Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Network Pharmacology Approach and Validation Experiments to Investigate the Mechanism of Wen-Dan Decoction in the Treatment of SINFH

Author(s): Baochuang Qi, Minzheng Guo, Xiangwen Shi, Mingjun Li, Yipeng Wu, Yi Wang, Qian Lv, Xinyu Fan, Chuan Li* and Yongqing Xu*

Volume 27, Issue 11, 2024

Published on: 20 November, 2023

Page: [1576 - 1591] Pages: 16

DOI: 10.2174/0113862073266310231026070703

Price: $65

Abstract

Introduction: Steroid-induced necrosis of the femoral head (SINFH) is a femoral head necrotic disease caused by prolonged use of hormones. Wen-Dan decoction is used in Chinese clinical practice for the treatment of steroid-induced necrosis of the femoral head (SINFH). However, the mechanism and active compounds of Wen-Dan decoction used to treat SINFH are not well understood.

Objectives: We studied the mechanism of action of Wen-Dan decoction in treating steroidinduced necrosis of the femoral head (SINFH) via network pharmacology and in vivo experiments.

Methods: The active compounds of Wen-Dan decoction and SINFH-related target genes were identified through public databases. Then, network pharmacological analysis was conducted to explore the potential key active compounds, core targets and biological processes of Wen-Dan decoction in SINFH. The potential mechanisms of Wen-Dan decoction in SINFH obtained by network pharmacology were validated through in vivo experiments.

Results: We identified 608 DEGs (differentially expressed genes) (230 upregulated, 378 downregulated) in SINFH. GO analysis revealed that the SINFH-related genes were mainly involved in neutrophil activation and the immune response. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the SINFH-related genes were mainly associated with cytokine receptor interactions, lipids, atherosclerosis, and tuberculosis. We identified 147 active ingredients of Wen-Dan decoction; the core ingredient was quercetin, and licorice was an active ingredient. Moreover, 277 target genes in the treatment of SINFH with Wen-Dan decoction were identified, and NCF1, PTGS2, and RUNX2 were selected as core target genes. QRT-PCR of peripheral blood from SINFH patients showed higher levels of PGTS2 and NCF1 and showed lower levels of RUNX2 compared to controls. QRT-PCR analysis of peripheral blood and femoral bone tissue from a mouse model of SINFH showed higher levels of PGTS2 and NCF1 and lower levels of RUNX2 in the experimental animals than the controls, which was consistent with the bioinformatics results. HE, immunohistochemistry, and TUNEL staining confirmed a significant reduction in hormone-induced femoral head necrosis in the quercetintreated mice. HE, immunohistochemistry, and TUNEL staining confirmed significant improvement in hormone-induced femoral head necrosis in the quercetin-treated mice.

Conclusion: We provide new insights into the genes and related pathways involved in SINFH and report that PTGS2, RUNX2, and NCF1 are potential drug targets. Quercetin improved SINFH by promoting osteogenesis and inhibiting apoptosis.

Graphical Abstract

[1]
Zhang, Q.Y.; Li, Z.R.; Gao, F.Q.; Sun, W. Pericollapse stage of osteonecrosis of the femoral head: A last chance for joint preservation. Chin. Med. J. (Engl.), 2018, 131(21), 2589-2598.
[http://dx.doi.org/10.4103/0366-6999.244111] [PMID: 30381593]
[2]
Song, Y.; Du, Z.; Ren, M.; Yang, Q.; Wang, Q.; Chen, G.; Zhao, H.; Li, Z.; Wang, J.; Zhang, G. Association of gene variants of transcription factors PPARγ, RUNX2, Osterix genes and COL2A1, IGFBP3 genes with the development of osteonecrosis of the femoral head in Chinese population. Bone, 2017, 101, 104-112.
[http://dx.doi.org/10.1016/j.bone.2017.05.002] [PMID: 28476574]
[3]
Seamon, J.; Keller, T.; Saleh, J.; Cui, Q. The pathogenesis of nontraumatic osteonecrosis. Arthritis (Egypt), 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/601763] [PMID: 23243507]
[4]
Ikeuchi, K.; Hasegawa, Y.; Seki, T.; Takegami, Y.; Amano, T.; Ishiguro, N. Epidemiology of nontraumatic osteonecrosis of the femoral head in Japan. Mod. Rheumatol., 2015, 25(2), 278-281.
[http://dx.doi.org/10.3109/14397595.2014.932038] [PMID: 25036228]
[5]
Vardhan, H.; Tripathy, S.K.; Sen, R.K.; Aggarwal, S.; Goyal, T. Epidemiological profile of femoral head osteonecrosis in the north Indian population. Indian J. Orthop., 2018, 52(2), 140-146.
[http://dx.doi.org/10.4103/ortho.IJOrtho_292_16] [PMID: 29576641]
[6]
Petek, D.; Hannouche, D.; Suva, D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev., 2019, 4(3), 85-97.
[http://dx.doi.org/10.1302/2058-5241.4.180036] [PMID: 30993010]
[7]
Wang, A.; Ren, M.; Wang, J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene, 2018, 671, 103-109.
[http://dx.doi.org/10.1016/j.gene.2018.05.091] [PMID: 29859289]
[8]
Zhao, D.; Liu, F.; Wang, W.; Yang, L.; Wang, B.; Wang, J.; Chai, W. An epidemiological study of etiology and clinical characteristics in patients with nontraumatic osteonecrosis of the femoral head. J. Res. Med. Sci., 2017, 22(1), 15.
[http://dx.doi.org/10.4103/1735-1995.200273] [PMID: 28458706]
[9]
Arbab, D.; König, D.P. Atraumatic femoral head necrosis in adults. Dtsch. Arztebl. Int., 2016, 113(3), 31-38.
[http://dx.doi.org/10.3238/arztebl.2016.0031] [PMID: 26857510]
[10]
Yu, T.; Xie, L.M.; Zhang, Z.N.; Ke, X.; Liu, Y. [Study on the Distribution of Constitutions of Chinese Medicine in Patients with Osteonecrosis of Femoral Head]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2016, 36(6), 659-662.
[PMID: 27491221]
[11]
Yu, T.; Zhang, Z.; Xie, L.; Ke, X.; Liu, Y. The influence of traditional Chinese medicine constitutions on the potential repair capacity after osteonecrosis of the femoral head. Complement. Ther. Med., 2016, 29, 89-93.
[http://dx.doi.org/10.1016/j.ctim.2016.09.010] [PMID: 27912962]
[12]
Yang, C.; Wang, J.; Chen, L.; Xu, T.; Ming, R.; Hu, Z.; Fang, L.; Wang, X.; Li, Q.; Sun, C.; Liu, C.; Lin, N. Tongluo Shenggu capsule promotes angiogenesis to ameliorate glucocorticoid-induced femoral head necrosis via upregulating VEGF signaling pathway. Phytomedicine, 2023, 110, 154629.
[http://dx.doi.org/10.1016/j.phymed.2022.154629] [PMID: 36608500]
[13]
Zhang, Y.; Liu, T.; Zhang, L.; Pu, Z.; Yan, Z.; Hua, H. Wendan decoction in the treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Front. Pharmacol., 2022, 13, 1039611.
[http://dx.doi.org/10.3389/fphar.2022.1039611] [PMID: 36324682]
[14]
Feng, W.; Ye, X.; Lv, H.; Hou, C.; Chen, Y. Wendan decoction for dyslipidemia. Medicine (Baltimore), 2019, 98(3), e14159.
[http://dx.doi.org/10.1097/MD.0000000000014159] [PMID: 30653157]
[15]
Lan, T.H.; Zhang, L.L.; Wang, Y.H.; Wu, H.L.; Xu, D.P. Systems pharmacology dissection of traditional Chinese medicine Wen-Dan decoction for treatment of cardiovascular diseases. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/5170854] [PMID: 29861771]
[16]
Zhang, G.; Yang, G.; Deng, Y.; Zhao, X.; Yang, Y.; Rao, J.; Wang, W.; Liu, X.; He, J.; Lv, L. Ameliorative effects of Xue-Fu-Zhu-Yu decoction, Tian-Ma-Gou-Teng-Yin and Wen-Dan decoction on myocardial fibrosis in a hypertensive rat mode. BMC Complement. Altern. Med., 2015, 16(1), 56.
[http://dx.doi.org/10.1186/s12906-016-1030-3] [PMID: 26852136]
[17]
Li, Z.Y. Clinical Study of Manipulation Combined with Wen dan Decoction in the Treatment of Steroid-Induced Femur Head Necrosis (Bone Ero-sion Phlegm-Dampness Syndrome),
[http://dx.doi.org/10.26980/d.cnki.gcczc.2021.000265]
[18]
Tian, H.; Guan, D.; Li, J. Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA). Medicine (Baltimore), 2018, 97(24), e10781.
[http://dx.doi.org/10.1097/MD.0000000000010781] [PMID: 29901575]
[19]
Ito, K.; Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst. Pharmacol., 2013, 2(10), 79.
[http://dx.doi.org/10.1038/psp.2013.56] [PMID: 24132163]
[20]
Zeng, J.; Deng, P.; Li, J.; Feng, W.; Chen, J.; Zeng, Y. Increased serum protein levels by Yuanshi Shengmai Chenggu Tablet in treatment of avascular osteonecrosis of the femoral head. Mol. Med. Rep., 2017, 17(2), 2121-2126.
[http://dx.doi.org/10.3892/mmr.2017.8119] [PMID: 29207081]
[21]
Cohen-Rosenblum, A.; Cui, Q. Osteonecrosis of the femoral head. Orthop. Clin. North Am., 2019, 50(2), 139-149.
[http://dx.doi.org/10.1016/j.ocl.2018.10.001] [PMID: 30850073]
[22]
Cui, Q.; Jo, W.L.; Koo, K.H.; Cheng, E.Y.; Drescher, W.; Goodman, S.B.; Ha, Y.C.; Hernigou, P.; Jones, L.C.; Kim, S.Y.; Lee, K.S.; Lee, M.S.; Lee, Y.J.; Mont, M.A.; Sugano, N.; Taliaferro, J.; Yamamoto, T.; Zhao, D. ARCO consensus on the pathogenesis of non-traumatic osteonecrosis of the femoral head. J. Korean Med. Sci., 2021, 36(10), e65.
[http://dx.doi.org/10.3346/jkms.2021.36.e65] [PMID: 33724736]
[23]
Lan, D.; Qi, S.; Yao, C.; Li, X.; Liu, H.; Wang, D.; Wang, Y. Quercetin protects rat BMSCs from oxidative stress via ferroptosis. J. Mol. Endocrinol., 2022, 69(3), 401-413.
[http://dx.doi.org/10.1530/JME-22-0086] [PMID: 35900382]
[24]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[25]
Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. Quercetin as an agent for protecting the bone: A review of the current evidence. Int. J. Mol. Sci., 2020, 21(17), 6448.
[http://dx.doi.org/10.3390/ijms21176448] [PMID: 32899435]
[26]
Guo, H.; Yin, W.; Zou, Z.; Zhang, C.; Sun, M.; Min, L.; Yang, L.; Kong, L. Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: An in vivo and in vitro study. J. Adv. Res., 2021, 28, 255-267.
[http://dx.doi.org/10.1016/j.jare.2020.06.020] [PMID: 33364061]
[27]
Satué, M.; Arriero, M.M.; Monjo, M.; Ramis, J.M. Quercitrin and Taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol., 2013, 86(10), 1476-1486.
[http://dx.doi.org/10.1016/j.bcp.2013.09.009] [PMID: 24060614]
[28]
Guo, C.; Yang, R.J.; Jang, K.; Zhou, X.; Liu, Y. Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 cells. Cell. Physiol. Biochem., 2017, 43(4), 1547-1561.
[http://dx.doi.org/10.1159/000481978] [PMID: 29035884]
[29]
Li, M.; Zhang, W.; Zhang, J.; Li, X.; Zhang, F.; Zhu, W.; Meng, L.; Holmdahl, R.; Lu, S. Ncf1 governs immune niches in the lung to mediate pulmonary inflammation in mice. Front. Immunol., 2021, 12, 783944.
[http://dx.doi.org/10.3389/fimmu.2021.783944] [PMID: 34970267]
[30]
Sun, F.; Zhou, J.; Liu, Z.; Jiang, Z.; Peng, H. Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head. Biochem. Biophys. Res. Commun., 2022, 602, 149-155.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.112] [PMID: 35276555]
[31]
Zhu, L.; Yang, F.; Wang, L.; Dong, L.; Huang, Z.; Wang, G.; Chen, G.; Li, Q. Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int., 2021, 21(1), 124.
[http://dx.doi.org/10.1186/s12935-021-01821-2] [PMID: 33602233]
[32]
Jin, Z.; Ren, J.; Qi, S. RETRACTED: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. [Int. Immunopharmacol. 78C (2019) 105946] Int. Immunopharmacol., 2020, 78, 105946.
[http://dx.doi.org/10.1016/j.intimp.2019.105946] [PMID: 31784400]
[33]
Fang, Y.; Liu, J.; Xin, L.; Wen, J.; Guo, J.; Huang, D.; Li, X. Exploration of the immuno-inflammatory potential targets of xinfeng capsule in patients with ankylosing spondylitis based on data mining, network pharmacology, and molecular docking. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/5382607] [PMID: 35368759]
[34]
Chou, L.Y.; Chen, C.H.; Chuang, S.C.; Cheng, T.L.; Lin, Y.H.; Chou, H.C.; Fu, Y.C.; Wang, Y.H.; Wang, C.Z. Discoidin domain receptor 1 regulates Runx2 during osteogenesis of osteoblasts and promotes bone ossification via phosphorylation of p38. Int. J. Mol. Sci., 2020, 21(19), 7210.
[http://dx.doi.org/10.3390/ijms21197210] [PMID: 33003599]
[35]
Takahata, Y.; Hagino, H.; Kimura, A.; Urushizaki, M.; Kobayashi, S.; Wakamori, K.; Fujiwara, C.; Nakamura, E.; Yu, K.; Kiyonari, H.; Bando, K.; Murakami, T.; Komori, T.; Hata, K.; Nishimura, R. Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2. Commun. Biol., 2021, 4(1), 1199.
[http://dx.doi.org/10.1038/s42003-021-02717-7] [PMID: 34667264]
[36]
Qin, X.; Jiang, Q.; Komori, H.; Sakane, C.; Fukuyama, R.; Matsuo, Y.; Ito, K.; Miyazaki, T.; Komori, T. RUNT‐RELATED TRANSCRIPTION FACTOR‐2 (RUNX2) is required for bone matrix protein gene expression in committed osteoblasts in mice. J. Bone Miner. Res., 2021, 36(10), 2081-2095.
[http://dx.doi.org/10.1002/jbmr.4386] [PMID: 34101902]
[37]
Xing, L.; Geng, Y.; Li, W.; Lin, L.; Xu, P. [Expression of RUNX2/LAPTM5 in MC3T3-E1 osteoblastic cells with induced mineralization]. Nan Fang Yi Ke Da Xue Xue Bao, 2021, 41(9), 1394-1399.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2021.09.15] [PMID: 34658355]
[38]
Song, Q.; Yong, H.M.; Yang, L.V.L.; Liang, Y.Q.; Liu, Z.X.; Niu, D.S.; Bai, Z.G. Lycium barbarum polysaccharide protects against osteonecrosis of femoral head via regulating Runx2 expression. Injury, 2022, 53(4), 1361-1367.
[http://dx.doi.org/10.1016/j.injury.2021.12.056] [PMID: 35082056]
[39]
Zhang, X.; Li, H.; Chen, F.; Chen, Y.; Chai, Y.; Liao, J.; Gan, B.; Chen, D.; Li, S.; Liu, Y. Icariin regulates miR-23a-3p-mediated osteogenic differentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-catenin pathways in osteonecrosis of the femoral head. Saudi Pharm. J., 2021, 29(12), 1405-1415.
[http://dx.doi.org/10.1016/j.jsps.2021.10.009] [PMID: 35002378]
[40]
Jiang, X.; Chen, W.; Su, H.; Shen, F.; Xiao, W.; Sun, W. Puerarin facilitates osteogenesis in steroid-induced necrosis of rabbit femoral head and osteogenesis of steroid-induced osteocytes via miR-34a upregulation. Cytokine, 2021, 143, 155512.
[http://dx.doi.org/10.1016/j.cyto.2021.155512] [PMID: 33824083]
[41]
Zhang, J.; Huang, C.; Liu, Z.; Ren, S.; Shen, Z.; Han, K.; Xin, W.; He, G.; Liu, J. Screening of Potential Biomarkers in the Peripheral Serum for Steroid-Induced Osteonecrosis of the Femoral Head Based on WGCNA and Machine Learning Algorithms. Dis. Markers, 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/2639470] [PMID: 35154510]
[42]
Jin, S.; Meng, C.; He, Y.; Wang, X.; Zhang, Q.; Wang, Z.; Huang, W.; Wang, H. Curcumin prevents osteocyte apoptosis by inhibiting M1‐type macrophage polarization in mice model of glucocorticoid‐associated osteonecrosis of the femoral head. J. Orthop. Res., 2020, 38(9), 2020-2030.
[http://dx.doi.org/10.1002/jor.24619] [PMID: 32009245]
[43]
Li, Q.; Zhong, J.; Luo, H.; Urbonaviciute, V.; Xu, Z.; He, C.; Holmdahl, R. Two major genes associated with autoimmune arthritis, Ncf1 and Fcgr2b, additively protect mice by strengthening T cell tolerance. Cell. Mol. Life Sci., 2022, 79(9), 482.
[http://dx.doi.org/10.1007/s00018-022-04501-0] [PMID: 35963953]
[44]
Gong, Z.; Li, Q.; Shi, J.; Wei, J.; Li, P.; Chang, C.H.; Shultz, L.D.; Ren, G. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity, 2022, 55(8), 1483-1500.e9.
[http://dx.doi.org/10.1016/j.immuni.2022.07.001] [PMID: 35908547]
[45]
Gong, Z.; Li, Q.; Shi, J.; Li, P.; Hua, L.; Shultz, L.D.; Ren, G. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol., 2023, 8(80), eadd5204.
[http://dx.doi.org/10.1126/sciimmunol.add5204] [PMID: 36800412]
[46]
Zhang, C.; Xu, X.; Trotter, T.N.; Gowda, P.S.; Lu, Y.; Suto, M.J.; Javed, A.; Murphy-Ullrich, J.E.; Li, J.; Yang, Y. Runx2 deficiency in osteoblasts promotes myeloma resistance to bortezomib by increasing TSP-1–dependent TGFβ1 activation and suppressing immunity in bone marrow. Mol. Cancer Ther., 2022, 21(2), 347-358.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0310] [PMID: 34907087]
[47]
Amevor, F.K.; Cui, Z.; Du, X.; Ning, Z.; Deng, X.; Xu, D.; Shu, G.; Wu, Y.; Cao, X.; Shuo, W.; Tian, Y.; Li, D.; Wang, Y.; Zhang, Y.; Du, X.; Zhu, Q.; Han, X.; Zhao, X. Supplementation of dietary quercetin and vitamin e promotes the intestinal structure and immune barrier integrity in aged breeder hens. Front. Immunol., 2022, 13, 860889.
[http://dx.doi.org/10.3389/fimmu.2022.860889] [PMID: 35386687]
[48]
Li, J.; Sun, Z.; Luo, G.; Wang, S.; Cui, H.; Yao, Z.; Xiong, H.; He, Y.; Qian, Y.; Fan, C. Quercetin attenuates trauma-induced heterotopic ossification by tuning immune cell infiltration and related inflammatory insult. Front. Immunol., 2021, 12, 649285.
[http://dx.doi.org/10.3389/fimmu.2021.649285] [PMID: 34093537]
[49]
Li, Z.; Li, D.; Chen, R.; Gao, S.; Xu, Z.; Li, N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol. Res., 2023, 187, 106635.
[http://dx.doi.org/10.1016/j.phrs.2022.106635] [PMID: 36581167]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy