Abstract
Background: Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear.
Methods: In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis.
Results: Our findings demonstrated that LIR improved cardiac function, histology scores, and col lagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II/LC3-I while upregulating the expression of p62, indicating LIR-inhibited autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p- PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly increased.
Conclusion: LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.
Graphical Abstract
[http://dx.doi.org/10.1056/NEJMra1808137] [PMID: 30625066]
[http://dx.doi.org/10.1161/CIR.0b013e3182009701] [PMID: 21160056]
[http://dx.doi.org/10.1016/j.ijcard.2005.11.003] [PMID: 16364475]
[http://dx.doi.org/10.1136/heartjnl-2015-307691] [PMID: 26310262]
[http://dx.doi.org/10.12688/f1000research.15096.1] [PMID: 30228871]
[http://dx.doi.org/10.1111/jcmm.15695] [PMID: 32881330]
[http://dx.doi.org/10.1038/s41556-018-0037-z] [PMID: 29476151]
[http://dx.doi.org/10.1016/j.bbrc.2013.09.131] [PMID: 24099770]
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.012] [PMID: 29597027]
[http://dx.doi.org/10.1016/j.pneurobio.2018.01.001] [PMID: 29331396]
[http://dx.doi.org/10.1161/01.RES.0000261924.76669.36] [PMID: 17332429]
[http://dx.doi.org/10.1016/j.jacc.2018.02.066] [PMID: 29724354]
[http://dx.doi.org/10.1007/s40292-013-0029-9] [PMID: 24235024]
[http://dx.doi.org/10.3389/fphar.2020.01150] [PMID: 32903815]
[http://dx.doi.org/10.1016/j.phymed.2018.11.025] [PMID: 31005720]
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[http://dx.doi.org/10.1007/s12272-010-1206-1] [PMID: 21191756]
[http://dx.doi.org/10.1055/s-2003-41127] [PMID: 12898415]
[http://dx.doi.org/10.1016/j.intimp.2017.09.012] [PMID: 28941417]
[http://dx.doi.org/10.4062/biomolther.2014.103] [PMID: 25593644]
[http://dx.doi.org/10.1007/BF02976432] [PMID: 10071956]
[http://dx.doi.org/10.1002/mnfr.202000231] [PMID: 32729956]
[PMID: 26236742]
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[http://dx.doi.org/10.18632/aging.103262] [PMID: 32459661]
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[http://dx.doi.org/10.1016/j.trsl.2019.03.001] [PMID: 30930180]
[http://dx.doi.org/10.1016/j.cellsig.2020.109869] [PMID: 33278559]
[http://dx.doi.org/10.2147/JIR.S115508] [PMID: 28546762]
[http://dx.doi.org/10.1016/j.carrev.2005.07.001] [PMID: 16275608]
[http://dx.doi.org/10.1155/2017/3920195] [PMID: 28751931]
[http://dx.doi.org/10.1091/mbc.e08-12-1249] [PMID: 19225151]
[http://dx.doi.org/10.18632/aging.202482] [PMID: 33582656]