Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Amyloid-β-Induced Transglutaminase 2 Expression and Activities are Modulated by 2-Pentadecyl-2-Oxazoline in Mouse and Human Microglial Cell Lines

Author(s): Andrea Parente, Rosa Giacca, Roberta Arena, Ilenia Rullo, Francesca Guida, Sabatino Maione and Vittorio Gentile*

Volume 20, Issue 4, 2023

Published on: 08 August, 2023

Page: [289 - 300] Pages: 12

DOI: 10.2174/1567205020666230804100831

Price: $65

Abstract

Background: Transglutaminase 2 is an ubiquitously multifunctional enzyme and the most widely studied of the transglutaminase family. Consistent with its role in promoting post-translational modifications of proteins, Transglutaminase 2 is involved in many physiological processes such as apoptosis, signal transduction, and cellular adhesion. Several findings indicate that Transglutaminase 2 plays a role in the pathological processes of various inflammation-related diseases, including neurodegenerative diseases.

Objective: We tested the potential modulatory effects on amyloid-β-induced Transglutaminase 2 expression and activities of 2-pentadecyl-2-oxazoline, a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders, both in mouse and human microglial cell lines.

Methods: We used biochemistry, molecular and cell biology techniques to evaluate the potential modulatory effects on amyloid-β-induced Transglutaminase 2 expression and activities of 2- pentadecyl-2-oxazoline in mouse and human microglial cell lines.

Results: 2-pentadecyl-2-oxazoline was able to modulate amyloid-β-induced Transglutaminase 2 expression and activities in mouse and human microglial cell lines.

Conclusion: Transglutaminase 2 confirms its role as a neuroinflammation marker, the inhibition of which could be a potential preventive and therapeutic approach, while 2-pentadecyl-2-oxazoline is a potent modulator of the amyloid-β-induced Transglutaminase 2 expression and activities in mouse and human microglial cell lines.

« Previous
[1]
Folk JE. Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 2006; 54: 1-56.
[http://dx.doi.org/10.1002/9780470122990.ch1] [PMID: 6133417]
[2]
Hasegawa G, Suwa M, Ichikawa Y, et al. A novel function of tissue-type transglutaminase: Protein disulphide isomerase. Biochem J 2003; 373(3): 793-803.
[http://dx.doi.org/10.1042/bj20021084] [PMID: 12737632]
[3]
Achyuthan KE, Greenberg CS. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 1987; 262(4): 1901-6.
[http://dx.doi.org/10.1016/S0021-9258(19)75724-X] [PMID: 2879844]
[4]
Bagoly Z, Sheptovitsky V, Dardik R, Lahav J, Karniel E, Inbal A. Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 2009; 101(5): 840-4.
[http://dx.doi.org/10.1160/TH08-09-0605] [PMID: 19404536]
[5]
Thomázy V, Fésüs L. Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 1989; 255(1): 215-24.
[http://dx.doi.org/10.1007/BF00229084] [PMID: 2567625]
[6]
Griffin M, Casadio R, Bergamini CM. Transglutaminases: Nature’s biological glues. Biochem J 2002; 368(2): 377-96.
[http://dx.doi.org/10.1042/bj20021234] [PMID: 12366374]
[7]
Gentile V, Thomazy V, Piacentini M, Fesus L, Davies PJ. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: Effects on cellular morphology and adhesion. J Cell Biol 1992; 119(2): 463-74.
[http://dx.doi.org/10.1083/jcb.119.2.463] [PMID: 1356992]
[8]
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: Lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89(3): 991-1023.
[http://dx.doi.org/10.1152/physrev.00044.2008] [PMID: 19584319]
[9]
Zhang J, Wang S, Huang W, Bennett DA. Tissue transglutaminase and its product isopeptide are increased in Alzheimer’s disease and APPswe/PS1dE9 double transgenic mice brains. Mol Neurobiol 2016; 53(8): 5066-78.
[http://dx.doi.org/10.1007/s12035-0159413-x] [PMID: 26386840]
[10]
Wilhelmus MM, de Jager M, Smit AB, van der Loo RJ, Drukarch B. Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer’s disease mouse models. Sci Rep 2016; 6: 20569.
[http://dx.doi.org/10.1038/srep20569]
[11]
Lu S, Saydak M, Gentile V, Stein JP, Davies PJA. Isolation and characterization of the human tissue transglutaminase gene promoter. J Biol Chem 1995; 270(17): 9748-56.
[http://dx.doi.org/10.1074/jbc.270.17.9748] [PMID: 7730352]
[12]
Lee J, Kim YS, Choi DH, et al. Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 2004; 279(51): 53725-35.
[http://dx.doi.org/10.1074/jbc.M407627200] [PMID: 15471861]
[13]
Kumar S, Mehta K. Tissue transglutaminase constitutively activates HIF-1α promoter and nuclear factor-κB via a non-canonical pathway. PLoS One 2012; 7(11): e49321.
[http://dx.doi.org/10.1371/journal.pone.0049321] [PMID: 23185316]
[14]
Mann AP, Verma A, Sethi G, et al. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: Delineation of a novel pathway. Cancer Res 2006; 66(17): 8788-95.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1457] [PMID: 16951195]
[15]
Verma A, Mehta K. Transglutaminase-mediated activation of nuclear transcription factor-kappaB in cancer cells: A new therapeutic opportunity. Curr Cancer Drug Targets 2007; 7(6): 559-65.
[http://dx.doi.org/10.2174/156800907781662275] [PMID: 17896921]
[16]
McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79(1-2): 195-200.
[http://dx.doi.org/10.1016/0304-3940(87)90696-3] [PMID: 3670729]
[17]
Dickson DW, Lee SC, Mattiace LA, Yen SHC, Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 1993; 7(1): 75-83.
[http://dx.doi.org/10.1002/glia.440070113] [PMID: 8423065]
[18]
Giri R, Shen Y, Stins M, et al. β-Amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 2000; 279(6): C1772-81.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1772] [PMID: 11078691]
[19]
Le Y, Gong W, Tiffany HL, et al. Amyloid (β)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 2001; 21(2): RC123.
[http://dx.doi.org/10.1523/JNEUROSCI.21-02-j0003.2001] [PMID: 11160457]
[20]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[21]
Fiala M, Zhang L, Gan X, et al. Amyloid-β induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med 1998; 4(7): 480-9.
[http://dx.doi.org/10.1007/BF03401753] [PMID: 9713826]
[22]
Currò M, Gangemi C, Giunta ML, et al. Transglutaminase 2 is involved in amyloid-beta1-42-induced pro-inflammatory activation via AP1/JNK signalling pathways in THP-1 monocytes. Amino Acids 2017; 49(3): 659-69.
[http://dx.doi.org/10.1007/s00726-016-2366-1] [PMID: 27864692]
[23]
Gatta NG, Parente A, Guida F, Maione S, Gentile V. Neuronutraceuticals modulate lipopolysaccharide- or amyloid-β 1-42 peptide-induced transglutaminase 2 overexpression as a marker of neuroinflammation in mouse microglial cells. Appl Sci 2021; 11(12): 5718-29.
[http://dx.doi.org/10.3390/app11125718]
[24]
Currò M, Ferlazzo N, Condello S, Caccamo D, Ientile R. Transglutaminase 2 silencing reduced the beta-amyloid-effects on the activation of human THP-1 cells. Amino Acids 2010; 39(5): 1427-33.
[http://dx.doi.org/10.1007/s00726-010-0605-4] [PMID: 20437185]
[25]
Wilhelmus MMM, Grunberg SCS, Bol JGJM, et al. Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 2009; 19(4): 612-22.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00197.x] [PMID: 18673368]
[26]
Zhang W, Johnson BR, Suri DE, Martinez J, Bjornsson TD. Immunohistochemical demonstration of tissue transglutaminase in amyloid plaques. Acta Neuropathol 1998; 96(4): 395-400.
[http://dx.doi.org/10.1007/s004010050910] [PMID: 9797004]
[27]
Shinagawa R, Masuda S, Sasaki R, Ikura K, Takahata K. In vitro neurotoxicity of amyloid β-peptide cross-linked by transglutaminase. Cytotechnology 1997; 23(1/3): 77-85.
[http://dx.doi.org/10.1023/A:1007999114779] [PMID: 22358523]
[28]
Greenberg C, Greenberg CS. TGM2 and implications for human disease: Role of alternative splicing. Front Biosci 2013; 18(2): 504-19.
[http://dx.doi.org/10.2741/4117] [PMID: 23276939]
[29]
Citron BA, SantaCruz KS, Davies PJA, Festoff BW. Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer’s disease. J Biol Chem 2001; 276(5): 3295-301.
[http://dx.doi.org/10.1074/jbc.M004776200] [PMID: 11013236]
[30]
Zhang J, Zheng Y, Luo Y, Du Y, Zhang X, Fu J. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol Immunol 2019; 116: 29-37.
[http://dx.doi.org/10.1016/j.molimm.2019.09.020] [PMID: 31590042]
[31]
Gatta NG, Cammarota G, Iannaccone M, Serretiello E, Gentile V. Curcumin (Diferulolylmethane) reduces Transglutaminase-2 overexpression induced by retinoic acid in human nervous cell lines. Neuroimmunomodulation 2016; 23(3): 188-93.
[http://dx.doi.org/10.1159/000448998] [PMID: 27780170]
[32]
Impellizzeri D, Cordaro M, Bruschetta G, et al. 2-pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol Res 2016; 108: 23-30.
[http://dx.doi.org/10.1016/j.phrs.2016.04.007] [PMID: 27083308]
[33]
Impellizzeri D, Siracusa R, Cordaro M, et al. N-Palmitoylethanolamine-oxazoline (PEA-OXA): A new therapeutic strategy to reduce neuroinflammation, oxidative stress associated to vascular dementia in an experimental model of repeated bilateral common carotid arteries occlusion. Neurobiol Dis 2019; 125: 77-91.
[http://dx.doi.org/10.1016/j.nbd.2019.01.007] [PMID: 30660740]
[34]
Impellizzeri D, Cordaro M, Bruschetta G, et al. N-palmitoylethanolamine-oxazoline as a new therapeutic strategy to control neuroinflammation: Neuroprotective effects in experimental models of spinal cord and brain injury. J Neurotrauma 2017; 34(18): 2609-23.
[http://dx.doi.org/10.1089/neu.2016.4808] [PMID: 28095731]
[35]
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162(1): 156-9.
[http://dx.doi.org/10.1016/0003-2697(87)90021-2] [PMID: 2440339]
[36]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[37]
Stampone E, Bencivenga D, Barone C, Di Finizio M, Della Ragione F, Borriello A. A beckwith-wiedemann-associated CDKN1C mutation allows the identification of a novel nuclear localization signal in human p57Kip2. Int J Mol Sci 2021; 22(14): 7428.
[http://dx.doi.org/10.3390/ijms22147428] [PMID: 34299047]
[38]
Sestito C, Brevé JJP, van Eggermond MCJA, et al. Monocyte-derived tissue transglutaminase in multiple sclerosis patients: Reflecting an anti-inflammatory status and function of the cells? J Neuroinflammation 2017; 14(1): 257.
[http://dx.doi.org/10.1186/s12974-017-1035-y] [PMID: 29268771]
[39]
Infantino R, Boccella S, Scuteri D, et al. 2-pentadecyl-2-oxazoline prevents cognitive and social behaviour impairments in the Amyloid β-induced Alzheimer-like mice model: Bring the α2 adrenergic receptor back into play. Biomed Pharmacother 2022; 156: 113844.
[http://dx.doi.org/10.1016/j.biopha.2022.113844] [PMID: 36252359]
[40]
Singh US, Erickson JW, Cerione RA. Identification and biochemical characterization of an 80 kilodalton GTP-binding/transglutaminase from rabbit liver nuclei. Biochemistry 1995; 34(48): 15863-71.
[http://dx.doi.org/10.1021/bi00048a032] [PMID: 7495818]
[41]
Lesort M, Attanavanich K, Zhang J, Johnson GVW. Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem 1998; 273(20): 11991-4.
[http://dx.doi.org/10.1074/jbc.273.20.11991] [PMID: 9575137]
[42]
Tatsukawa H, Kojima S. Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis. Cell Biol Int 2010; 34(3): 325-34.
[http://dx.doi.org/10.1042/CBI20090130] [PMID: 20192918]
[43]
Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ. Phosphorylation of histones by tissue transglutaminase. J Biol Chem 2006; 281(9): 5532-8.
[http://dx.doi.org/10.1074/jbc.M506864200] [PMID: 16407273]
[44]
Mishra S, Murphy LJ. The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 2006; 339(2): 726-30.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.071] [PMID: 16313886]
[45]
Mishra S, Melino G, Murphy LJ. Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 2007; 282(25): 18108-15.
[http://dx.doi.org/10.1074/jbc.M607413200] [PMID: 17478427]
[46]
Occhigrossi L, D’Eletto M, Vecchio A, Piacentini M, Rossin F. Transglutaminase type 2-dependent crosslinking of IRF3 in dying melanoma cells. Cell Death Discov 2022; 8(1): 498.
[http://dx.doi.org/10.1038/s41420-022-01278-w] [PMID: 36572679]
[47]
Sestito C, Brevé JJP, Bol JGJM, Wilhelmus MMM, Drukarch B, van Dam AM. Tissue Transglutaminase contributes to myelin phagocytosis in interleukin-4-treated human monocyte-derived macrophages. Cytokine 2020; 128: 155024.
[http://dx.doi.org/10.1016/j.cyto.2020.155024] [PMID: 32032932]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy