Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Different Patterns of Locus Coeruleus MRI Alteration in Alzheimer’s and Dementia with Lewy Bodies

Author(s): Alessandro Galgani, Giovanni Palermo, Francesco Lombardo, Nicola Martini, Luca Bastiani, Andrea Vergallo, Luca Tommasini, Gabriele Bellini, Filippo Baldacci, Daniela Frosini, Gloria Tognoni, Marco Gesi, Filippo Cademartiri, Francesco Fornai, Nicola Pavese, Roberto Ceravolo and Filippo Sean Giorgi*

Volume 20, Issue 4, 2023

Published on: 01 August, 2023

Page: [277 - 288] Pages: 12

DOI: 10.2174/1567205020666230721144603

Price: $65

Abstract

Background: The integrity of Locus Coeruleus can be evaluated in vivo using specific Magnetic Resonance Imaging sequences. While this nucleus has been shown to be degenerated both in post-mortem and in vivo studies in Alzheimer’s Disease, for other neurodegenerative dementias such as Dementia with Lewy Bodies this has only been shown ex-vivo.

Objective: To evaluate the integrity of the Locus Coeruleus through Magnetic Resonance Imaging in patients suffering from Dementia with Lewy Bodies and explore the possible differences with the Locus Coeruleus alterations occurring in Alzheimer’s Dementia.

Methods: Eleven patients with Dementia with Lewy Bodies and 35 with Alzheimer’s Dementia were recruited and underwent Locus Coeruleus Magnetic Resonance Imaging, along with 52 cognitively intact, age-matched controls. Images were analyzed applying an already developed template-based approach; Locus Coeruleus signal was expressed through the Locus Coeruleus Contrast Ratio parameter, and a locoregional analysis was performed.

Results: Both groups of patients showed significantly lower values of Locus Coeruleus Contrast Ratio when compared to controls. A different pattern of spatial involvement was found; patients affected by Dementia with Lewy bodies showed global and bilateral involvement of the Locus Coeruleus, whereas the alterations in Alzheimer’s Dementia patients were more likely to be localized in the rostral part of the left nucleus.

Conclusions: Magnetic Resonance Imaging successfully detects widespread Locus Coeruleus degeneration in patients suffering from Dementia with Lewy Bodies. Further studies, in larger cohorts and in earlier stages of the disease, are needed to better disclose the potential diagnostic and prognostic role of this neuroradiological tool.

[1]
Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G. Locus coeruleus: A new look at the blue spot. Nat Rev Neurosci 2020; 21(11): 644-59.
[http://dx.doi.org/10.1038/s41583-020-0360-9]
[2]
Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 2009; 10(3): 211-23.
[http://dx.doi.org/10.1038/nrn2573] [PMID: 19190638]
[3]
Counts SE, Mufson EJ. Locus coeruleus. The Human Nervous System 2012; pp. 427-40.
[http://dx.doi.org/10.1016/B978-0-12-374236-0.10012-4]
[4]
Aston-Jones G, Waterhouse B. Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Res 2016; 1645: 75-8.
[http://dx.doi.org/10.1016/j.brainres.2016.03.001] [PMID: 26969408]
[5]
Giorgi FS, Biagioni F, Galgani A, Pavese N, Lazzeri G, Fornai F. Locus coeruleus modulates neuroinflammation in parkinsonism and dementia. Int J Mol Sci 2020; 21(22): 8630.
[http://dx.doi.org/10.3390/ijms21228630]
[6]
Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer’s disease pathogenesis. J Neurosci Res 2020; 98(12): 2406-34.
[7]
Jacobs HIL, Becker JA, Kwong K, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med 2021; 13(612): eabj2511.
[http://dx.doi.org/10.1126/scitranslmed.abj2511] [PMID: 34550726]
[8]
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun 2017; 5(1): 8.
[9]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[10]
Theofilas P, Ehrenberg AJ, Dunlop S, et al. Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early‐stage biomarker discovery. Alzheimers Dement 2017; 13(3): 236-46.
[http://dx.doi.org/10.1016/j.jalz.2016.06.2362] [PMID: 27513978]
[11]
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen SENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[12]
Attems J, Toledo JB, Walker L, et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: A multi-centre study. Acta Neuropathol 2021; 141(2): 159-72.
[http://dx.doi.org/10.1007/s00401-020-02255-2] [PMID: 33399945]
[13]
Gomperts SN. Lewy body dementias: Dementia with lewy bodies and Parkinson disease dementia. CONTINUUM Lifelong Learn Neurol 2016; 22: 435-63.
[14]
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017; 89(1): 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[15]
Armstrong MJ. Advances in dementia with lewy bodies. Ther Adv Neurol Disord 2021; 14: 17562864211057666.
[http://dx.doi.org/10.1177/17562864211057666]
[16]
Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019; 142(3): 744-59.
[http://dx.doi.org/10.1093/brain/awz030] [PMID: 30789229]
[17]
Cersosimo MG. Propagation of alpha-synuclein pathology from the olfactory bulb: Possible role in the pathogenesis of dementia with Lewy bodies. Cell Tissue Res 2018; 373(1): 233-43.
[http://dx.doi.org/10.1007/s00441-017-2733-6] [PMID: 29196808]
[18]
Mizutani M, Sano T, Ohira M, Takao M. Neuropathological studies of serotonergic and noradrenergic systems in Lewy body disease patients with delusion or depression. Psychiatry Clin Neurosci 2022; 76(9): 459-67.
[http://dx.doi.org/10.1111/pcn.13436] [PMID: 35695782]
[19]
McKeith IG, Ferman TJ, Thomas AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020; 94(17): 743-55.
[http://dx.doi.org/10.1212/WNL.0000000000009323] [PMID: 32241955]
[20]
Linster C, Escanilla O. Noradrenergic effects on olfactory perception and learning. Brain Res 2019; 1709: 33-8.
[http://dx.doi.org/10.1016/j.brainres.2018.03.021] [PMID: 29574010]
[21]
Sommerauer M, Fedorova TD, Hansen AK, et al. Evaluation of the noradrenergic system in Parkinson’s disease: An 11C-MeNER PET and neuromelanin MRI study. Brain 2018; 141(2): 496-504.
[http://dx.doi.org/10.1093/brain/awx348] [PMID: 29272343]
[22]
García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 2013; 136(7): 2120-9.
[http://dx.doi.org/10.1093/brain/awt152] [PMID: 23801736]
[23]
Galgani A, Lombardo F, Della LD, et al. Locus coeruleus magnetic resonance imaging in neurological diseases. Curr Neurol Neurosci Rep 2021; 21(1): 2.
[http://dx.doi.org/10.1007/s11910-020-01087-7] [PMID: 33313963]
[24]
Zucca FA, Bellei C, Giannelli S, et al. Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: Consequences for neuronal vulnerability. J Neural Transm 2006; 113(6): 757-67.
[http://dx.doi.org/10.1007/s00702-006-0453-2] [PMID: 16755380]
[25]
Shibata E, Sasaki M, Tohyama K, et al. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci 2006; 5(4): 197-200.
[http://dx.doi.org/10.2463/mrms.5.197] [PMID: 17332710]
[26]
Trujillo P, Petersen KJ, Cronin MJ, et al. Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage 2019; 200: 191-8.
[http://dx.doi.org/10.1016/j.neuroimage.2019.06.049] [PMID: 31233908]
[27]
Priovoulos N, Jacobs HIL, Ivanov D, Uludağ K, Verhey FRJ, Poser BA. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 2018; 168: 427-36.
[http://dx.doi.org/10.1016/j.neuroimage.2017.07.045] [PMID: 28743460]
[28]
Watanabe T, Tan Z, Wang X, Martinez-Hernandez A, Frahm J. Magnetic resonance imaging of noradrenergic neurons. Brain Struct Funct 2019; 224(4): 1609-25.
[http://dx.doi.org/10.1007/s00429-019-01858-0] [PMID: 30903359]
[29]
Giorgi FS, Lombardo F, Galgani A, Hlavata H, Della LD, Martini N. locus coeruleus magnetic resonance imaging in cognitively intact elderly subjects. Brain Imaging Behav 2021; 16(3): 1077-87.
[PMID: 34741273]
[30]
Dahl MJ, Mather M, Düzel S, et al. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav 2019; 3(11): 1203-14.
[http://dx.doi.org/10.1038/s41562-019-0715-2] [PMID: 31501542]
[31]
Giorgi FS, Martini N, Lombardo F, et al. Locus Coeruleus magnetic resonance imaging: A comparison between native-space and template-space approach. J Neural Transm 2022; 129(4): 387-94.
[http://dx.doi.org/10.1007/s00702-022-02486-5] [PMID: 35306617]
[32]
Betts MJ, Cardenas-Blanco A, Kanowski M, Spottke A, Teipel SJ, Kilimann I. Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels. Alzheimers Dement 2019; 11: 281-5.
[http://dx.doi.org/10.1016/j.dadm.2019.02.001]
[33]
Galgani A, Lombardo F, Martini N, et al. Magnetic resonance imaging locus coeruleus abnormality in amnestic mild cognitive impairment is associated with future progression to dementia. Eur J Neurol 2023; 30(1): 32-46.
[http://dx.doi.org/10.1111/ene.15556] [PMID: 36086917]
[34]
Li Y, Wang C, Wang J, et al. Mild cognitive impairment in de novo Parkinson’s disease: A neuromelanin MRI study in locus coeruleus. Mov Disord 2019; 34(6): 884-92.
[http://dx.doi.org/10.1002/mds.27682] [PMID: 30938892]
[35]
Wang J, Li Y, Huang Z, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes. Eur J Neurol 2018; 25(7): 949-e73.
[http://dx.doi.org/10.1111/ene.13628] [PMID: 29520900]
[36]
Bachman SL, Dahl MJ, Werkle-Bergner M, et al. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol Aging 2021; 100: 72-82.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.019] [PMID: 33508564]
[37]
Liu KY, Kievit RA, Tsvetanov KA, et al. Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences. Nat Commun 2020; 11(1): 1712.
[http://dx.doi.org/10.1038/s41467-020-15410-w] [PMID: 32249849]
[38]
Dahl MJ, Mather M, Werkle-Bergner M, et al. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer’s disease. Neurobiol Aging 2022; 112: 39-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.11.006] [PMID: 35045380]
[39]
Knudsen K, Fedorova TD, Hansen AK, et al. In-vivo staging of pathology in REM sleep behaviour disorder: A multimodality imaging case-control study. Lancet Neurol 2018; 17(7): 618-28.
[http://dx.doi.org/10.1016/S1474-4422(18)30162-5] [PMID: 29866443]
[40]
Doppler CEJ, Kinnerup MB, Brune C, et al. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease. Brain 2021; 144(9): 2732-44.
[http://dx.doi.org/10.1093/brain/awab236] [PMID: 34196700]
[41]
Ehrminger M, Latimier A, Pyatigorskaya N, et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain 2016; 139(4): 1180-8.
[http://dx.doi.org/10.1093/brain/aww006] [PMID: 26920675]
[42]
Isaias IU, Trujillo P, Summers P, et al. Neuromelanin imaging and dopaminergic loss in parkinson’s disease. Front Aging Neurosci 2016; 8: 196.
[http://dx.doi.org/10.3389/fnagi.2016.00196] [PMID: 27597825]
[43]
Madelung CF, Meder D, Fuglsang SA, et al. Locus coeruleus shows a spatial pattern of structural disintegration in parkinson’s disease. Mov Disord 2022; 37(3): 479-89.
[http://dx.doi.org/10.1002/mds.28945] [PMID: 35114035]
[44]
Hughes CP, Berg L, Danziger W, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140(6): 566-72.
[http://dx.doi.org/10.1192/bjp.140.6.566] [PMID: 7104545]
[45]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging‐alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[46]
Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[47]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14.
[http://dx.doi.org/10.1212/WNL.44.12.2308] [PMID: 7991117]
[48]
Fazekas F, Chawluk J, Alavi A, Hurtig H, Zimmerman R. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 2012; 149(2): 351-6.
[49]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association 2013.
[50]
Orsini A, Grossi D, Capitani E, Laiacona M, Papagno C, Vallar G. Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. Ital J Neurol Sci 1987; 8(6): 537-48.
[http://dx.doi.org/10.1007/BF02333660] [PMID: 3429213]
[51]
Carlesimo GA, Caltagirone C, Gainotti G, et al. The mental deterioration battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur Neurol 1996; 36(6): 378-84.
[http://dx.doi.org/10.1159/000117297] [PMID: 8954307]
[52]
Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Una versione abbreviata del test di Stroop: dati normativi nella popolazione italiana. Nuova Riv Neurol 2002; 12: 111-5.
[53]
Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E. Trail making test: Normative values from 287 normal adult controls. Ital J Neurol Sci 1996; 17(4): 305-9.
[http://dx.doi.org/10.1007/BF01997792] [PMID: 8915764]
[54]
Sarazin M, Berr C, De Rotrou J, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology 2007; 69(19): 1859-67.
[http://dx.doi.org/10.1212/01.wnl.0000279336.36610.f7] [PMID: 17984454]
[55]
Carlesimo G, Buccione I, Fadda L, Graceffa A, Mauri M, Lorusso S. Standardizzazione di due test di memoria per uso clinico: Breve racconto e figura di Rey. Nuova Riv Neurol 2002; 12: 1-13.
[56]
Lang M, Michelotti C, Bardelli E. WAIS-IV: Weschsler Adult Intelligence Scale IV, lettura dei risultati e intepretazione clinica. Raffaello Cortina Publisher 2013.
[57]
Fernandes P, Regala J, Correia F, Gonçalves-Ferreira AJ. The human locus coeruleus 3-D stereotactic anatomy. Surg Radiol Anat 2012; 34(10): 879-85.
[http://dx.doi.org/10.1007/s00276-012-0979-y] [PMID: 22638719]
[58]
Turcano P, Savica R. Sex differences in movement disorders. Handb Clin Neurol 2020; 175: 275-82.
[http://dx.doi.org/10.1016/B978-0-444-64123-6.00019-9] [PMID: 33008531]
[59]
Smith KM, Dahodwala N. Sex differences in Parkinson’s disease and other movement disorders. Exp Neurol 2014; 259: 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2014.03.010] [PMID: 24681088]
[60]
Kaivola K, Shah Z, Chia R, et al. Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain 2022; 145(5): 1757-62.
[http://dx.doi.org/10.1093/brain/awab402] [PMID: 35381062]
[61]
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021; 20(1): 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[62]
Szabadi E. Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 2013; 27(8): 659-93.
[http://dx.doi.org/10.1177/0269881113490326] [PMID: 23761387]
[63]
Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol 2015; 25(21): R1051-6.
[http://dx.doi.org/10.1016/j.cub.2015.09.039]
[64]
Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 2000; 24(6): 655-68.
[http://dx.doi.org/10.1016/S0149-7634(00)00028-2] [PMID: 10940440]
[65]
Savaki HE, Graham DI, Grome JJ, McCulloch J. Functional consequences of unilateral lesion of the locus coeruleus: A quantitative [14C]2-deoxyglucose investigation. Brain Res 1984; 292(2): 239-49.
[http://dx.doi.org/10.1016/0006-8993(84)90760-1] [PMID: 6692157]
[66]
McBride RL, Sutin J. Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J Comp Neurol 1976; 165(3): 265-84.
[http://dx.doi.org/10.1002/cne.901650302] [PMID: 1270609]
[67]
Jones BE, Moore RY. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 1977; 127(1): 23-53.
[http://dx.doi.org/10.1016/0006-8993(77)90378-X] [PMID: 301051]
[68]
Toussay X, Basu K, Lacoste B, Hamel E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci 2013; 33(8): 3390-401.
[http://dx.doi.org/10.1523/JNEUROSCI.3346-12.2013] [PMID: 23426667]
[69]
Riederer P, Jellinger KA, Kolber P, Hipp G, Sian-Hülsmann J, Krüger R. Lateralisation in parkinson disease. Cell Tissue Res 2018; 373(1): 297-312.
[http://dx.doi.org/10.1007/s00441-018-2832-z]
[70]
Aghakhanyan G, Galgani A, Vergallo A, et al. Brain metabolic correlates of Locus Coeruleus degeneration in Alzheimer’s disease: A multimodal neuroimaging study. Neurobiol Aging 2023; 122: 12-21.
[http://dx.doi.org/10.1016/j.neurobiolaging.2022.11.002] [PMID: 36463849]
[71]
Robertson IH. A right hemisphere role in cognitive reserve. Neurobiol Aging 2014; 35(6): 1375-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.028] [PMID: 24378088]
[72]
Robertson IH. A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiol Aging 2013; 34(1): 298-308.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.05.019] [PMID: 22743090]
[73]
Galgani A, Giorgi FS. The role of brain noradrenaline in Alzheimer’s disease: Implications for a precision medicine-oriented approach. Reference Module in Biomedical Sciences 2023.
[74]
Dugger BN, Murray ME, Boeve BF, et al. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathol Appl Neurobiol 2012; 38(2): 142-52.
[http://dx.doi.org/10.1111/j.1365-2990.2011.01203.x] [PMID: 21696423]
[75]
Tilley BS, Patel SR, Goldfinger MH, Pearce RKB, Gentleman SM. Locus coeruleus pathology indicates a continuum of lewy body dementia. J Parkinsons Dis 2021; 11(4): 1641-50.
[http://dx.doi.org/10.3233/JPD-212748] [PMID: 34334423]
[76]
Hansen N. Locus coeruleus malfunction is linked to psychopathology in prodromal dementia with lewy bodies. Front Aging Neurosci 2021; 13: 641101.
[http://dx.doi.org/10.3389/fnagi.2021.641101] [PMID: 33732141]
[77]
Prasuhn J, Prasuhn M, Fellbrich A, et al. Association of locus coeruleus and substantia nigra pathology with cognitive and motor functions in patients with parkinson disease. Neurology 2021; 97(10): e1007-16.
[http://dx.doi.org/10.1212/WNL.0000000000012444] [PMID: 34187859]
[78]
Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging 2016; 37: 117-26.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.019] [PMID: 26521135]
[79]
Liu KY, Acosta-Cabronero J, Cardenas-Blanco A, et al. In vivo visualization of age-related differences in the locus coeruleus. Neurobiol Aging 2019; 74: 101-11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.014] [PMID: 30447418]
[80]
Bangasser DA, Wiersielis KR, Khantsis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 2016; 1641: 177-88.
[http://dx.doi.org/10.1016/j.brainres.2015.11.021]
[81]
Pinos H, Collado P, Rodríguez-Zafra M, Rodríguez C, Segovia S, Guillamón A. The development of sex differences in the locus coeruleus of the rat. Brain Res Bull 2001; 56(1): 73-8.
[http://dx.doi.org/10.1016/S0361-9230(01)00540-8] [PMID: 11604252]
[82]
Guillamón A, de Blas MR, Segovia S. Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Res Dev Brain Res 1988; 40(2): 306-10.
[http://dx.doi.org/10.1016/0165-3806(88)90143-5] [PMID: 3382961]
[83]
Luckey AM, Robertson IH, Lawlor B, Mohan A, Vanneste S. Sex differences in locus coeruleus: A heuristic approach that may explain the increased risk of alzheimer’s disease in females. J Alzheimers Dis 2021; 83(2): 505-22.
[http://dx.doi.org/10.3233/JAD-210404] [PMID: 34334399]
[84]
Keren NI, Taheri S, Vazey EM, et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage 2015; 113: 235-45.
[http://dx.doi.org/10.1016/j.neuroimage.2015.03.020] [PMID: 25791783]
[85]
Clewett DV, Huang R, Velasco R, Lee TH, Mather M. Locus coeruleus activity strengthens prioritized memories under arousal. J Neurosci 2018; 38(6): 1558-74.
[http://dx.doi.org/10.1523/JNEUROSCI.2097-17.2017] [PMID: 29301874]
[86]
Mather M, Joo Yoo H, Clewett DV, et al. Higher locus coeruleus MRI contrast is associated with lower parasympathetic influence over heart rate variability. Neuroimage 2017; 150: 329-35.
[http://dx.doi.org/10.1016/j.neuroimage.2017.02.025] [PMID: 28215623]
[87]
Kasanuki K, Iseki E, Kondo D, et al. Neuropathological investigation of hypocretin expression in brains of dementia with Lewy bodies. Neurosci Lett 2014; 569: 68-73.
[http://dx.doi.org/10.1016/j.neulet.2014.03.020] [PMID: 24704327]
[88]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[89]
Oertel WH, Henrich MT, Janzen A, Geibl FF. The locus coeruleus: Another vulnerability target in Parkinson’s disease. Mov Disord 2019; 34(10): 1423-9.
[http://dx.doi.org/10.1002/mds.27785] [PMID: 31291485]
[90]
Feinstein DL, Heneka MT, Gavrilyuk V, Russo CD, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 2002; 41(5): 357-65.
[http://dx.doi.org/10.1016/S0197-0186(02)00049-9] [PMID: 12176079]
[91]
Jardanhazi-Kurutz D, Kummer MP, Terwel D, Vogel K, Thiele A, Heneka MT. Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience 2011; 176: 396-407.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.052] [PMID: 21129451]
[92]
Jardanhazi-Kurutz D, Kummer MP, Terwel D, et al. Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int 2010; 57(4): 375-82.
[http://dx.doi.org/10.1016/j.neuint.2010.02.001] [PMID: 20144675]
[93]
Heneka MT, Galea E, Gavriluyk V, et al. Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: Implications for Alzheimer’s disease. J Neurosci 2002; 22(7): 2434-42.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02434.2002] [PMID: 11923407]
[94]
Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 2010; 117(8): 919-47.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[95]
Heneka MT, Nadrigny F, Regen T, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 2010; 107(13): 6058-63.
[http://dx.doi.org/10.1073/pnas.0909586107] [PMID: 20231476]
[96]
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: Noradrenergic signaling system. J Neurochem 2016; 139(2): 154-78.
[http://dx.doi.org/10.1111/jnc.13447] [PMID: 26968403]
[97]
Kalinin S, Feinstein DL, Xu HL, Huesa G, Pelligrino DA, Galea E. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur J Neurosci 2006; 24(12): 3393-400.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05223.x] [PMID: 17229089]
[98]
Bekar LK, Wei HS, Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 2012; 32(12): 2135-45.
[http://dx.doi.org/10.1038/jcbfm.2012.115] [PMID: 22872230]
[99]
Chen ZC, Gan J, Yang Y, Meng Q, Han J, Ji Y. The vascular risk factors and vascular neuropathology in subjects with autopsy‐confirmed dementia with Lewy bodies. Int J Geriatr Psychiatry 2022; 37(3): gps.5683.
[http://dx.doi.org/10.1002/gps.5683] [PMID: 35128731]
[100]
Amin J, Erskine D, Donaghy PC, et al. Inflammation in dementia with Lewy bodies. Neurobiol Dis 2022; 168: 105698.
[http://dx.doi.org/10.1016/j.nbd.2022.105698] [PMID: 35314318]
[101]
Surendranathan A, Rowe JB, O’Brien JT. Neuroinflammation in Lewy body dementia. Parkinsonism Relat Disord 2015; 21(12): 1398-406.
[http://dx.doi.org/10.1016/j.parkreldis.2015.10.009] [PMID: 26493111]
[102]
Walker L, McAleese KE, Thomas AJ, et al. Neuropathologically mixed Alzheimer’s and Lewy body disease: Burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 2015; 129(5): 729-48.
[http://dx.doi.org/10.1007/s00401-015-1406-3] [PMID: 25758940]
[103]
Heneka MT, Ramanathan M, Jacobs AH, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 2006; 26(5): 1343-54.
[http://dx.doi.org/10.1523/JNEUROSCI.4236-05.2006] [PMID: 16452658]
[104]
Chalermpalanupap T, Schroeder JP, Rorabaugh JM, et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in p301s tau transgenic mice. J Neurosci 2018; 38(1): 74-92.
[http://dx.doi.org/10.1523/JNEUROSCI.1483-17.2017] [PMID: 29133432]
[105]
Mavridis M, Degryse AD, Lategan AJ, Marien MR, Colpaert FC. Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: A possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 1991; 41(2-3): 507-23.
[http://dx.doi.org/10.1016/0306-4522(91)90345-O] [PMID: 1870701]
[106]
Warner CB, Ottman AA, Brown JN. The role of atomoxetine for Parkinson disease-related executive dysfunction: A systematic review. J Clin Psychopharmacol 2018; 38(6): 627-31.
[http://dx.doi.org/10.1097/JCP.0000000000000963] [PMID: 30346335]
[107]
O’Callaghan C, Hezemans FH, Ye R, et al. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson’s disease. Brain 2021; 144(8): 2513-26.
[http://dx.doi.org/10.1093/brain/awab142] [PMID: 33783470]
[108]
Levey AI, Qiu D, Zhao L, et al. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2022; 145(6): 1924-38.
[http://dx.doi.org/10.1093/brain/awab452] [PMID: 34919634]
[109]
Kapur A. Is methylphenidate beneficial and safe in pharmacological cognitive enhancement? CNS Drugs 2020; 34(10): 1045-62.
[http://dx.doi.org/10.1007/s40263-020-00758-w]
[110]
Faustini G, Longhena F, Bruno A, et al. Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiol Dis 2020; 138: 104789.
[http://dx.doi.org/10.1016/j.nbd.2020.104789] [PMID: 32032728]
[111]
LeWitt PA. Norepinephrine: The next therapeutics frontier for Parkinson’s disease. Transl Neurodegener 2012; 1(1): 4.
[http://dx.doi.org/10.1186/2047-9158-1-4] [PMID: 23211006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy