S.; Conroy, E.; Miller, I.S.; Connor, K.; Shiels, L.; Zanella, E.R.; Lucantoni, F.; Lafferty, A.; White, K.; Meyer Villamandos, M.; Dicker, P.; Gallagher, W.M.; Keek, S.A.; Sanduleanu, S.; Lambin, P.; Woodruff, H.C.; Bertotti, A.; Trusolino, L.; Byrne, A.T.; Prehn, J.H.M. Implementing systems modelling and molecular imaging to predict the efficacy of bcl-2 inhibition in colorectal cancer patient-derived xenograft models. Cancers, 2020, 12(10), 2978.
[http://dx.doi.org/10.3390/cancers12102978] [PMID: 33066609]
[26]
Song, T.; Zhang, M.; Liu, P.; Xue, Z.; Fan, Y.; Zhang, Z. Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 2018, 155, 102-109.
[http://dx.doi.org/10.1016/j.bcp.2018.06.019] [PMID: 29953843]
[27]
Koessinger, A.L.; Cloix, C.; Koessinger, D.; Heiland, D.H.; Bock, F.J.; Strathdee, K.; Kinch, K.; Martínez-Escardó, L.; Paul, N.R.; Nixon, C.; Malviya, G.; Jackson, M.R.; Campbell, K.J.; Stevenson, K.; Davis, S.; Elmasry, Y.; Ahmed, A.; O’Prey, J.; Ichim, G.; Schnell, O.; Stewart, W.; Blyth, K.; Ryan, K.M.; Chalmers, A.J.; Norman, J.C.; Tait, S.W.G. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ., 2022, 29(10), 2089-2104.
[http://dx.doi.org/10.1038/s41418-022-01001-3] [PMID: 35473984]
[28]
Zhou, L.; Liu, X-D.; Sun, M.; Zhang, X.; German, P.; Bai, S.; Ding, Z.; Tannir, N.; Wood, C.G.; Matin, S.F.; Karam, J.A.; Tamboli, P.; Sircar, K.; Rao, P.; Rankin, E.B.; Laird, D.A.; Hoang, A.G.; Walker, C.L.; Giaccia, A.J.; Jonasch, E. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene, 2016, 35(21), 2687-2697.
[http://dx.doi.org/10.1038/onc.2015.343] [PMID: 26364599]
[29]
Sekino, Y.; Takemoto, K.; Murata, D.; Babasaki, T.; Kobatake, K.; Kitano, H.; Ikeda, K.; Goto, K.; Inoue, S.; Hayashi, T.; Taniyama, D.; Shigeta, M.; Kuraoka, K.; Mita, K.; Kaneko, M.; Sentani, K.; Oue, N.; Teishima, J. CD44 is involved in sunitinib resistance and poor progression-free survival after sunitinib treatment of renal cell carcinoma. Anticancer Res., 2021, 41(10), 4875-4883.
[http://dx.doi.org/10.21873/anticanres.15301] [PMID: 34593435]
[30]
Shibasaki, N.; Yamasaki, T.; Kanno, T.; Arakaki, R.; Sakamoto, H.; Utsunomiya, N.; Inoue, T.; Tsuruyama, T.; Nakamura, E.; Ogawa, O.; Kamba, T. Role of IL13RA2 in sunitinib resistance in clear cell renal cell carcinoma. PLoS One, 2015, 10(6)e0130980
[http://dx.doi.org/10.1371/journal.pone.0130980] [PMID: 26114873]
[31]
Reed, J.C.; Miyashita, T.; Takayama, S.; Wang, H.G.; Sato, T.; Krajewski, S.; Aimé-Sempé, C.; Bodrug, S.; Kitada, S.; Hanada, M. BCL-2 family proteins: Regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell. Biochem., 1996, 60(1), 23-32.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19960101)60:1<23:AID-JCB5>3.0.CO;2-5] [PMID: 8825412]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy