Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Quercetin-based Nanoformulation: A Potential Approach for Cancer Treatment

Author(s): Shivani, Gurvirender Singh*, Smita Narwal, Bhawna Chopra and Ashwani K. Dhingra

Volume 23, Issue 18, 2023

Published on: 04 September, 2023

Page: [1983 - 2007] Pages: 25

DOI: 10.2174/1871520623666230817101926

Price: $65

Abstract

Nanoformulations derived from natural products are gaining popularity as a treatment option for several human diseases, including cancer, as they offer a viable alternative to conventional cancer therapies, which are often associated with numerous side effects and complications. Quercetin (Que), a plant-derived phenolic molecule, has demonstrated potential as a chemotherapeutic agent for different types of cancer. However, Que's low water solubility, instability towards antioxidants, low bioavailability, and severe biotransformation constraints make it challenging to use in vivo. Nanoparticles have emerged as a promising technology for the precise targeting of tumor cells, leading to improved efficacy and specificity in cancer therapies. In this review, the impact of flavonoid nanoformulations on enhancing the safety, therapeutic potential, and bioavailability of Que in cancer treatment is highlighted. A variety of nanoparticle types have been developed, including polymeric micelles, liposomes, PLGA nanoparticles, coencapsulation, chitosan NPs, lipid carriers, silver and gold NPs, inorganic NPs, organic metal frameworks, and biomacromolecule- based NPs, all aimed at improving the antineoplastic efficacy of Que. These nanoparticles offer several advantages, including prolonged circulation time, tumor-specific biodistribution, high encapsulation efficiency, enhanced therapeutic efficacy, and controlled release. This review provides fresh insights into the arena of drug discovery for tumor therapies by focusing on the influence of flavonoid nanoformulations on the enhancement of their safety, therapeutic, and bioavailability characteristics.

Next »
Graphical Abstract

[1]
Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; Kohler, B.A.; Jemal, A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2018, 124(13), 2785-2800.
[http://dx.doi.org/10.1002/cncr.31551] [PMID: 29786848]
[2]
Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol., 2021, 18(10), 663-672.
[http://dx.doi.org/10.1038/s41571-021-00514-z] [PMID: 34079102]
[3]
Sathishkumar, K.; Chaturvedi, M.; Das, P.; Stephen, S.; Mathur, P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer Registry Programme, India. Indian J. Med. Res., 2022, 156, 598-607.
[PMID: 36510887]
[4]
Huminiecki, L. Horbańczuk, J. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol. Adv., 2018, 36(6), 1699-1708.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.011] [PMID: 29476886]
[5]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[6]
Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol., 2023, 224, 797-809.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.167] [PMID: 36283555]
[7]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59.
[http://dx.doi.org/10.1159/000443404] [PMID: 26679767]
[8]
Estrada-Muñiz, E.; Guerrero-Palomo, G.; Vega, L. Natural products: New anti-cancer agents derived from plants. Curr. Top. Toxicol., 2006, 8(1)
[9]
Rahman, M.; Ahmad, M.Z.; Imran, K.; Akhter, S.; Kumar, Y.; Ahmad, F.J.; Anwar, F. Novel approach for the treatment of cancer: Theranostic nanomedicine. Pharmacologia, 2012, 3(9), 371-376.
[http://dx.doi.org/10.5567/pharmacologia.2012.371.376]
[10]
Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 2018, 13(8), 849-870.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[11]
Ahmed, E.; Arshad, M.; Khan, M.Z.; Amjad, M.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Ahmad, N. Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem., 2017, 6(2), 205-214.
[12]
Morand, C.; Crespy, V.; Manach, C.; Besson, C.; Demigné, C.; Rémésy, C. Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol., 1998, 275(1), R212-R219.
[PMID: 9688981]
[13]
Cornard, J.P.; Dangleterre, L.; Lapouge, C. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. J. Phys. Chem. A, 2005, 109(44), 10044-10051.
[http://dx.doi.org/10.1021/jp053506i] [PMID: 16838923]
[14]
Fischer, C.; Speth, V.; Fleig-Eberenz, S.; Neuhaus, G. Induction of zygotic polyembryos in wheat: Influence of auxin polar transport. Plant Cell, 1997, 9(10), 1767-1780.
[http://dx.doi.org/10.2307/3870523] [PMID: 12237347]
[15]
Williams, C.A.; Grayer, R.J. Anthocyanins and other flavonoids. Nat. Prod. Rep., 2004, 21(4), 539-573.
[http://dx.doi.org/10.1039/b311404j] [PMID: 15282635]
[16]
Dal Santo, S.; Tornielli, G.B.; Zenoni, S.; Fasoli, M.; Farina, L.; Anesi, A.; Guzzo, F.; Delledonne, M.; Pezzotti, M. The plasticity of the grapevine berry transcriptome. Genome Biol., 2013, 14(6), r54.
[http://dx.doi.org/10.1186/gb-2013-14-6-r54] [PMID: 23759170]
[17]
Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem., 1999, 47(3), 1035-1040.
[http://dx.doi.org/10.1021/jf980496s] [PMID: 10552412]
[18]
Fang, N.; Yu, S.; Mabry, T.J. Flavonoids from ageratina calophylla. Phytochemistry, 1986, 25(11), 2684-2686.
[http://dx.doi.org/10.1016/S0031-9422(00)84545-8]
[19]
Zeng, L.M.; Wang, C.J.; Su, J.Y.; Li, D.; Owen, N.L.; Lu, Y.; Lu, N.; Zheng, Q.T. Flavonoids from the red alga Acanthophora spicifera. Chin. J. Chem., 2001, 19(11), 1097-1100.
[http://dx.doi.org/10.1002/cjoc.20010191116]
[20]
Borghetti, G.S.; Carini, J.P.; Honorato, S.B.; Ayala, A.P.; Moreira, J.C.F.; Bassani, V.L. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim. Acta, 2012, 539, 109-114.
[http://dx.doi.org/10.1016/j.tca.2012.04.015]
[21]
Tamura, G.; Gold, C.; Ferro-Luzzi, A.; Ames, B.N. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci., 1980, 77(8), 4961-4965.
[http://dx.doi.org/10.1073/pnas.77.8.4961] [PMID: 6933540]
[22]
Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483.
[http://dx.doi.org/10.1211/jpp.61.11.0006] [PMID: 19903372]
[23]
Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3- O -β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med., 2001, 30(11), 1274-1285.
[http://dx.doi.org/10.1016/S0891-5849(01)00522-6] [PMID: 11368925]
[24]
Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr., 1998, 128(3), 593-597.
[http://dx.doi.org/10.1093/jn/128.3.593] [PMID: 9482769]
[25]
Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Fallahi, F.; Taghavipour, M.; Ghasemi, Y.; Akbari, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Razi, E.; Savardashtaki, A.; Mirzaei, H. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci., 2020, 10(1), 32.
[http://dx.doi.org/10.1186/s13578-020-00397-0] [PMID: 32175075]
[26]
Lou, G.; Liu, Y.; Wu, S.; Xue, J.; Yang, F.; Fu, H.; Zheng, M.; Chen, Z. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis. Cell. Physiol. Biochem., 2015, 35(6), 2192-2202.
[http://dx.doi.org/10.1159/000374024] [PMID: 25896587]
[27]
Senthilkumar, K.; Arunkumar, R.; Elumalai, P.; Sharmila, G.; Gunadharini, D.N.; Banudevi, S.; Krishnamoorthy, G.; Benson, C.S.; Arunakaran, J. Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem. Funct., 2011, 29(2), 87-95.
[http://dx.doi.org/10.1002/cbf.1725] [PMID: 21308698]
[28]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[29]
Lu, X.; Liu, T.; Chen, K.; Xia, Y.; Dai, W.; Xu, S.; Xu, L.; Wang, F.; Wu, L.; Li, J.; Li, S.; Wang, W.; Yu, Q.; Feng, J.; Fan, X.; Zhou, Y.; Niu, P.; Guo, C. Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed. Pharmacother., 2018, 103, 800-811.
[http://dx.doi.org/10.1016/j.biopha.2018.04.016] [PMID: 29684859]
[30]
Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381.
[http://dx.doi.org/10.3892/or.2015.3991] [PMID: 25997470]
[31]
Filipits, M. Mechanisms of cancer: Multidrug resistance. Drug Discov. Today Dis. Mech., 2004, 1(2), 229-234.
[http://dx.doi.org/10.1016/j.ddmec.2004.10.001]
[32]
Chen, C.; Zhou, J.; Ji, C. Quercetin: A potential drug to reverse multidrug resistance. Life Sci., 2010, 87(11-12), 333-338.
[http://dx.doi.org/10.1016/j.lfs.2010.07.004] [PMID: 20637779]
[33]
Lan, C-Y.; Chen, S-Y.; Kuo, C-W.; Lu, C-C.; Yen, G-C. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. Yao Wu Shi Pin Fen Xi, 2019, 27(4), 887-896.
[PMID: 31590760]
[34]
Chen, Z.; Huang, C.; Ma, T.; Jiang, L.; Tang, L.; Shi, T.; Zhang, S.; Zhang, L.; Zhu, P.; Li, J.; Shen, A. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45.
[http://dx.doi.org/10.1016/j.phymed.2018.03.040] [PMID: 29747752]
[35]
Maruszewska, A.; Tarasiuk, J. Quercetin triggers induction of apoptotic and lysosomal death of sensitive and multidrug resistant leukaemia HL60 cells. Nutr. Cancer, 2021, 73(3), 484-501.
[http://dx.doi.org/10.1080/01635581.2020.1752745] [PMID: 32329631]
[36]
Li, S.; Zhao, Q.; Wang, B.; Yuan, S.; Wang, X.; Li, K. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytother. Res., 2018, 32(8), 1530-1536.
[http://dx.doi.org/10.1002/ptr.6081] [PMID: 29635751]
[37]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[38]
Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther., 2017, 10, 4023-4028.
[http://dx.doi.org/10.2147/OTT.S136821] [PMID: 28860810]
[39]
Yang, F.; Jiang, X.; Song, L.; Wang, H.; Mei, Z.; Xu, Z.; Xing, N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol. Rep., 2016, 35(3), 1602-1610.
[http://dx.doi.org/10.3892/or.2015.4481] [PMID: 26676551]
[40]
Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.063] [PMID: 27041643]
[41]
Fan, J.J.; Hsu, W.H.; Lee, K.H.; Chen, K.C.; Lin, C.W.; Lee, Y.L.; Ko, T.P.; Lee, L.T.; Lee, M.T.; Chang, M.S.; Cheng, C.H. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants, 2019, 8(11), 557.
[http://dx.doi.org/10.3390/antiox8110557] [PMID: 31731716]
[42]
Kim, S.R.; Lee, E.Y.; Kim, D.J.; Kim, H.J.; Park, H.R. Quercetin inhibits cell survival and metastatic ability via the EMT-mediated pathway in oral squamous cell carcinoma. Molecules, 2020, 25(3), 757.
[http://dx.doi.org/10.3390/molecules25030757] [PMID: 32050534]
[43]
Dhanaraj, T.; Mohan, M.; Arunakaran, J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch. Biochem. Biophys., 2021, 701, 108795.
[http://dx.doi.org/10.1016/j.abb.2021.108795] [PMID: 33577840]
[44]
Wang, B.; Tian, T.; Kalland, K.H.; Ke, X.; Qu, Y. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci., 2018, 39(7), 648-658.
[http://dx.doi.org/10.1016/j.tips.2018.03.008] [PMID: 29678298]
[45]
Kim, H.; Seo, E.M.; Sharma, A.R.; Ganbold, B.; Park, J.; Sharma, G.; Kang, Y.H.; Song, D.K.; Lee, S.S.; Nam, J.S. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol., 2013, 43(4), 1319-1325.
[http://dx.doi.org/10.3892/ijo.2013.2036] [PMID: 23900432]
[46]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[47]
Sheng, L.; Tang, T.; Liu, Y.; Ma, Y.; Wang, Z.; Tao, H.; Zhang, Y.; Qi, Z. Inducible HSP70 antagonizes cisplatin induced cell apoptosis through inhibition of the MAPK signaling pathway in HGC 27 cells. Int. J. Mol. Med., 2018, 42(4), 2089-2097.
[http://dx.doi.org/10.3892/ijmm.2018.3789] [PMID: 30066840]
[48]
Yousuf, M.; Khan, P.; Shamsi, A.; Shahbaaz, M.; Hasan, G.M.; Haque, Q.M.R.; Christoffels, A.; Islam, A.; Hassan, M.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 2020, 5(42), 27480-27491.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[49]
Soll, F.; Ternent, C.; Berry, I.M.; Kumari, D.; Moore, T.C. Quercetin inhibits proliferation and induces apoptosis of B16 melanoma cells in vitro. Assay Drug Dev. Technol., 2020, 18(6), 261-268.
[http://dx.doi.org/10.1089/adt.2020.993] [PMID: 32799543]
[50]
Brito, A.; Ribeiro, M.; Abrantes, A.; Pires, A.; Teixo, R.; Tralhão, J.; Botelho, M. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem., 2015, 22(26), 3025-3039.
[http://dx.doi.org/10.2174/0929867322666150812145435] [PMID: 26264923]
[51]
Ji, Y.; Li, L.; Ma, Y.X.; Li, W.T.; Li, L.; Zhu, H.Z.; Wu, M.H.; Zhou, J.R. Quercetin inhibits growth of hepatocellular carcinoma by apoptosis induction in part via autophagy stimulation in mice. J. Nutr. Biochem., 2019, 69, 108-119.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.018] [PMID: 31078904]
[52]
Wu, L.; Li, J.; Liu, T.; Li, S.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med., 2019, 8(10), 4806-4820.
[http://dx.doi.org/10.1002/cam4.2388] [PMID: 31273958]
[53]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[54]
Zhang, J.; Yi, T.; Liu, J.; Zhao, Z.; Chen, H. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J. Agric. Food Chem., 2013, 61(9), 2188-2195.
[http://dx.doi.org/10.1021/jf305263r] [PMID: 23410218]
[55]
Hassanzadeh, A.; Hosseinzadeh, E.; Rezapour, S.; Vahedi, G.; Haghnavaz, N.; Marofi, F. Quercetin promotes cell cycle arrest and apoptosis and attenuates the proliferation of human chronic myeloid leukemia cell line-K562 through interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer. Agents Med. Chem., 2019, 19(12), 1523-1534.
[56]
Gong, C.; Yang, Z.; Zhang, L.; Wang, Y.; Gong, W.; Liu, Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther., 2017, 11, 17-27.
[http://dx.doi.org/10.2147/OTT.S147316] [PMID: 29317830]
[57]
Li, Y.; Wang, Z.; Jin, J.; Zhu, S.X.; He, G.Q.; Li, S.H.; Wang, J.; Cai, Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun., 2020, 523(4), 947-953.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.048] [PMID: 31964531]
[58]
Wang, Q.; Chen, Y.; Lu, H.; Wang, H.; Feng, H.; Xu, J.; Zhang, B. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis. IUBMB Life, 2020, 72(5), 1012-1022.
[http://dx.doi.org/10.1002/iub.2242] [PMID: 32027086]
[59]
Kee, J.Y.; Han, Y.H.; Kim, D.S.; Mun, J.G.; Park, J.; Jeong, M.Y.; Um, J.Y.; Hong, S.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 2016, 23(13), 1680-1690.
[http://dx.doi.org/10.1016/j.phymed.2016.09.011] [PMID: 27823633]
[60]
Park, C.H.; Chang, J.Y.; Hahm, E.R.; Park, S.; Kim, H.K.; Yang, C.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 328(1), 227-234.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.151] [PMID: 15670774]
[61]
Prasad, S.; Phromnoi, K.; Yadav, V.; Chaturvedi, M.; Aggarwal, B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med., 2010, 76(11), 1044-1063.
[http://dx.doi.org/10.1055/s-0030-1250111] [PMID: 20635307]
[62]
Hsiao, W.; Liu, L. The role of traditional Chinese herbal medicines in cancer therapy from TCM theory to mechanistic insights. Planta Med., 2010, 76(11), 1118-1131.
[http://dx.doi.org/10.1055/s-0030-1250186] [PMID: 20635308]
[63]
Payton, E.; Khubchandani, J.; Thompson, A.; Price, J.H. Parents’ expectations of high schools in firearm violence prevention. J. Commun. Health., 2017, 42(6), 1118-1126.
[http://dx.doi.org/10.1007/s10900-017-0360-5] [PMID: 28527100]
[64]
Lim, B.O.; Yu, B.P.; Cho, S.I.; Her, E.; Park, D.K. The inhibition by quercetin and ganhuangenin on oxidatively modified low density lipoprotein. Phytother. Res., 1998, 12(5), 340-345.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199808)12:5<340:AID-PTR316>3.0.CO;2-U]
[65]
Yarahmadi, A.; Zal, F.; Bolouki, A. Protective effects of quercetin on nicotine induced oxidative stress in ‘HepG2 cells’. Toxicol. Mech. Methods, 2017, 27(8), 609-614.
[http://dx.doi.org/10.1080/15376516.2017.1344338] [PMID: 28627253]
[66]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[67]
Kim, H.P.; Mani, I.; Iversen, L.; Ziboh, V.A. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot. Essent. Fatty Acids, 1998, 58(1), 17-24.
[http://dx.doi.org/10.1016/S0952-3278(98)90125-9] [PMID: 9482162]
[68]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[69]
K, R.M.; Ghosh, B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages. Int. J. Immunopharmacol., 1999, 21(7), 435-443.
[http://dx.doi.org/10.1016/S0192-0561(99)00024-7] [PMID: 10454017]
[70]
Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot., 2018, 81(1), 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[71]
Chen, H.; Yu, S.; Shen, X.; Chen, D.; Qiu, X.; Song, C.; Ding, C. The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microb. Pathog., 2011, 51(4), 285-290.
[http://dx.doi.org/10.1016/j.micpath.2011.03.012] [PMID: 21664449]
[72]
Hossion, A.M.L.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasaki, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem., 2011, 54(11), 3686-3703.
[http://dx.doi.org/10.1021/jm200010x] [PMID: 21534606]
[73]
Lim, H.J.; Kang, S.H.; Song, Y.J.; Jeon, Y.D.; Jin, J.S. Inhibitory effect of quercetin on Propionibacterium acnes-induced skin inflammation. Int. Immunopharmacol., 2021, 96, 107557.
[http://dx.doi.org/10.1016/j.intimp.2021.107557] [PMID: 33812252]
[74]
Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat., 2012, 19(2), e81-e88.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01507.x] [PMID: 22239530]
[75]
Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol., 2010, 45(10), 763-771.
[http://dx.doi.org/10.1016/j.exger.2010.07.001] [PMID: 20619334]
[76]
Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
[77]
Choi, M.H.; Shin, H.J. Anti-melanogenesis effect of quercetin. Cosmetics, 2016, 3(2), 18.
[http://dx.doi.org/10.3390/cosmetics3020018]
[78]
Yuan, Z.; Min, J.; Zhao, Y.; Cheng, Q.; Wang, K.; Lin, S.; Luo, J.; Liu, H. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am. J. Transl. Res., 2018, 10(12), 4313-4321.
[PMID: 30662673]
[79]
Erden Inal, M.; Kahraman, A.; Köken, T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Exp. Dermatol., 2001, 26(6), 536-539.
[http://dx.doi.org/10.1046/j.1365-2230.2001.00884.x] [PMID: 11678884]
[80]
Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681.
[http://dx.doi.org/10.1039/D1FO00851J] [PMID: 34152346]
[81]
Khushnud, T.; Mousa, S.A. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol. Biotechnol., 2013, 55(1), 78-86.
[http://dx.doi.org/10.1007/s12033-012-9623-7] [PMID: 23371307]
[82]
Wang, S.; Zhang, J.; Chen, M.; Wang, Y. Delivering flavonoids into solid tumors using nanotechnologies. Expert Opin. Drug Deliv., 2013, 10(10), 1411-1428.
[http://dx.doi.org/10.1517/17425247.2013.807795] [PMID: 23862581]
[83]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[84]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
[85]
de Oliveira Pedro, R.; Goycoolea, F.M.; Pereira, S.; Schmitt, C.C.; Neumann, M.G. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. Int. J. Biol. Macromol., 2018, 106, 579-586.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.056] [PMID: 28807690]
[86]
Li, J.; Zhang, J.; Wang, Y.; Liang, X.; Wusiman, Z.; Yin, Y.; Shen, Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm., 2017, 523(1), 300-309.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.040] [PMID: 28336457]
[87]
Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[88]
Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231.
[http://dx.doi.org/10.1002/cbf.3266] [PMID: 28498520]
[89]
Sarkar, A.; Ghosh, S.; Chowdhury, S.; Pandey, B.; Sil, P.C. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(10), 2065-2075.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.001] [PMID: 27392941]
[90]
Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 2016, 7(22), 32184-32199.
[http://dx.doi.org/10.18632/oncotarget.8607] [PMID: 27058756]
[91]
Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735.
[http://dx.doi.org/10.1007/s11095-014-1504-2] [PMID: 25186442]
[92]
Sun, M.; Nie, S.; Pan, X.; Zhang, R.; Fan, Z.; Wang, S. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surf. B Biointerfaces, 2014, 113, 15-24.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.032] [PMID: 24060926]
[93]
Rajesh Kumar, S.; Priyatharshni, S.; Babu, V.N.; Mangalaraj, D.; Viswanathan, C.; Kannan, S.; Ponpandian, N. Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J. Colloid Interface Sci., 2014, 436, 234-242.
[http://dx.doi.org/10.1016/j.jcis.2014.08.064] [PMID: 25278361]
[94]
Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: Implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm., 2013, 10(9), 3459-3474.
[http://dx.doi.org/10.1021/mp400311j] [PMID: 23927416]
[95]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int., 2013.
[http://dx.doi.org/10.1155/2013/535796]
[96]
Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[97]
Bagde, A.; Patel, K.; Mondal, A.; Kutlehria, S.; Chowdhury, N.; Gebeyehu, A.; Patel, N.; Kumar, N.; Singh, M. Combination of UVB absorbing titanium dioxide and quercetin nanogel for skin cancer chemoprevention. AAPS PharmSciTech, 2019, 20(6), 240.
[http://dx.doi.org/10.1208/s12249-019-1424-x] [PMID: 31250221]
[98]
Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front. Pharmacol., 2018, 9, 826.
[http://dx.doi.org/10.3389/fphar.2018.00826] [PMID: 30140227]
[99]
Zhu, X.; Zeng, X.; Zhang, X.; Cao, W.; Wang, Y.; Chen, H.; Wang, T.; Tsai, H.I.; Zhang, R.; Chang, D.; He, S.; Mei, L.; Shi, X. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine, 2016, 12(3), 623-632.
[http://dx.doi.org/10.1016/j.nano.2015.10.016] [PMID: 26656634]
[100]
Wang, C.; Su, L.; Wu, C.; Wu, J.; Zhu, C.; Yuan, G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm., 2016, 42(12), 1938-1944.
[http://dx.doi.org/10.1080/03639045.2016.1185435] [PMID: 27142812]
[101]
Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527.
[http://dx.doi.org/10.14348/molcells.2015.2339] [PMID: 25947292]
[102]
Varshosaz, J.; Jafarian, A.; Salehi, G.; Zolfaghari, B. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J. Liposome Res., 2014, 24(3), 191-203.
[http://dx.doi.org/10.3109/08982104.2013.868476] [PMID: 24354715]
[103]
Mandal, A.K.; Ghosh, D.; Sarkar, S.; Ghosh, A.; Swarnakar, S.; Das, N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine, 2014, 9(15), 2323-2337.
[http://dx.doi.org/10.2217/nnm.14.11] [PMID: 24593002]
[104]
Yuan, Y.G.; Wang, Y.H.; Xing, H.H.; Gurunathan, S. Quercetin-mediated synthesis of graphene oxide–silver nanoparticle nanocomposites: A suitable alternative nanotherapy for neuroblastoma. Int. J. Nanomedicine, 2017, 12, 5819-5839.
[http://dx.doi.org/10.2147/IJN.S140605] [PMID: 28860751]
[105]
Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524.
[http://dx.doi.org/10.1021/acsnano.9b02875] [PMID: 31664821]
[106]
Alkahtani, S.; Alarifi, S.; Aljarba, N.H.; Alghamdi, H.A.; Alkahtane, A.A. Mesoporous SBA-15 silica–loaded nano-formulation of quercetin: A probable radio-sensitizer for lung carcinoma. Dose Response, 2022, 20(1)
[http://dx.doi.org/10.1177/15593258211050532] [PMID: 35110975]
[107]
Li, K.; Zang, X.; Meng, X.; Li, Y.; Xie, Y.; Chen, X. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment. Drug Deliv., 2022, 29(1), 970-985.
[http://dx.doi.org/10.1080/10717544.2022.2055225] [PMID: 35343862]
[108]
Tan, B-J.; Liu, Y.; Chang, K-L.; Lim, B.K.; Chiu, G.N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine, 2012, 7, 651-661.
[PMID: 22334787]
[109]
Wang, R.; Xiao, R.; Zeng, Z.; Xu, L.; Wang, J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int. J. Nanomedicine, 2012, 7, 4185-4198.
[PMID: 22904628]
[110]
Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomedicine, 2018, 13, 5113-5126.
[http://dx.doi.org/10.2147/IJN.S170862] [PMID: 30233175]
[111]
Ganea, G.M.; Fakayode, S.O.; Losso, J.N.; van Nostrum, C.F.; Sabliov, C.M.; Warner, I.M. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide- co -glycolide) (PLGA) nanoparticles. Nanotechnology, 2010, 21(28), 285104.
[http://dx.doi.org/10.1088/0957-4484/21/28/285104] [PMID: 20585163]
[112]
Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605.
[http://dx.doi.org/10.1016/j.biopha.2016.05.029] [PMID: 27470402]
[113]
Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[114]
Liu, Z.; Balasubramanian, V.; Bhat, C.; Vahermo, M.; Mäkilä, E.; Kemell, M.; Fontana, F.; Janoniene, A.; Petrikaite, V.; Salonen, J.; Yli-Kauhaluoma, J.; Hirvonen, J.; Zhang, H.; Santos, H.A. Quercetin-based modified porous silicon nanoparticles for enhanced inhibition of doxorubicin-resistant cancer cells. Adv. Healthc. Mater., 2017, 6(3), 1601009.
[http://dx.doi.org/10.1002/adhm.201601009] [PMID: 27943644]
[115]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[116]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[117]
Lu, S.; Wu, J.; Gao, Y.; Han, G.; Ding, W.; Huang, X. MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. Int. J. Biol. Macromol., 2016, 86, 43-49.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.019] [PMID: 26778158]
[118]
Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134.
[http://dx.doi.org/10.3109/21691401.2014.926456] [PMID: 24959911]
[119]
El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401.
[http://dx.doi.org/10.1021/nn405155b] [PMID: 24397686]
[120]
Moorthi, C.; Kathiresan, K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Med. Hypotheses and Ideas, 2013, 7(1), 15-20.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.005]
[121]
Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 2003, 417(1), 12-17.
[http://dx.doi.org/10.1016/S0003-9861(03)00284-4] [PMID: 12921774]
[122]
Gupta, A.; Birhman, K.; Raheja, I.; Sharma, S.K.; Kar, H.K. Quercetin: A wonder bioflavonoid with therapeutic potential in disease management. Asian Pac. J. Trop. Dis., 2016, 6(3), 248-252.
[http://dx.doi.org/10.1016/S2222-1808(15)61024-6]
[123]
Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol., 2001, 41(5), 492-499.
[http://dx.doi.org/10.1177/00912700122010366] [PMID: 11361045]
[124]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[125]
Thilakarathna, S.; Rupasinghe, H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[126]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol., 2012, 83(1), 6-15.
[http://dx.doi.org/10.1016/j.bcp.2011.08.010] [PMID: 21856292]
[127]
Nemeth, K.; Piskula, M.K. Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr., 2007, 47(4), 397-409.
[http://dx.doi.org/10.1080/10408390600846291] [PMID: 17457724]
[128]
Chen, Y.C.; Shen, S.C.; Lee, W.R.; Hou, W.C.; Yang, L.L.; Lee, T.J.F. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell. Biochem., 2001, 82(4), 537-548.
[http://dx.doi.org/10.1002/jcb.1184] [PMID: 11500931]
[129]
Hashiguchi, N.; Ogura, H.; Tanaka, H.; Koh, T.; Nakamori, Y.; Noborio, M.; Shiozaki, T.; Nishino, M.; Kuwagata, Y.; Shimazu, T.; Sugimoto, H. Enhanced expression of heat shock proteins in activated polymorphonuclear leukocytes in patients with sepsis. J. Trauma, 2001, 51(6), 1104-1109.
[http://dx.doi.org/10.1097/00005373-200112000-00015] [PMID: 11740261]
[130]
Tang, D.; Kang, R.; Xiao, W.; Zhang, H.; Lotze, M.T.; Wang, H.; Xiao, X. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am. J. Respir. Cell Mol. Biol., 2009, 41(6), 651-660.
[http://dx.doi.org/10.1165/rcmb.2008-0119OC] [PMID: 19265175]
[131]
Angeloni, C.; Hrelia, S. Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxid. Med. Cell. Longev., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/837104] [PMID: 22685622]
[132]
Rayamajhi, N.; Kim, S.K.; Go, H.; Joe, Y.; Callaway, Z.; Kang, J.G.; Ryter, S.W.; Chung, H.T. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/154279] [PMID: 24288584]
[133]
Chang, Y.C.; Tsai, M.H.; Sheu, W.H.H.; Hsieh, S.C.; Chiang, A.N. The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS One, 2013, 8(11), e80744.
[http://dx.doi.org/10.1371/journal.pone.0080744] [PMID: 24260470]
[134]
Liu, S.H.; Lu, T.H.; Su, C.C.; Lay, I.S.; Lin, H.Y.; Fang, K.M.; Ho, T.J.; Chen, K.L.; Su, Y.C.; Chiang, W.C.; Chen, Y.W. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-κB signaling pathway. Am. J. Chin. Med., 2014, 42(4), 869-889.
[http://dx.doi.org/10.1142/S0192415X14500554] [PMID: 25004880]
[135]
Tao, J.; Wei, Y.; Hu, T. Flavonoids of Polygonum hydropiper L. attenuates lipopolysaccharide-induced inflammatory injury via suppressing phosphorylation in MAPKs pathways. BMC Complement. Altern. Med., 2015, 16(1), 25.
[http://dx.doi.org/10.1186/s12906-016-1001-8] [PMID: 26801102]
[136]
Zhu, Y.; Fan, S.; Lu, Y.; Wei, Y.; Tang, J.; Yang, Y.; Li, F.; Chen, Q.; Zheng, J.; Liu, X. Quercetin confers protection of murine sepsis by inducing macrophage M2 polarization via the TRPM2 dependent calcium influx and AMPK/ATF3 activation. J. Funct. Foods, 2019, 56, 1-13.
[http://dx.doi.org/10.1016/j.jff.2019.03.001]
[137]
Shu, B.; Feng, Y.; Gui, Y.; Lu, Q.; Wei, W.; Xue, X.; Sun, X.; He, W.; Yang, J.; Dai, C. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell. Signal., 2018, 42, 249-258.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.014] [PMID: 29080804]
[138]
Reis, J.; Xiaoyu, Tan Rongjie Yang; Rockwell, C.E.; Papasian, C.J.; Vogel, S.N.; Morrison, D.C.; Qureshi, A.A.; Qureshi, N. A combination of proteasome inhibitors and antibiotics prevents lethality in a septic shock model. Innate Immun., 2008, 14(5), 319-329.
[http://dx.doi.org/10.1177/1753425908096855] [PMID: 18809656]
[139]
He, S.; Zhao, J.; Xu, X.; Cui, X.; Wang, N.; Han, X.; Guo, Y.; Liu, Q. Uncovering the molecular mechanism of the qiang-xin 1 formula on sepsis-induced cardiac dysfunction based on systems pharmacology. Oxid. Med. Cell. Longev., 2020, 2020, 1-26.
[http://dx.doi.org/10.1155/2020/3815185] [PMID: 32908632]
[140]
Abd el-gawad, H.M.; Khalifa, A.E. Quercetin, Coenzyme Q10, and l -canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol. Res., 2001, 43(3), 257-263.
[http://dx.doi.org/10.1006/phrs.2000.0781] [PMID: 11401418]
[141]
Bharrhan, S.; Chopra, K.; Arora, S.K.; Toor, J.S.; Rishi, P. Down-regulation of NF-κB signalling by polyphenolic compounds prevents endotoxin-induced liver injury in a rat model. Innate Immun., 2012, 18(1), 70-79.
[http://dx.doi.org/10.1177/1753425910393369] [PMID: 21239456]
[142]
Wang, L.; Chen, J.; Wang, B.; Wu, D.; Li, H.; Lu, H.; Wu, H.; Chai, Y. Protective effect of quercetin on lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammatory cell influx. Exp. Biol. Med., 2014, 239(12), 1653-1662.
[http://dx.doi.org/10.1177/1535370214537743] [PMID: 24912504]
[143]
Meng, L.; Lv, Z.; Yu, Z.Z.; Xu, D.; Yan, X. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression. Genet. Mol. Res., 2016, 15(3), gmr726529.
[http://dx.doi.org/10.4238/gmr.15037265] [PMID: 27525872]
[144]
Penalva, R.; González-Navarro, C.J.; Gamazo, C.; Esparza, I.; Irache, J.M. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine, 2017, 13(1), 103-110.
[http://dx.doi.org/10.1016/j.nano.2016.08.033] [PMID: 27615118]
[145]
Park, H.J.; Lee, S.J.; Cho, J.; Gharbi, A.; Han, H.D.; Kang, T.H.; Kim, Y.; Lee, Y.; Park, W.S.; Jung, I.D.; Park, Y.M. Tamarixetin exhibits anti-inflammatory activity and prevents bacterial sepsis by increasing IL-10 production. J. Nat. Prod., 2018, 81(6), 1435-1443.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00155] [PMID: 29851490]
[146]
Cui, W.; Hu, G.; Peng, J.; Mu, L.; Liu, J.; Qiao, L. Quercetin exerted protective effects in a rat model of sepsis via inhibition of reactive oxygen species (ROS) and downregulation of high mobility group box 1 (HMGB1) protein expression. Med. Sci. Monit., 2019, 25, 5795-5800.
[http://dx.doi.org/10.12659/MSM.916044] [PMID: 31377749]
[147]
Masuda, Y.; Sumita, S.; Fujimura, N.; Namiki, A. Geranylgeranylacetone attenuates septic diaphragm dysfunction by induction of heat shock protein 70. Crit. Care Med., 2003, 31(11), 2585-2591.
[http://dx.doi.org/10.1097/01.CCM.0000094230.44674.D8] [PMID: 14605528]
[148]
Singleton, K.D.; Serkova, N.; Beckey, V.E.; Wischmeyer, P.E. Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock protein expression. Crit. Care Med., 2005, 33(6), 1206-1213.
[http://dx.doi.org/10.1097/01.CCM.0000166357.10996.8A] [PMID: 15942332]
[149]
Kwon, W.Y.; Suh, G.J.; Kim, K.S.; Jo, Y.H.; Lee, J.H.; Kim, K.; Jung, S.K. Glutamine attenuates acute lung injury by inhibition of high mobility group box protein-1 expression during sepsis. Br. J. Nutr., 2010, 103(6), 890-898.
[http://dx.doi.org/10.1017/S0007114509992509] [PMID: 19825222]
[150]
Kukongviriyapan, U.; Sompamit, K.; Pannangpetch, P.; Kukongviriyapan, V.; Donpunha, W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can. J. Physiol. Pharmacol., 2012, 90(10), 1345-1353.
[http://dx.doi.org/10.1139/y2012-101] [PMID: 22873715]
[151]
Liao, Y.R.; Lin, J.Y. Quercetin intraperitoneal administration ameliorates lipopolysaccharide-induced systemic inflammation in mice. Life Sci., 2015, 137, 89-97.
[http://dx.doi.org/10.1016/j.lfs.2015.07.015] [PMID: 26209141]
[152]
Gerin, F.; Sener, U.; Erman, H.; Yilmaz, A.; Aydin, B.; Armutcu, F.; Gurel, A. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation, 2016, 39(2), 700-705.
[http://dx.doi.org/10.1007/s10753-015-0296-9] [PMID: 26670180]
[153]
Khajevand-Khazaei, M.R.; Mohseni-Moghaddam, P.; Hosseini, M.; Gholami, L.; Baluchnejadmojarad, T.; Roghani, M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur. J. Pharmacol., 2018, 833, 307-313.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.019] [PMID: 29920283]
[154]
Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell. Biochem., 2018, 446(1-2), 43-52.
[http://dx.doi.org/10.1007/s11010-018-3271-6] [PMID: 29322353]
[155]
Shoskes, D.A.; Zeitlin, S.I.; Shahed, A.; Rajfer, J. Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 1999, 54(6), 960-963.
[http://dx.doi.org/10.1016/S0090-4295(99)00358-1] [PMID: 10604689]
[156]
Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res., 1996, 2(4), 659-668.
[PMID: 9816216]
[157]
Kooshyar, M.M.; Mozafari, P.M.; Amirchaghmaghi, M.; Pakfetrat, A.; Karoos, P.; Mohasel, M.R.; Orafai, H.; Azarian, A.A. A randomized placebo-controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J. Clin. Diagn. Res., 2017, 11(3), ZC46-ZC50.
[http://dx.doi.org/10.7860/JCDR/2017/23975.9571] [PMID: 28511508]
[158]
Amirchaghmaghi, M.; Delavarian, Z.; Iranshahi, M.; Shakeri, M.T.; Mosannen Mozafari, P.; Mohammadpour, A.H.; Farazi, F.; Iranshahy, M. A randomized placebo-controlled double blind clinical trial of quercetin for treatment of oral lichen planus. J. Dent. Res. Dent. Clin. Dent. Prospect., 2015, 9(1), 23-28.
[http://dx.doi.org/10.15171/joddd.2015.005] [PMID: 25973150]
[159]
Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J. Am. Coll. Nutr., 2017, 36(1), 9-15.
[http://dx.doi.org/10.1080/07315724.2016.1140093] [PMID: 27710596]
[160]
Rezvan, N.; Moini, A.; Janani, L.; Mohammad, K.; Saedisomeolia, A.; Nourbakhsh, M.; Gorgani-Firuzjaee, S.; Mazaherioun, M.; Hosseinzadeh-Attar, M.J. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: A randomized placebo-controlled double-blind clinical trial. Horm. Metab. Res., 2017, 49(2), 115-121.
[PMID: 27824398]
[161]
Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: A double-blind randomized controlled clinical trial. Int. J. Prev. Med., 2013, 4(7), 777-785.
[PMID: 24049596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy