Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

A Comprehensive Review on Biotransformation, Interaction, and Health of Gut Microbiota and Bioactive Components

Author(s): Lin Zhang and Xiao-Gen Ma*

Volume 27, Issue 11, 2024

Published on: 24 October, 2023

Page: [1551 - 1565] Pages: 15

DOI: 10.2174/0113862073257733231011072004

Price: $65

Abstract

Background: The relationship between gut microbiota and bioactive components has become the research focus in the world. We attempted to clarify the relationship between biotransformation and metabolites of gut microbiota and bioactive components, and explore the metabolic pathway and mechanism of bioactive ingredients in vivo, which will provide an important theoretical basis for the clinical research of bioactive ingredients and rationality of drugs, and also provide an important reference for the development of new drugs with high bioavailability.

Methods: The related references of this review on microbiota and bioactive components were collected from both online and offline databases, such as ScienceDirect, PubMed, Elsevier, Willy, SciFinder, Google Scholar, Web of Science, Baidu Scholar, SciHub, Scopus, and CNKI.

Results: This review summarized the biotransformation of bioactive components under the action of gut microbiota, including flavonoids, terpenoids, phenylpropanoids, alkaloids, steroids, and other compounds. The interaction of bioactive components and gut microbiota is a key link for drug efficacy. Relevant research is crucial to clarify bioactive components and their mechanisms, which involve the complex interaction among bioactive components, gut microbiota, and intestinal epithelial cells. This review also summarized the individualized, precise, and targeted intervention of gut microbiota in the field of intestinal microorganisms from the aspects of dietary fiber, microecological agents, fecal microbiota transplantation, and postbiotics. It will provide an important reference for intestinal microecology in the field of nutrition and health for people.

Conclusion: To sum up, the importance of human gut microbiota in the research of bioactive components metabolism and transformation has attracted the attention of scholars all over the world. It is believed that with the deepening of research, human gut microbiota will be more widely used in the pharmacodynamic basis, drug toxicity relationship, new drug discovery, drug absorption mechanism, and drug transport mechanism in the future.

Next »
Graphical Abstract

[1]
Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124(4), 837-848.
[http://dx.doi.org/10.1016/j.cell.2006.02.017] [PMID: 16497592]
[2]
Wang, M.; Ahrné, S.; Jeppsson, B.; Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol., 2005, 54(2), 219-231.
[http://dx.doi.org/10.1016/j.femsec.2005.03.012] [PMID: 16332321]
[3]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[4]
Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.009] [PMID: 18682282]
[5]
Higarza, S.G.; Arboleya, S.; Arias, J.L.; Gueimonde, M.; Arias, N. The gut–microbiota–brain changes across the liver disease spectrum. Front. Cell. Neurosci., 2022, 16, 994404.
[http://dx.doi.org/10.3389/fncel.2022.994404] [PMID: 36159394]
[6]
Gill, V.J.S.; Soni, S.; Shringarpure, M.; Anusheel; Bhardwaj, S.; Yadav, N.K.; Patel, A.; Patel, A. Gut microbiota interventions for the mmanagement of obesity: A literature review. Cureus, 2022, 14(9), e29317.
[PMID: 36161997]
[7]
Kleigrewe, K.; Haack, M.; Baudin, M.; Ménabréaz, T.; Crovadore, J.; Masri, M.; Beyrer, M.; Andlauer, W.; Lefort, F.; Dawid, C.; Brück, T.B.; Brück, W.M. Dietary modulation of the human gut microbiota and metabolome with flaxseed preparations. Int. J. Mol. Sci., 2022, 23(18), 10473.
[http://dx.doi.org/10.3390/ijms231810473] [PMID: 36142393]
[8]
Ma, X.C.; Guo, D.A. Research ideas and methods of biotransformation of active components of traditional Chinese medicine. Chin. J. Nat. Med., 2007, 5, 162-168.
[9]
Xu, P.; Hua, D.; Ma, C. Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol., 2007, 25(12), 571-576.
[http://dx.doi.org/10.1016/j.tibtech.2007.08.011] [PMID: 17988755]
[10]
Chen, X.Q.; Huang, X.J.; Shi, D.Y.; Guo, S.N. Research progress in interaction of traditional Chinese medicine and intestinal flora. Chin. Tradit. Herbal Drugs, 2014, 7, 1031-1036.
[11]
Li, L.; Jiang, H.; Wu, H.; Zeng, S. Simultaneous determination of luteolin and apigenin in dog plasma by RP-HPLC. J. Pharm. Biomed. Anal., 2005, 37(3), 615-620.
[http://dx.doi.org/10.1016/j.jpba.2004.11.012] [PMID: 15740925]
[12]
Jiao, Y.; Li, Y.Z.; Zhang, Y.H.; Cui, W.; Li, Q.; Xie, K.L.; Yu, Y.; Yu, Y.H. Lysine demethylase KDM5B down‐regulates SIRT3 ‐mediated mitochondrial glucose and lipid metabolism in diabetic neuropathy. Diabet. Med., 2023, 40(1), e14964.
[http://dx.doi.org/10.1111/dme.14964] [PMID: 36130801]
[13]
Jin, J.S.; Zhao, Y.F.; Nakamura, N.; Akao, T.; Kakiuchi, N.; Min, B.S.; Hattori, M. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol. Pharm. Bull., 2007, 30(11), 2113-2119.
[http://dx.doi.org/10.1248/bpb.30.2113] [PMID: 17978485]
[14]
Sachdev, V.; Duta-Mare, M.; Korbelius, M.; Vujić, N.; Leopold, C.; Freark de Boer, J.; Rainer, S.; Fickert, P.; Kolb, D.; Kuipers, F.; Radovic, B.; Gorkiewicz, G.; Kratky, D. Impaired bile acid metabolism and gut dysbiosis in mice lacking lysosomal acid lipase. Cells, 2021, 10(10), 2619.
[http://dx.doi.org/10.3390/cells10102619] [PMID: 34685599]
[15]
Wang, C.; Hu, M.; Yi, Y.; Wen, X.; Lv, C.; Shi, M.; Zeng, C. Multiomic analysis of dark tea extract on glycolipid metabolic disorders in db/db mice. Front. Nutr., 2022, 9, 1006517.
[http://dx.doi.org/10.3389/fnut.2022.1006517] [PMID: 36176635]
[16]
Hargrove, T.Y.; Lamb, D.C.; Smith, J.A.; Wawrzak, Z.; Kelly, S.L.; Lepesheva, G.I. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Sci. Rep., 2022, 12(1), 16232.
[http://dx.doi.org/10.1038/s41598-022-20671-0] [PMID: 36171457]
[17]
Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, P.C.; Collins, A.R.; Duthie, G.G. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch. Biochem. Biophys., 1998, 360(1), 142-148.
[http://dx.doi.org/10.1006/abbi.1998.0951] [PMID: 9826439]
[18]
Setchell, K.D.R.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr., 2002, 132(12), 3577-3584.
[http://dx.doi.org/10.1093/jn/132.12.3577] [PMID: 12468591]
[19]
Dey, P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol. Res., 2019, 147, 104367.
[http://dx.doi.org/10.1016/j.phrs.2019.104367] [PMID: 31344423]
[20]
Xie, B.; Zu, X.; Wang, Z.; Xu, X.; Liu, G.; Liu, R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front. Pharmacol., 2022, 13, 990476.
[http://dx.doi.org/10.3389/fphar.2022.990476] [PMID: 36188559]
[21]
Kim, D.H.; Jung, E.A.; Sohng, I.S.; Han, J.A.; Kim, T.H.; Han, M.J. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 1998, 21(1), 17-23.
[http://dx.doi.org/10.1007/BF03216747] [PMID: 9875509]
[22]
Li, Y.; Meselhy, M.R.; Wang, L.Q.; Ma, C.M.; Nakamura, N.; Hattori, M. Biotransformation of a C-glycosylflavone, abrusin 2′'-O-β-D-apioside, by human intestinal bacteria. Chem. Pharm. Bull., 2000, 48(8), 1239-1241.
[http://dx.doi.org/10.1248/cpb.48.1239] [PMID: 10959599]
[23]
Marotti, I.; Bonetti, A.; Biavati, B.; Catizone, P.; Dinelli, G. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. J. Agric. Food Chem., 2007, 55(10), 3913-3919.
[http://dx.doi.org/10.1021/jf062997g] [PMID: 17439230]
[24]
Yuan, Z.; Dong, F.; Pang, Z.; Fallah, N.; Zhou, Y.; Li, Z.; Hu, C. Integrated metabolomics and transcriptome analyses unveil pathways involved in sugar content and rind color of two sugarcane varieties. Front. Plant Sci., 2022, 13, 921536.
[http://dx.doi.org/10.3389/fpls.2022.921536] [PMID: 35783968]
[25]
Schneider, H.; Simmering, R.; Hartmann, L.; Pforte, H.; Blaut, M. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J. Appl. Microbiol., 2000, 89(6), 1027-1037.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01209.x] [PMID: 11123476]
[26]
Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol., 1999, 171(2), 81-91.
[http://dx.doi.org/10.1007/s002030050682] [PMID: 9914304]
[27]
Aura, A.M.; O’Leary, K.A.; Williamson, G.; Ojala, M.; Bailey, M.; Puupponen-Pimiä, R.; Nuutila, A.M.; Oksman-Caldentey, K.M.; Poutanen, K. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J. Agric. Food Chem., 2002, 50(6), 1725-1730.
[http://dx.doi.org/10.1021/jf0108056] [PMID: 11879065]
[28]
Liu, T.; Wang, Y.; Wang, B.X.; Wu, L.J. Studies on metabolism of icariin in intestinal bacteria I. metabolism and transformation of icariin by intestinal bacteria. Chin. Tradit. Herbal Drugs, 2000, 31, 834-837.
[29]
Wang, L.Q.; Meselhy, M.R.; Li, Y.; Nakamura, N.; Min, B.S.; Qin, G.W.; Hattori, M. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem. Pharm. Bull., 2001, 49(12), 1640-1643.
[http://dx.doi.org/10.1248/cpb.49.1640] [PMID: 11767089]
[30]
Meselhy, M.R.; Nakamura, N.; Hattori, M. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria. Chem. Pharm. Bull., 1997, 45(5), 888-893.
[http://dx.doi.org/10.1248/cpb.45.888] [PMID: 9178524]
[31]
Hur, H.G.; Lay, J.O., Jr; Beger, R.D.; Freeman, J.P.; Rafii, F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol., 2000, 174(6), 422-428.
[http://dx.doi.org/10.1007/s002030000222] [PMID: 11195098]
[32]
Jin, J.S.; Nishihata, T.; Kakiuchi, N.; Hattori, M. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol. Pharm. Bull., 2008, 31(8), 1621-1625.
[http://dx.doi.org/10.1248/bpb.31.1621] [PMID: 18670101]
[33]
Hur, H.G.; Rafii, F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett., 2000, 192(1), 21-25.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb09353.x] [PMID: 11040423]
[34]
Kang, K.A.; Lee, K.H.; Chae, S.; Zhang, R.; Jung, M.S.; Kim, S.Y.; Kim, H.S.; Kim, D.H.; Hyun, J.W. Cytoprotective effect of tectorigenin, a metabolite formed by transformation of tectoridin by intestinal microflora, on oxidative stress induced by hydrogen peroxide. Eur. J. Pharmacol., 2005, 519(1-2), 16-23.
[http://dx.doi.org/10.1016/j.ejphar.2005.06.043] [PMID: 16102749]
[35]
Han, Y.O.; Han, M.J.; Park, S.H.; Kim, D.H. Protective effects of kakkalide from Flos puerariae on ethanol-induced lethality and hepatic injury are dependent on its biotransformation by human intestinal microflora. J. Pharmacol. Sci., 2003, 93(3), 331-336.
[http://dx.doi.org/10.1254/jphs.93.331] [PMID: 14646251]
[36]
Kim, M.; Kim, S.I.; Han, J.; Wang, X.L.; Song, D.G.; Kim, S.U. Stereospecific biotransformation of dihydrodaidzein into (3S)-equol by the human intestinal bacterium Eggerthella strain Julong 732. Appl. Environ. Microbiol., 2009, 75(10), 3062-3068.
[http://dx.doi.org/10.1128/AEM.02058-08] [PMID: 19304836]
[37]
Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol. Nutr. Food Res., 2010, 54(10), 1405-1413.
[http://dx.doi.org/10.1002/mnfr.200900517] [PMID: 20397197]
[38]
Kang, M.J.; Khanal, T.; Kim, H.G.; Lee, D.H.; Yeo, H.K.; Lee, Y.S.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells. Arch. Pharm. Res., 2012, 35(4), 733-738.
[http://dx.doi.org/10.1007/s12272-012-0418-y] [PMID: 22553067]
[39]
Brownstein, K.J.; Thomas, A.L.; Nguyen, H.T.T.; Gang, D.R.; Folk, W.R. Changes in the harpagide, harpagoside, and verbascoside content of field grown Scrophularia lanceolata and Scrophularia marilandica in response to season and shade. Metabolites, 2021, 11(7), 464.
[http://dx.doi.org/10.3390/metabo11070464] [PMID: 34357358]
[40]
Abdel-Hafez, A.A.M.; Nakamura, N.; Hattori, M. Biotransformation of phorbol by human intestinal bacteria. Chem. Pharm. Bull., 2002, 50(2), 160-164.
[http://dx.doi.org/10.1248/cpb.50.160] [PMID: 11848202]
[41]
Bae, E.A.; Park, S.Y.; Kim, D.H. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull., 2000, 23(12), 1481-1485.
[http://dx.doi.org/10.1248/bpb.23.1481] [PMID: 11145182]
[42]
Bae, E.A.; Choo, M.K.; Park, E.K.; Park, S.Y.; Shin, H.Y.; Kim, D.H. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull., 2002, 25(6), 743-747.
[http://dx.doi.org/10.1248/bpb.25.743] [PMID: 12081140]
[43]
Ruan, J.Q.; Leong, W.I.; Yan, R.; Wang, Y.T. Characterization of metabolism and in vitro permeability study of notoginsenoside R1 from Radix notoginseng. J. Agric. Food Chem., 2010, 58(9), 5770-5776.
[http://dx.doi.org/10.1021/jf1005885] [PMID: 20405945]
[44]
Guo, Y.; Chen, X.; Gong, P.; Wang, M.; Yao, W.; Yang, W.; Chen, F. In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota. Food Funct., 2022, 13(18), 9443-9458.
[http://dx.doi.org/10.1039/D2FO01776H] [PMID: 35972431]
[45]
Kim, D.H.; Hong, S.W.; Kim, B.T.; Bae, E.A.; Park, H.Y.; Han, M.J. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch. Pharm. Res., 2000, 23(2), 172-177.
[http://dx.doi.org/10.1007/BF02975509] [PMID: 10836746]
[46]
Cheng, C.L.; Chao, W.T.; Li, Y.H.; Ou, Y.C.; Wang, S.S.; Chiu, K.Y.; Yuan, S.Y. Escin induces apoptosis in human bladder cancer cells: An in vitro and in vivo study. Eur. J. Pharmacol., 2018, 840, 79-88.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.033] [PMID: 30287153]
[47]
Kim, D.H.; Yu, K.W.; Bae, E.A.; Park, H.J.; Choi, J.W. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol. Pharm. Bull., 1998, 21(4), 360-365.
[http://dx.doi.org/10.1248/bpb.21.360] [PMID: 9586573]
[48]
Bae, E.A.; Yook, C.S.; Oh, O.J.; Chang, S.Y.; Nohara, T.; Kim, D.H. Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull., 2001, 24(5), 582-585.
[http://dx.doi.org/10.1248/bpb.24.582] [PMID: 11379786]
[49]
Ding, W.J.; Deng, Y.; Feng, H.; Liu, W.W.; Hu, R.; Li, X.; Gu, Z.M.; Dong, X.P. Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine. World J. Gastroenterol., 2009, 15(12), 1518-1523.
[http://dx.doi.org/10.3748/wjg.15.1518] [PMID: 19322928]
[50]
Zhang, P.; Yang, X.W. Biotransformation of nodakenin and simultaneous quantification of nodakenin and its aglycone in incubated system of human intestinal bacteria by HPLC method. J. Asian Nat. Prod. Res., 2009, 11(4), 371-379.
[http://dx.doi.org/10.1080/10286020902767716] [PMID: 19431019]
[51]
Jin, J.S.; Hattori, M. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans. J. Agric. Food Chem., 2009, 57(16), 7537-7542.
[http://dx.doi.org/10.1021/jf900902p] [PMID: 19630415]
[52]
Jin, J.S.; Hattori, M. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism. Biol. Pharm. Bull., 2010, 33(8), 1443-1447.
[http://dx.doi.org/10.1248/bpb.33.1443] [PMID: 20686246]
[53]
Jin, J.S.; Zhao, Y.F.; Nakamura, N.; Akao, T.; Kakiuchi, N.; Hattori, M. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone. Biol. Pharm. Bull., 2007, 30(5), 904-911.
[http://dx.doi.org/10.1248/bpb.30.904] [PMID: 17473433]
[54]
Xie, L.H.; Ahn, E.M.; Akao, T.; Abdel-Hafez, A.A.M.; Nakamura, N.; Hattori, M. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull., 2003, 51(4), 378-384.
[http://dx.doi.org/10.1248/cpb.51.378] [PMID: 12672988]
[55]
Linden, D.R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid. Redox Signal., 2014, 20(5), 818-830.
[http://dx.doi.org/10.1089/ars.2013.5312] [PMID: 23582008]
[56]
El-Mekkawy, S.; Meselhy, M.; Kawata, Y.; Kadota, S.; Hattori, M.; Namba, T. Metabolism of strychnine N-oxide and brucine N-oxide by human intestinal bacteria. Planta Med., 1993, 59(4), 347-350.
[http://dx.doi.org/10.1055/s-2006-959698] [PMID: 8103941]
[57]
Fang, H.; Anhê, F.F.; Schertzer, J.D. Dietary sugar lowers immunity and microbiota that protect against metabolic disease. Cell Metab., 2022, 34(10), 1422-1424.
[http://dx.doi.org/10.1016/j.cmet.2022.09.006] [PMID: 36198287]
[58]
Fukiya, S.; Arata, M.; Kawashima, H.; Yoshida, D.; Kaneko, M.; Minamida, K.; Watanabe, J.; Ogura, Y.; Uchida, K.; Itoh, K.; Wada, M.; Ito, S.; Yokota, A. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces. FEMS Microbiol. Lett., 2009, 293(2), 263-270.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01531.x] [PMID: 19243441]
[59]
Ma, X.; Xin, X.; Liu, K.; Han, J.; Guo, D. Microbial transformation of cinobufagin by Syncephalastrum racemosum. J. Nat. Prod., 2008, 71(7), 1268-1270.
[http://dx.doi.org/10.1021/np800210a] [PMID: 18558746]
[60]
Jia, P.; Li, F.; Zhang, S.; Wu, G.; Wang, Y.; Li, J. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front. Microbiol., 2022, 13, 989272.
[http://dx.doi.org/10.3389/fmicb.2022.989272] [PMID: 36160214]
[61]
Zhou, X.; Wang, L.; Sun, X.; Yang, X.; Chen, C.; Wang, Q.; Yang, X. Cinnabar is not converted into methylmercury by human intestinal bacteria. J. Ethnopharmacol., 2011, 135(1), 110-115.
[http://dx.doi.org/10.1016/j.jep.2011.02.032] [PMID: 21382464]
[62]
Coakley, M.; Banni, S.; Johnson, M.C.; Mills, S.; Devery, R.; Fitzgerald, G.; Paul Ross, R.; Stanton, C. Inhibitory effect of conjugated alpha-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids, 2009, 44(3), 249-256.
[http://dx.doi.org/10.1007/s11745-008-3269-z] [PMID: 19048324]
[63]
Kim, D.H.; Park, E.K.; Bae, E.A.; Han, M.J. Metabolism of rhaponticin and chrysophanol 8-o-β-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol. Pharm. Bull., 2000, 23(7), 830-833.
[http://dx.doi.org/10.1248/bpb.23.830] [PMID: 10919361]
[64]
Sanugul, K.; Akao, T.; Li, Y.; Kakiuchi, N.; Nakamura, N.; Hattori, M. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biol. Pharm. Bull., 2005, 28(9), 1672-1678.
[http://dx.doi.org/10.1248/bpb.28.1672] [PMID: 16141538]
[65]
Sauer, J.; Richter, K.K.; Pool-Zobel, B.L. Products formed during fermentation of the prebiotic inulin with humangut flora enhance expression of biotransformation genes in human primarycolon cells. Br. J. Nutr., 2007, 97(5), 928-937.
[http://dx.doi.org/10.1017/S0007114507666422] [PMID: 17381985]
[66]
Zhang, C.; Hou, T.; Yu, Q.; Wang, J.; Ni, M.; Zi, Y.; Xin, H.; Zhang, Y.; Sun, Y. Clostridium butyricum improves the intestinal health of goats by regulating the intestinal microbial community. Front. Microbiol., 2022, 13, 991266.
[http://dx.doi.org/10.3389/fmicb.2022.991266] [PMID: 36204609]
[67]
Bai, R.; Cui, F.; Li, W.; Wang, Y.; Wang, Z.; Gao, Y.; Wang, N.; Xu, Q.; Hu, F.; Zhang, Y. Codonopsis pilosula oligosaccharides modulate the gut microbiota and change serum metabolomic profiles in high-fat diet-induced obese mice. Food Funct., 2022, 13(15), 8143-8157.
[http://dx.doi.org/10.1039/D2FO01119K] [PMID: 35816111]
[68]
Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8), e42529.
[http://dx.doi.org/10.1371/journal.pone.0042529] [PMID: 22880019]
[69]
Shin, N.R.; Bose, S.; Wang, J.H.; Ansari, A.; Lim, S.K.; Chin, Y.; Choi, H.; Kim, H. Flos lonicera combined with metformin ameliorates hepatosteatosis and glucose intolerance in association with gut microbiota modulation. Front. Microbiol., 2017, 8, 2271.
[http://dx.doi.org/10.3389/fmicb.2017.02271] [PMID: 29204141]
[70]
Chen, Z.; Xue, H.; Yuan, H.; Wang, J.; Wang, Q.; Zhang, X. Complication rates in different gastrectomy techniques of enhanced recovery after surgery for gastric cancer: A meta-analysis. J. Coll. Physicians Surg. Pak., 2022, 32(10), 1318-1325.
[http://dx.doi.org/10.29271/jcpsp.2022.10.1318] [PMID: 36205278]
[71]
Wang, Y.S.; Su, Y.L.; Wu, Y.H.; Feng, Z.; Zheng, A.H.; Liu, B.Y.; Zhou, B.; Cai, G.X. Effect of dachengqi decoction on ultrastructural changes of intestinal mucosal epithelial cells in scalded rats. Chin. Arch. Trad. Chin. Med., 2009, 27, 1768-1770.
[72]
Dong, Y.; He, C.M.; Lu, J.G. Experimental study on the regulation of NO-cGMP-PKG pathway in intestinal cajal cells by Yiqi Kaimi Recipe. J. Shanghai Univ. Trad. Chin, 2013, 27, 82-86.
[73]
Lei, L.; Bai, X.L.; Hu, J.Y.; Yu, Y.; Li, X.P.; Li, D.X.; Zhang, Y.; Deng, W.L. Effects of three kinds of borneol on intestinal cytochrome P450 and glycoprotein P-gp in rats. Pharmacol. Clin. Chin. Mater. Med., 2016, 32, 83-87.
[74]
Wang, R.F.; Yuan, M.; Yang, X.B.; Xu, W.; Yang, X.W. Intestinal bacterial transformation – a nonnegligible part of Chinese medicine research. J. Asian Nat. Prod. Res., 2013, 15(5), 532-549.
[http://dx.doi.org/10.1080/10286020.2013.783573] [PMID: 23614368]
[75]
Kobashi, K.; Nishimura, T.; Kusaka, M.; Hattori, M.; Namba, T. Metabolism of sennosides by human intestinal bacteria. Planta Med., 1980, 40(11), 225-236.
[http://dx.doi.org/10.1055/s-2008-1074963] [PMID: 7443842]
[76]
Hattori, M.; Kim, G.; Motoike, S.; Kobashi, K.; Namba, T. Metabolism of sennosides by intestinal flora. Chem. Pharm. Bull., 1982, 30(4), 1338-1346.
[http://dx.doi.org/10.1248/cpb.30.1338] [PMID: 7105255]
[77]
Sasaki, K.; Yamauchi, K.; Kuwano, S. Metabolic activation of sennoside A in mice. Planta Med., 1979, 37(12), 370-378.
[http://dx.doi.org/10.1055/s-0028-1097352] [PMID: 538110]
[78]
Yamauchi, K.; Shinano, K.; Nakajima, K.; Yagi, T.; Kuwano, S. Metabolic activation of sennoside C in mice: synergistic action of anthrones. J. Pharm. Pharmacol., 2011, 44(12), 973-976.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb07076.x] [PMID: 1361561]
[79]
Chen, R.; Guan, Z.; Zhong, X.; Zhang, W.; Zhang, Y. Network pharmacology prediction: The possible mechanisms of cinobufotalin against osteosarcoma. Comput. Math. Methods Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/3197402] [PMID: 35069780]
[80]
Xu, C.H.; Wang, P.; Wang, Y.; Yang, Y.; Li, D.H.; Li, H.F.; Sun, S.Q.; Wu, X.Z. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: Competing mechanisms between paeoniflorin and glycyrrhetinic acid. J. Ethnopharmacol., 2013, 149(2), 443-452.
[http://dx.doi.org/10.1016/j.jep.2013.06.049] [PMID: 23867078]
[81]
Liu, L.; Guo, L.; Zhao, C.; Wu, X.; Wang, R.; Liu, C. Characterization of the intestinal absorption of seven flavonoids from the flowers of Trollius chinensis using the Caco-2 cell monolayer model. PLoS One, 2015, 10(3), e0119263.
[http://dx.doi.org/10.1371/journal.pone.0119263] [PMID: 25789809]
[82]
Ma, Y.; Li, H.; Guan, S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev. Ind. Pharm., 2015, 41(2), 177-182.
[http://dx.doi.org/10.3109/03639045.2014.947510] [PMID: 25113432]
[83]
van de Kerkhof, E.G.; Ungell, A.L.B.; Sjöberg, Å.K.; de Jager, M.H.; Hilgendorf, C.; de Graaf, I.A.M.; Groothuis, G.M.M. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with ussing chamber preparations. Drug Metab. Dispos., 2006, 34(11), 1893-1902.
[http://dx.doi.org/10.1124/dmd.106.011148] [PMID: 16914511]
[84]
Zhu, Y.; Ding, X.; Fang, C.; Zhang, Q.Y. Regulation of intestinal cytochrome P450 expression by hepatic cytochrome P450: possible involvement of fibroblast growth factor 15 and impact on systemic drug exposure. Mol. Pharmacol., 2014, 85(1), 139-147.
[http://dx.doi.org/10.1124/mol.113.088914] [PMID: 24184963]
[85]
Dong, R.H.; Fang, Z.Z.; Zhu, L.L.; Ge, G.B.; Yang, L.; Liu, Z.Y. Identification of UDP-glucuronosyltransferase isoforms involved in hepatic and intestinal glucuronidation of phytochemical carvacrol. Xenobiotica, 2012, 42(10), 1009-1016.
[http://dx.doi.org/10.3109/00498254.2012.682614] [PMID: 22559213]
[86]
Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J., 2012, 6(10), 1848-1857.
[http://dx.doi.org/10.1038/ismej.2012.27] [PMID: 22495068]
[87]
Koecher, K.J.; Noack, J.A.; Timm, D.A.; Klosterbuer, A.S.; Thomas, W.; Slavin, J.L. Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber. J. Agric. Food Chem., 2014, 62(6), 1332-1337.
[http://dx.doi.org/10.1021/jf404688n] [PMID: 24446899]
[88]
Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater., 2016, 28(43), 9486-9490.
[http://dx.doi.org/10.1002/adma.201603270] [PMID: 27616140]
[89]
Delzenne, N.M.; Neyrinck, A.M.; Bäckhed, F.; Cani, P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol., 2011, 7(11), 639-646.
[http://dx.doi.org/10.1038/nrendo.2011.126] [PMID: 21826100]
[90]
Okubo, T.; Takemura, N.; Yoshida, A.; Sonoyama, K. KK/Ta mice administered Lactobacillus plantarum strain No. 14 have lower adiposity and higher insulin sensitivity. Biosci. Microbiota Food Health, 2013, 32(3), 93-100.
[http://dx.doi.org/10.12938/bmfh.32.93] [PMID: 24936367]
[91]
Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front. Cell. Infect. Microbiol., 2022, 12, 759306.
[http://dx.doi.org/10.3389/fcimb.2022.759306] [PMID: 35860380]
[92]
Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol., 2013, 108(4), 500-508.
[http://dx.doi.org/10.1038/ajg.2013.59] [PMID: 23511459]
[93]
Maguire, M.; Maguire, G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci., 2019, 30(2), 179-201.
[http://dx.doi.org/10.1515/revneuro-2018-0024] [PMID: 30173208]
[94]
Mosca, F.; Gianni, M.L.; Rescigno, M. Can postbiotics represent a new strategy for NEC? Adv. Exp. Med. Biol., 2019, 1125, 37-45.
[http://dx.doi.org/10.1007/5584_2018_314] [PMID: 30656552]
[95]
Kang, Y.; Kang, X.; Yang, H.; Liu, H.; Yang, X.; Liu, Q.; Tian, H.; Xue, Y.; Ren, P.; Kuang, X.; Cai, Y.; Tong, M.; Li, L.; Fan, W. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol. Res., 2022, 175, 106020.
[http://dx.doi.org/10.1016/j.phrs.2021.106020] [PMID: 34896249]
[96]
Piccioni, A.; Rosa, F.; Manca, F.; Pignataro, G.; Zanza, C.; Savioli, G.; Covino, M.; Ojetti, V.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Gut microbiota and clostridium difficile: what we know and the new frontiers. Int. J. Mol. Sci., 2022, 23(21), 13323.
[http://dx.doi.org/10.3390/ijms232113323] [PMID: 36362106]
[97]
Xie, Z.; Li, M.; Qian, M.; Yang, Z.; Han, X. Co-Cultures of Lactobacillus acidophilus and Bacillus subtilis enhance mucosal barrier by modulating gut microbiota-derived short-chain fatty acids. Nutrients, 2022, 14(21), 4475.
[http://dx.doi.org/10.3390/nu14214475] [PMID: 36364738]
[98]
Cukrowska, B.; Bierła, J.B.; Zakrzewska, M.; Klukowski, M.; Maciorkowska, E. The relationship between the infant gut microbiota and allergy. The role of bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early Life. Nutrients, 2020, 12(4), 946.
[http://dx.doi.org/10.3390/nu12040946] [PMID: 32235348]
[99]
Béghin, L.; Tims, S.; Roelofs, M.; Rougé, C.; Oozeer, R.; Rakza, T.; Chirico, G.; Roeselers, G.; Knol, J.; Rozé, J.C.; Turck, D. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clin. Nutr., 2021, 40(3), 778-787.
[http://dx.doi.org/10.1016/j.clnu.2020.07.024] [PMID: 32893049]
[100]
Gupta, H.; Kim, S.H.; Kim, S.K.; Han, S.H.; Kwon, H.C.; Suk, K.T. Beneficial shifts in gut microbiota by Lacticaseibacillus rhamnosus R0011 and Lactobacillus helveticus R0052 in alcoholic hepatitis. Microorganisms, 2022, 10(7), 1474.
[http://dx.doi.org/10.3390/microorganisms10071474] [PMID: 35889193]
[101]
Di Luccia, B.; Colonna, M. Precision probiotic medicine to improve ICB immunotherapy. Cancer Discov., 2022, 12(5), 1189-1190.
[http://dx.doi.org/10.1158/2159-8290.CD-22-0221] [PMID: 35491646]
[102]
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[103]
Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci., 2019, 76(3), 473-493.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[104]
Zmora, N.; Suez, J.; Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[105]
Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy