Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Cognitive Versus Hemorrhagic Onset in Cerebral Amyloid Angiopathy: Neuroimaging Features

Author(s): Giulia Perini*, Matteo Cotta Ramusino, Lisa Maria Farina, Beatrice Dal Fabbro, Isabella Canavero, Marta Picascia, Shaun Muzic, Elena Ballante, Anna Cavallini, Anna Pichiecchio and Alfredo Costa

Volume 20, Issue 4, 2023

Published on: 31 July, 2023

Page: [267 - 276] Pages: 10

DOI: 10.2174/1567205020666230713151211

Price: $65

conference banner
Abstract

Background: Intracerebral hemorrhage and cognitive decline are typical clinical presentations of cerebral amyloid angiopathy (CAA).

Objective: To determine whether magnetic resonance imaging (MRI) features differ between CAA with hemorrhagic versus cognitive onset.

Methods: In this retrospective study, sixty-one patients with CAA were classified by onset presentation of the disease: hemorrhage (n = 31) or cognitive decline (n = 30). The two groups were compared for MRI markers of small vessel disease, namely cerebral microbleeds (CMBs), cortical superficial siderosis, white matter hyperintensities (WMHs), enlarged perivascular spaces, cortical microinfarcts, and visual rating scales for cortical atrophy. In the patients with cognitive onset, further exploratory analyses investigated MRI markers according to cerebrospinal fluid (CSF) and neuropsychological profiles.

Results: Patients with cognitive onset showed a higher prevalence of CMBs (p < 0.001), particularly in temporal (p = 0.015) and insular (p = 0.002) lobes, and a higher prevalence of WMHs (p = 0.012). Within the cognitive onset group, 12 out of 16 (75%) patients had an Alzheimer’s disease (AD) CSF profile but did not differ in MRI markers from those without AD pathology. Patients with cognitive onset displayed a multidomain profile in 16 out of 23 (70%) cases; patients with this profile showed increased WMHs and CMBs in parietal lobes compared with the amnestic group (p = 0.002) and dysexecutive group (p = 0.032), respectively.

Conclusion: Higher burdens of WMHs and CMBs, especially in temporal and insular lobes, are associated with the cognitive onset of CAA. MRI markers could help to shed light on the clinical heterogeneity of the CAA spectrum and its underlying mechanisms.

[1]
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol 2020; 16(1): 30-42.
[http://dx.doi.org/10.1038/s41582-019-0281-2] [PMID: 31827267]
[2]
Palesi F, De Rinaldis A, Vitali P, et al. Specific patterns of white matter alterations help distinguishing Alzheimer’s and vascular dementia. Front Neurosci 2018; 12: 274.
[http://dx.doi.org/10.3389/fnins.2018.00274] [PMID: 29922120]
[3]
Ramusino MC, Vitali P, Anzalone N, et al. Vascular lesions and brain atrophy in Alzheimer’s, vascular and mixed dementia: An optimized 3T MRI protocol reveals distinctive radiological profiles. Curr Alzheimer Res 2022; 19(6): 449-57.
[http://dx.doi.org/10.2174/1567205019666220620112831] [PMID: 35726416]
[4]
Ramusino MC, Garibotto V, Bacchin R, et al. Incremental value of amyloid-PET versus CSF in the diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2020; 47(2): 270-80.
[http://dx.doi.org/10.1007/s00259-019-04466-6] [PMID: 31388720]
[5]
Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston Criteria. Neurology 2001; 56(4): 537-9.
[http://dx.doi.org/10.1212/WNL.56.4.537] [PMID: 11222803]
[6]
Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury. JAMA Neurol 2019; 76(1): 81-94.
[http://dx.doi.org/10.1001/jamaneurol.2018.3122] [PMID: 30422209]
[7]
Case NF, Charlton A, Zwiers A, et al. Cerebral amyloid angiopathy is associated with executive dysfunction and mild cognitive impairment. Stroke 2016; 47(8): 2010-6.
[http://dx.doi.org/10.1161/STROKEAHA.116.012999] [PMID: 27338926]
[8]
Li L, Wu DH, Li HQ, et al. Association of cerebral microbleeds with cognitive decline: A longitudinal study. J Alzheimers Dis 2020; 75(2): 571-9.
[http://dx.doi.org/10.3233/JAD-191257] [PMID: 32310166]
[9]
Schoemaker D, Charidimou A, Zanon ZMC, et al. Association of memory impairment with concomitant tau pathology in patients with cerebral amyloid angiopathy. Neurology 2021; 96(15): e1975-86.
[http://dx.doi.org/10.1212/WNL.0000000000011745] [PMID: 33627498]
[10]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[11]
Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165-74.
[http://dx.doi.org/10.1016/S1474-4422(09)70013-4] [PMID: 19161908]
[12]
Gregoire SM, Chaudhary UJ, Brown MM, et al. The Microbleed Anatomical Rating Scale (MARS): Reliability of a tool to map brain microbleeds. Neurology 2009; 73(21): 1759-66.
[http://dx.doi.org/10.1212/WNL.0b013e3181c34a7d] [PMID: 19933977]
[13]
Charidimou A, Boulouis G, Roongpiboonsopit D, et al. Cortical superficial siderosis multifocality in cerebral amyloid angiopathy. Neurology 2017; 89(21): 2128-35.
[http://dx.doi.org/10.1212/WNL.0000000000004665] [PMID: 29070669]
[14]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[15]
Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967-72.
[http://dx.doi.org/10.1136/jnnp.55.10.967] [PMID: 1431963]
[16]
Koedam ELGE, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618-25.
[http://dx.doi.org/10.1007/s00330-011-2205-4] [PMID: 21805370]
[17]
Pasquier F, Leys D, Weerts JGE, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 1996; 36(5): 268-72.
[http://dx.doi.org/10.1159/000117270] [PMID: 8864706]
[18]
Alcolea D, Pegueroles J, Muñoz L, et al. Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on Lumipulse. Ann Clin Transl Neurol 2019; 6(9): 1815-24.
[http://dx.doi.org/10.1002/acn3.50873] [PMID: 31464088]
[19]
Lewczuk P, Riederer P, O’Bryant SE, et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the consensus of the task force on biological markers in psychiatry of the world federation of societies of biological psychiatry. World J Biol Psychiatry 2018; 19(4): 244-328.
[http://dx.doi.org/10.1080/15622975.2017.1375556] [PMID: 29076399]
[20]
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment - beyond controversies, towards a consensus: Report of the international working group on mild cognitive impairment. J Intern Med 2004; 256(3): 240-6.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[21]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). (5th ed.), Arlington: American Psychiatric Publishing 2013.
[22]
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 2014; 13(6): 614-29.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[23]
Graff-Radford J, Arenaza-Urquijo EM, Knopman DS, et al. White matter hyperintensities: Relationship to amyloid and tau burden. Brain 2019; 142(8): 2483-91.
[http://dx.doi.org/10.1093/brain/awz162] [PMID: 31199475]
[24]
Chung CP, Chou KH, Chen WT, et al. Strictly lobar cerebral microbleeds are associated with cognitive impairment. Stroke 2016; 47(10): 2497-502.
[http://dx.doi.org/10.1161/STROKEAHA.116.014166] [PMID: 27625380]
[25]
Akoudad S, Wolters FJ, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 2016; 73(8): 934-43.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[26]
Gyanwali B, Shaik MA, Venketasubramanian N, Chen C, Hilal S. Mixed-location cerebral microbleeds: An imaging biomarker for cerebrovascular pathology in cognitive impairment and dementia in a memory clinic population. J Alzheimers Dis 2019; 71(4): 1309-20.
[http://dx.doi.org/10.3233/JAD-190540] [PMID: 31524167]
[27]
Mesker DJ, Poels MMF, Ikram MA, et al. Lobar distribution of cerebral microbleeds: The rotterdam scan study. Arch Neurol 2011; 68(5): 656-9.
[http://dx.doi.org/10.1001/archneurol.2011.93]
[28]
Meier IB, Gu Y, Guzman VA, et al. Lobar microbleeds are associated with a decline in executive functioning in older adults. Cerebrovasc Dis 2014; 38(5): 377-83.
[http://dx.doi.org/10.1159/000368998]
[29]
Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010; 299(1-2): 131-5.
[http://dx.doi.org/10.1016/j.jns.2010.08.034] [PMID: 20850134]
[30]
Margraf NG, Jensen-Kondering U, Weiler C, et al. Cerebrospinal fluid biomarkers in cerebral amyloid angiopathy: New data and quantitative meta-analysis. Front Aging Neurosci 2022; 14: 783996.
[http://dx.doi.org/10.3389/fnagi.2022.783996] [PMID: 35237145]
[31]
Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011; 70(6): 871-80.
[http://dx.doi.org/10.1002/ana.22516] [PMID: 22190361]
[32]
Xiong L, Davidsdottir S, Reijmer YD, et al. Cognitive profile and its association with neuroimaging markers of non-demented cerebral amyloid angiopathy patients in a stroke unit. J Alzheimers Dis 2016; 52(1): 171-8.
[http://dx.doi.org/10.3233/JAD-150890] [PMID: 27060947]
[33]
Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angiopathy evolution of the Boston criteria. Stroke 2018; 49(2): 491-7.
[http://dx.doi.org/10.1161/STROKEAHA.117.016990] [PMID: 29335334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy