Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective

Author(s): Firdous Fatima, Nikhil Kumar Chourasiya, Mitali Mishra, Shivam Kori, Sandhya Pathak, Ratnesh Das, Varsha Kashaw, Arun K. Iyer and Sushil Kumar Kashaw*

Volume 31, Issue 24, 2024

Published on: 07 August, 2023

Page: [3668 - 3714] Pages: 47

DOI: 10.2174/0929867330666230522144312

Price: $65

Abstract

The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the “Cure-all” therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Pilleron, S.; Soto-Perez-de-Celis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer, 2021, 148(3), 601-608.
[http://dx.doi.org/10.1002/ijc.33232] [PMID: 32706917]
[4]
Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India-estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527.
[http://dx.doi.org/10.1186/s12885-022-09578-1] [PMID: 35546232]
[5]
Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762.
[http://dx.doi.org/10.1002/jsfa.11372] [PMID: 34143894]
[6]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[7]
Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[8]
Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125(1), 1-8.
[http://dx.doi.org/10.1002/ijc.24336] [PMID: 19326431]
[9]
Ushida, J.; Sugie, S.; Kawabata, K.; Pham, Q.V.; Tanaka, T.; Fujii, K.; Takeuchi, H.; Ito, Y.; Mori, H. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn. J. Cancer Res., 2000, 91(9), 893-898.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01031.x] [PMID: 11011116]
[10]
Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicolo., 2000, 38(11), 991-995.
[11]
Okazaki, Y.; Iqbal, M.; Okada, S. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740(3), 357-366.
[http://dx.doi.org/10.1016/j.bbadis.2004.09.006] [PMID: 15949703]
[12]
Ikezaki, S.; Nishikawa, A.; Furukawa, F.; Kudo, K.; Nakamura, H.; Tamura, K.; Mori, H. Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res., 2001, 21(5), 3407-3411.
[PMID: 11848501]
[13]
Azuine, M.A.; Bhide, S.V. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis. Int. J. Cancer, 1992, 51(3), 412-415.
[http://dx.doi.org/10.1002/ijc.2910510313] [PMID: 1592532]
[14]
Huang, M.; Lou, Y.R.; Xie, J.G.; Ma, W.; Lu, Y.P.; Yen, P.; Zhu, B.T.; Newmark, H.; Ho, C.T. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12- dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 1998, 19(9), 1697-1700.
[http://dx.doi.org/10.1093/carcin/19.9.1697] [PMID: 9771944]
[15]
Prakobwong, S.; Khoontawad, J.; Yongvanit, P.; Pairojkul, C.; Hiraku, Y.; Sithithaworn, P.; Pinlaor, P.; Aggarwal, B.B.; Pinlaor, S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer, 2011, 129(1), 88-100.
[http://dx.doi.org/10.1002/ijc.25656] [PMID: 20824699]
[16]
Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett., 1985, 29(2), 197-202.
[http://dx.doi.org/10.1016/0304-3835(85)90159-4] [PMID: 4075289]
[17]
Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int. J. Cancer, 2004, 111(3), 381-387.
[http://dx.doi.org/10.1002/ijc.20160] [PMID: 15221965]
[18]
Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303.
[http://dx.doi.org/10.1002/pros.1074] [PMID: 11398177]
[19]
Kunnumakkara, A.B.; Guha, S.; Krishnan, S.; Diagaradjane, P.; Gelovani, J.; Aggarwal, B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res., 2007, 67(8), 3853-3861.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4257] [PMID: 17440100]
[20]
Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol. Cancer Ther., 2007, 6(4), 1276-1282.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0556] [PMID: 17431105]
[21]
Yoysungnoen, P.; Wirachwong, P.; Bhattarakosol, P.; Niimi, H.; Patumraj, S. Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin. Hemorheol. Microcirc., 2005, 33(2), 127-135.
[PMID: 16151260]
[22]
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[23]
Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[24]
Tian, B.; Wang, Z.; Zhao, Y.; Wang, D.; Li, Y.; Ma, L.; Li, X.; Li, J.; Xiao, N.; Tian, J.; Rodriguez, R. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett., 2008, 264(2), 299-308.
[http://dx.doi.org/10.1016/j.canlet.2008.01.041] [PMID: 18342436]
[25]
Luo, J.; Manning, B.D.; Cantley, L.C. Targeting the PI3K-Akt pathway in human cancer. Cancer Cell, 2003, 4(4), 257-262.
[http://dx.doi.org/10.1016/S1535-6108(03)00248-4] [PMID: 14585353]
[26]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[27]
Dienstmann, R.; Rodon, J.; Serra, V.; Tabernero, J. Picking the point of inhibition: A comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol. Cancer Ther., 2014, 13(5), 1021-1031.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0639] [PMID: 24748656]
[28]
Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol., 2010, 28(6), 1075-1083.
[http://dx.doi.org/10.1200/JCO.2009.25.3641] [PMID: 20085938]
[29]
Agoulnik, I.U.; Hodgson, M.C.; Bowden, W.A.; Ittmann, M.M. INPP4B: The new kid on the PI3K block. Oncotarget, 2011, 2(4), 321-328.
[http://dx.doi.org/10.18632/oncotarget.260] [PMID: 21487159]
[30]
Sun, T.; Aceto, N.; Meerbrey, K.L.; Kessler, J.D.; Zhou, C.; Migliaccio, I.; Nguyen, D.X.; Pavlova, N.N.; Botero, M.; Huang, J.; Bernardi, R.J.; Schmitt, E.; Hu, G.; Li, M.Z.; Dephoure, N.; Gygi, S.P.; Rao, M.; Creighton, C.J.; Hilsenbeck, S.G.; Shaw, C.A.; Muzny, D.; Gibbs, R.A.; Wheeler, D.A.; Osborne, C.K.; Schiff, R.; Bentires-Alj, M.; Elledge, S.J.; Westbrook, T.F. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell, 2011, 144(5), 703-718.
[http://dx.doi.org/10.1016/j.cell.2011.02.003] [PMID: 21376233]
[31]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x]
[32]
Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011, 16(S1)(Suppl. 1), 12-19.
[http://dx.doi.org/10.1634/theoncologist.2011-S1-12] [PMID: 21278436]
[33]
Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.; Symmans, W.F.; Pusztai, L.; Nolden, L.K.; Horlings, H.; Berns, K.; Hung, M.C.; van de Vijver, M.J.; Valero, V.; Gray, J.W.; Bernards, R.; Mills, G.B.; Hennessy, B.T. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res., 2008, 68(15), 6084-6091.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6854] [PMID: 18676830]
[34]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[35]
Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL71, a second-generation curcumin analog, induces apoptosis and downregulates Akt in ER-negative breast cancer cells. Int. J. Oncol., 2012, 41(3), 1119-1127.
[http://dx.doi.org/10.3892/ijo.2012.1521] [PMID: 22710975]
[36]
Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett., 2017, 13(6), 4825-4831.
[http://dx.doi.org/10.3892/ol.2017.6053] [PMID: 28599484]
[37]
Yan, M.; Parker, B.A.; Schwab, R.; Kurzrock, R. HER2 aberrations in cancer: Implications for therapy. Cancer Treat. Rev., 2014, 40(6), 770-780.
[http://dx.doi.org/10.1016/j.ctrv.2014.02.008] [PMID: 24656976]
[38]
Lien, J.C.; Hung, C.M.; Lin, Y.J.; Lin, H.C.; Ko, T.C.; Tseng, L.C.; Kuo, S.C.; Ho, C.T.; Lee, J.C.; Way, T.D. Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem. Biol. Interact., 2015, 235, 17-26.
[http://dx.doi.org/10.1016/j.cbi.2015.04.005] [PMID: 25866362]
[39]
Yadav, B.; Taurin, S.; Larsen, L.; Rosengren, R.J. RL66 a second-generation curcumin analog has potent in vivo and in vitro anticancer activity in ER-negative breast cancer models. Int. J. Oncol., 2012, 41(5), 1723-1732.
[http://dx.doi.org/10.3892/ijo.2012.1625] [PMID: 22971638]
[40]
Lønvik, K.; Sørbye, S.W.; Nilsen, M.N.; Paulssen, R.H. Prognostic value of the MicroRNA regulators Dicer and Drosha in non-small-cell lung cancer: Co-expression of Drosha and miR-126 predicts poor survival. BMC Clin. Pathol., 2014, 14(1), 45.
[http://dx.doi.org/10.1186/1472-6890-14-45] [PMID: 25525410]
[41]
Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, J.Y. The roles of MicroRNA in lung cancer. Int. J. Mol. Sci., 2019, 20(7), 1611.
[http://dx.doi.org/10.3390/ijms20071611] [PMID: 30935143]
[42]
Xu, X.; Qin, J.; Liu, W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 2014, 546(2), 226-232.
[http://dx.doi.org/10.1016/j.gene.2014.06.006] [PMID: 24910117]
[43]
Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789.
[http://dx.doi.org/10.3892/or.2015.4258] [PMID: 26351877]
[44]
Yu, Q.; Zhao, B.; He, Q.; Zhang, Y.; Peng, X.B. microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. J. Cell. Biochem., 2019, 120(4), 5287-5303.
[http://dx.doi.org/10.1002/jcb.27803] [PMID: 30335903]
[45]
Wang, N.; Feng, T.; Liu, X.; Liu, Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm., 2020, 70(3), 399-409.
[http://dx.doi.org/10.2478/acph-2020-0029] [PMID: 32074070]
[46]
Chen, W.C.; Lai, Y.A.; Lin, Y.C.; Ma, J.W.; Huang, L.F.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Way, T.D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem., 2013, 61(48), 11817-11824.
[http://dx.doi.org/10.1021/jf404092f] [PMID: 24236784]
[47]
Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol. Ther. Oncolytics, 2016, 3, 16018.
[http://dx.doi.org/10.1038/mto.2016.18] [PMID: 27525306]
[48]
Bagci, E.Z.; Vodovotz, Y.; Billiar, T.R.; Ermentrout, G.B.; Bahar, I. Bistability in apoptosis: Roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys. J., 2006, 90(5), 1546-1559.
[http://dx.doi.org/10.1529/biophysj.105.068122] [PMID: 16339882]
[49]
Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol., 2012, 942, 157-183.
[http://dx.doi.org/10.1007/978-94-007-2869-1_7] [PMID: 22399422]
[50]
Würstle, M.L.; Laussmann, M.A.; Rehm, M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp. Cell Res., 2012, 318(11), 1213-1220.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.013] [PMID: 22406265]
[51]
Ruan, Z.P.; Xu, R.; Lv, Y.; Tian, T.; Wang, W.J.; Guo, H.; Nan, K.J. PTEN enhances the sensitivity of human hepatocellular carcinoma cells to sorafenib. Oncol. Res., 2012, 20(2), 113-121.
[http://dx.doi.org/10.3727/096504012X13477145152995] [PMID: 23193917]
[52]
Feng, X.; Jiang, J.; Shi, S.; Xie, H.; Zhou, L.; Zheng, S. Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int. J. Oncol., 2016, 49(6), 2600-2610.
[http://dx.doi.org/10.3892/ijo.2016.3751] [PMID: 27840896]
[53]
Lamers, F.; van der Ploeg, I.; Schild, L.; Ebus, M.E.; Koster, J.; Hansen, B.R.; Koch, T.; Versteeg, R.; Caron, H.N.; Molenaar, J.J. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr. Relat. Cancer, 2011, 18(6), 657-668.
[http://dx.doi.org/10.1530/ERC-11-0207] [PMID: 21859926]
[54]
Chan, S. Targeting the mammalian target of rapamycin (mTOR): A new approach to treating cancer. Br. J. Cancer, 2004, 91(8), 1420-1424.
[http://dx.doi.org/10.1038/sj.bjc.6602162] [PMID: 15365568]
[55]
Bhullar, K.S.; Jha, A.; Rupasinghe, H.P.V. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact., 2015, 242, 107-122.
[http://dx.doi.org/10.1016/j.cbi.2015.09.020] [PMID: 26409325]
[56]
Dharmawardana, P.G.; Peruzzi, B.; Giubellino, A.; Burke, T.R., Jr; Bottaro, D.P. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs, 2006, 17(1), 13-20.
[http://dx.doi.org/10.1097/01.cad.0000185180.72604.ac] [PMID: 16317285]
[57]
Renauld, J.C. Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nat. Rev. Immunol., 2003, 3(8), 667-676.
[http://dx.doi.org/10.1038/nri1153] [PMID: 12974481]
[58]
O’Shea, J.J.; Gadina, M.; Schreiber, R.D. Cytokine signaling in 2002. Cell, 2002, 109(2)(Suppl.), S121-S131.
[http://dx.doi.org/10.1016/S0092-8674(02)00701-8] [PMID: 11983158]
[59]
Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol. Rev., 2009, 228(1), 273-287.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00754.x] [PMID: 19290934]
[60]
Liongue, C.; O’Sullivan, L.A.; Trengove, M.C.; Ward, A.C. Evolution of JAK-STAT pathway components: Mechanisms and role in immune system development. PLoS One, 2012, 7(3), e32777.
[http://dx.doi.org/10.1371/journal.pone.0032777] [PMID: 22412924]
[61]
Sasaki, A.; Yasukawa, H.; Shouda, T.; Kitamura, T.; Dikic, I.; Yoshimura, A. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem., 2000, 275(38), 29338-29347.
[http://dx.doi.org/10.1074/jbc.M003456200] [PMID: 10882725]
[62]
O’Shea, J.J.; Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 2012, 36(4), 542-550.
[http://dx.doi.org/10.1016/j.immuni.2012.03.014] [PMID: 22520847]
[63]
Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol., 2016, 12(1), 25-36.
[http://dx.doi.org/10.1038/nrrheum.2015.167] [PMID: 26633291]
[64]
Shuai, K.; Stark, G.R.; Kerr, M.; Darnell, J.E. Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science, 1993, 261(5129), 1744-1746.
[http://dx.doi.org/10.1126/science.7690989] [PMID: 7690989]
[65]
Xu, X.; Sun, Y.L.; Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science, 1996, 273(5276), 794-797.
[http://dx.doi.org/10.1126/science.273.5276.794] [PMID: 8670419]
[66]
Shuai, K.; Liao, J.; Song, M.M. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol. Cell. Biol., 1996, 16(9), 4932-4941.
[http://dx.doi.org/10.1128/MCB.16.9.4932] [PMID: 8756652]
[67]
Pearson, M.A.; Reczek, D.; Bretscher, A.; Karplus, P.A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell, 2000, 101(3), 259-270.
[http://dx.doi.org/10.1016/S0092-8674(00)80836-3] [PMID: 10847681]
[68]
O’Shea, J.J.; Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity, 2008, 28(4), 477-487.
[http://dx.doi.org/10.1016/j.immuni.2008.03.002] [PMID: 18400190]
[69]
Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7(1), 46352.
[http://dx.doi.org/10.1038/srep46352] [PMID: 28397855]
[70]
Ohori, H.; Yamakoshi, H.; Tomizawa, M.; Shibuya, M.; Kakudo, Y.; Takahashi, A.; Takahashi, S.; Kato, S.; Suzuki, T.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol. Cancer Ther., 2006, 5(10), 2563-2571.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[71]
Hutzen, B.; Friedman, L.; Sobo, M.; Lin, L.; Cen, L.; De Angelis, S.; Yamakoshi, H.; Shibata, H.; Iwabuchi, Y.; Lin, J. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int. J. Oncol., 2009, 35(4), 867-872.
[PMID: 19724924]
[72]
Alas, S.; Bonavida, B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res., 2003, 9(1), 316-326.
[PMID: 12538484]
[73]
Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays, 2001, 23(2), 161-169.
[http://dx.doi.org/10.1002/1521-1878(200102)23:2<161:AID-BIES1023>3.0.CO;2-0] [PMID: 11169589]
[74]
Xi, S.; Gooding, W.E.; Grandis, J.R. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene, 2005, 24(6), 970-979.
[http://dx.doi.org/10.1038/sj.onc.1208316] [PMID: 15592503]
[75]
Xie, T.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res., 2006, 66(6), 3188-3196.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2674] [PMID: 16540670]
[76]
Lin, L.; Hutzen, B.; Zuo, M.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M.A.; Shenoy, S.S.; Kulp, S.; Li, P.K.; Li, C.; Fuchs, J.; Lin, J. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res., 2010, 70(6), 2445-2454.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2468] [PMID: 20215512]
[77]
Lin, L.; Hutzen, B.; Ball, S.; Foust, E.; Sobo, M.; Deangelis, S.; Pandit, B.; Friedman, L.; Li, C.; Li, P.K.; Fuchs, J.; Lin, J. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci., 2009, 100(9), 1719-1727.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01220.x] [PMID: 19558577]
[78]
Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631.
[http://dx.doi.org/10.1016/j.bmc.2008.10.044] [PMID: 19243951]
[79]
Wu, L.; Guo, L.; Liang, Y.; Liu, X.; Jiang, L.; Wang, L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol. Rep., 2015, 34(6), 3311-3317.
[http://dx.doi.org/10.3892/or.2015.4279] [PMID: 26397387]
[80]
Zhao, J.A.; Sang, M.X.; Geng, C.Z.; Wang, S.J.; Shan, B.E. A novel curcumin analogue is a potent chemotherapy candidate for human hepatocellular carcinoma. Oncol. Lett., 2016, 12(5), 4252-4262.
[http://dx.doi.org/10.3892/ol.2016.5126] [PMID: 27895800]
[81]
Kishimoto, T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res. Ther., 2006, 8(Suppl. 2), S2.
[82]
Zhang, X.; Wang, L.; Qu, Y. Targeting the β-catenin signaling for cancer therapy. Pharmacol. Res., 2020, 160, 104794.
[http://dx.doi.org/10.1016/j.phrs.2020.104794] [PMID: 32278038]
[83]
Wei, C.Y.; Zhu, M.X.; Yang, Y.W.; Zhang, P.F.; Yang, X.; Peng, R.; Gao, C.; Lu, J.C.; Wang, L.; Deng, X.Y.; Lu, N.H.; Qi, F.Z.; Gu, J.Y. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J. Hematol. Oncol., 2019, 12(1), 21.
[http://dx.doi.org/10.1186/s13045-019-0711-z] [PMID: 30832692]
[84]
Zhou, J.; Toh, S.H.M.; Chan, Z.L.; Quah, J.Y.; Chooi, J.Y.; Tan, T.Z.; Chong, P.S.Y.; Zeng, Q.; Chng, W.J. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J. Hematol. Oncol., 2018, 11(1), 36.
[http://dx.doi.org/10.1186/s13045-018-0581-9] [PMID: 29514683]
[85]
Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol., 2019, 12(1), 134.
[http://dx.doi.org/10.1186/s13045-019-0818-2] [PMID: 31815659]
[86]
Wiese, K.E.; Nusse, R.; van Amerongen, R. Wnt signalling: Conquering complexity. Development, 2018, 145(12), dev165902.
[http://dx.doi.org/10.1242/dev.165902] [PMID: 29945986]
[87]
Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[88]
Bilić, J.; Huang, Y.L.; Davidson, G.; Zimmermann, T.; Cruciat, C.M.; Bienz, M.; Niehrs, C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science, 2007, 316(5831), 1619-1622.
[http://dx.doi.org/10.1126/science.1137065] [PMID: 17569865]
[89]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[90]
Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989.
[http://dx.doi.org/10.18632/oncotarget.15687] [PMID: 28430641]
[91]
Chien, A.J.; Moore, E.C.; Lonsdorf, A.S.; Kulikauskas, R.M.; Rothberg, B.G.; Berger, A.J.; Major, M.B.; Hwang, S.T.; Rimm, D.L.; Moon, R.T. Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1193-1198.
[http://dx.doi.org/10.1073/pnas.0811902106] [PMID: 19144919]
[92]
Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215.
[http://dx.doi.org/10.1097/CAD.0000000000000584] [PMID: 29356693]
[93]
Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol., 2005, 12(6), 488-496.
[http://dx.doi.org/10.1245/ASO.2005.04.010] [PMID: 15864483]
[94]
De Craene, B.; Gilbert, B.; Stove, C.; Bruyneel, E.; van Roy, F.; Berx, G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res., 2005, 65(14), 6237-6244.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3545] [PMID: 16024625]
[95]
Zhang, Y.; Du, J.; Tian, X.; Zhong, Y.; Fang, W. Expression of E-cadherin, beta-catenin, cathepsin D, gelatinases and their inhibitors in invasive ductal breast carcinomas. Chin. Med. J., 2007, 120(18), 1597-1605.
[http://dx.doi.org/10.1097/00029330-200709020-00010] [PMID: 17908479]
[96]
Savagner, P.; Yamada, K.M.; Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol., 1997, 137(6), 1403-1419.
[http://dx.doi.org/10.1083/jcb.137.6.1403] [PMID: 9182671]
[97]
Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116.
[http://dx.doi.org/10.1186/scrt506] [PMID: 25315241]
[98]
Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J. Exp. Clin. Cancer Res. CR, 2019, 38(1), 323.
[99]
Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Role of Wnt inhibitory factor-1 in inhibition of bisdemethoxycurcumin mediated epithelial-to-mesenchymal transition in highly metastatic lung cancer 95D cells. Chin. Med. J., 2015, 128(10), 1376-1383.
[http://dx.doi.org/10.4103/0366-6999.156795] [PMID: 25963361]
[100]
Kim, Y.M.; Kahn, M. The role of the Wnt signaling pathway in cancer stem cells: Prospects for drug development. Res. Rep. Biochem., 2014, 4, 1-12.
[PMID: 26566491]
[101]
Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688.
[http://dx.doi.org/10.1002/ptr.5791] [PMID: 28198062]
[102]
Li, D.; Qian, J.; Hong, Z. Expression and clinical significance of MTA1 in non-small cell lung cancer. Zhongguo fei ai za zhi = Chin. J. Lung Cancer, 2008, 11(6), 775-779.
[PMID: 20797327]
[103]
Grigoryan, T.; Wend, P.; Klaus, A.; Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev., 2008, 22(17), 2308-2341.
[http://dx.doi.org/10.1101/gad.1686208] [PMID: 18765787]
[104]
Lu, Y.; Wei, C.; Xi, Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 840-850.
[http://dx.doi.org/10.1007/s11626-014-9779-5] [PMID: 24938356]
[105]
Xu, M.X.; Zhao, L.; Deng, C.; Yang, L.; Wang, Y.; Guo, T.; Li, L.; Lin, J.; Zhang, L. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int. J. Oncol., 2013, 43(6), 1951-1959.
[http://dx.doi.org/10.3892/ijo.2013.2107] [PMID: 24064724]
[106]
Kim, H.J.; Park, S.Y.; Park, O.J.; Kim, Y.M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol. Med. Rep., 2013, 8(1), 282-286.
[http://dx.doi.org/10.3892/mmr.2013.1497] [PMID: 23723038]
[107]
Capurro, M.I.; Xiang, Y.Y.; Lobe, C.; Filmus, J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res., 2005, 65(14), 6245-6254.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4244] [PMID: 16024626]
[108]
Wu, Y.; Liu, H.; Weng, H.; Zhang, X.; Li, P.; Fan, C.L.; Li, B.; Dong, P.L.; Li, L.; Dooley, S.; Ding, H.G. Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int. J. Oncol., 2015, 46(3), 1275-1285.
[http://dx.doi.org/10.3892/ijo.2015.2827] [PMID: 25572615]
[109]
Miao, H.L.; Pan, Z.J.; Lei, C.J.; Wen, J.Y.; Li, M.Y.; Liu, Z.K.; Qiu, Z.D.; Lin, M.Z.; Chen, N.P.; Chen, M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J. Cell. Biochem., 2013, 114(3), 625-631.
[http://dx.doi.org/10.1002/jcb.24404] [PMID: 23060277]
[110]
Qi, X.H.; Wu, D.; Cui, H.X.; Ma, N.; Su, J.; Wang, Y.T.; Jiang, Y.H. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol. Med. Rep., 2014, 10(6), 3177-3184.
[http://dx.doi.org/10.3892/mmr.2014.2600] [PMID: 25270552]
[111]
Wu, Y.; Liu, H.; Ding, H.G. GPC-3 in hepatocellular carcinoma: Current perspectives. J. Hepatocell. Carcinoma, 2016, 3, 63-67.
[http://dx.doi.org/10.2147/JHC.S116513] [PMID: 27878117]
[112]
Gao, W.; Ho, M. The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep., 2011, 1(1), 14-19.
[PMID: 22563565]
[113]
Marchesi, I.; Bagella, L. Targeting enhancer of zeste homolog 2 as a promising strategy for cancer treatment. World J. Clin. Oncol., 2016, 7(2), 135-148.
[http://dx.doi.org/10.5306/wjco.v7.i2.135] [PMID: 27081636]
[114]
Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res., 2018, 6(1), 10.
[http://dx.doi.org/10.1186/s40364-018-0122-2] [PMID: 29556394]
[115]
Song, H.; Yu, Z.; Sun, X.; Feng, J.; Yu, Q.; Khan, H.; Zhu, X.; Huang, L.; Li, M.; Mok, M.T.S.; Cheng, A.S.L.; Gao, Y.; Feng, H. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine, 2018, 35, 155-166.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.043] [PMID: 30150059]
[116]
Khan, H.; Ni, Z.; Feng, H.; Xing, Y.; Wu, X.; Huang, D.; Chen, L.; Niu, Y.; Shi, G. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling. Phytomedicine, 2021, 91, 153706.
[http://dx.doi.org/10.1016/j.phymed.2021.153706] [PMID: 34517264]
[117]
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007.
[PMID: 32104259]
[118]
Chen, Y.R.; Tan, T.H. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17, 173-178.
[119]
Raaphorst, F.M.; Meijer, C.J.L.M.; Fieret, E.; Blokzijl, T.; Mommers, E.; Buerger, H.; Packeisen, J.; Sewalt, R.A.B.; Ottet, A.P.; van Diest, P.J. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia, 2003, 5(6), 481-488.
[http://dx.doi.org/10.1016/S1476-5586(03)80032-5] [PMID: 14965441]
[120]
Collett, G.P.; Campbell, F.C. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis, 2004, 25(11), 2183-2189.
[http://dx.doi.org/10.1093/carcin/bgh233] [PMID: 15256484]
[121]
Hua, W.F.; Fu, Y.S.; Liao, Y.J.; Xia, W.J.; Chen, Y.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol., 2010, 637(1-3), 16-21.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.051] [PMID: 20385124]
[122]
Lai, H.W.; Chien, S.Y.; Kuo, S.J.; Tseng, L.M.; Lin, H.Y.; Chi, C.W.; Chen, D.R. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin. Evid.-based Complement. Altern. Med., 2012, 2012, 486568.
[123]
Zou, L.; Chai, J.; Gao, Y.; Guan, J.; Liu, Q.; Du, J.J. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling. Biomed. Pharmacother., 2016, 84, 139-146.
[124]
Mo, N.; Li, Z.Q.; Li, J.; Cao, Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. APJCP, 2012, 13(11), 5709-5714.
[PMID: 23317243]
[125]
Wang, L.; Wang, C.; Tao, Z.; Zhao, L.; Zhu, Z.; Wu, W.; He, Y.; Chen, H.; Zheng, B.; Huang, X.; Yu, Y.; Yang, L.; Liang, G.; Cui, R.; Chen, T. Curcumin derivative WZ35 inhibits tumour cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 460.
[PMID: 31703744]
[126]
Fan, J.; Wu, M.; Wang, J.; Ren, D.; Zhao, J.; Yang, G. 1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one induces lung cancer cell apoptosis via the PI3K/Akt and ERK1/2 pathways. J. Cell. Physiol., 2019, 234(5), 6336-6349.
[http://dx.doi.org/10.1002/jcp.27364] [PMID: 30246250]
[127]
Chen, Q.; Men, Y.; Wang, H.; Chen, R.; Han, X.; Liu, J. Curcumin inhibits proliferation and migration of A549 lung cancer cells through activation of ERK1/2 pathway-induced autophagy. Nat. Prod. Comm., 2019, 14(6), 1934578X1984817.
[128]
Yao, Q.; Lin, M.; Wang, Y.; Lai, Y.; Hu, J.; Fu, T.; Wang, L.; Lin, S.; Chen, L.; Guo, Y. Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int. J. Mol. Med., 2015, 36(4), 1118-1126.
[http://dx.doi.org/10.3892/ijmm.2015.2327] [PMID: 26310655]
[129]
Liu, H.; Zhou, B.H.; Qiu, X.; Wang, H.S.; Zhang, F.; Fang, R.; Wang, X.F.; Cai, S.H.; Du, J.; Bu, X.Z. T63, a new 4-arylidene curcumin analogue, induces cell cycle arrest and apoptosis through activation of the reactive oxygen species-FOXO3a pathway in lung cancer cells. Free Radic. Biol. Med., 2012, 53(12), 2204-2217.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.537] [PMID: 23085518]
[130]
Sunters, A.; Fernández de Mattos, S.; Stahl, M.; Brosens, J.J.; Zoumpoulidou, G.; Saunders, C.A.; Coffer, P.J.; Medema, R.H.; Coombes, R.C.; Lam, E.W.F. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem., 2003, 278(50), 49795-49805.
[http://dx.doi.org/10.1074/jbc.M309523200] [PMID: 14527951]
[131]
Cornforth, A.N.; Davis, J.S.; Khanifar, E.; Nastiuk, K.L.; Krolewski, J.J. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene, 2008, 27(32), 4422-4433.
[http://dx.doi.org/10.1038/onc.2008.80] [PMID: 18391984]
[132]
Dijkers, P.F.; Medema, R.H.; Pals, C.; Banerji, L.; Thomas, N.S.B.; Lam, E.W.F.; Burgering, B.M.T.; Raaijmakers, J.A.M.; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol., 2000, 20(24), 9138-9148.
[http://dx.doi.org/10.1128/MCB.20.24.9138-9148.2000] [PMID: 11094066]
[133]
Seoane, J.; Le, H.V.; Shen, L.; Anderson, S.A.; Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2), 211-223.
[http://dx.doi.org/10.1016/S0092-8674(04)00298-3] [PMID: 15084259]
[134]
Schmidt, M.; Fernandez de Mattos, S.; van der Horst, A.; Klompmaker, R.; Kops, G.J.P.L.; Lam, E.W.F.; Burgering, B.M.T.; Medema, R.H. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell. Biol., 2002, 22(22), 7842-7852.
[http://dx.doi.org/10.1128/MCB.22.22.7842-7852.2002] [PMID: 12391153]
[135]
Zheng, R.; You, Z.; Jia, J.; Lin, S.; Han, S.; Liu, A.; Long, H.; Wang, S. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells. Mol. Med. Rep., 2016, 13(2), 1570-1576.
[http://dx.doi.org/10.3892/mmr.2015.4715] [PMID: 26707143]
[136]
Liang, Z.; Wu, R.; Xie, W.; Xie, C.; Wu, J.; Geng, S.; Li, X.; Zhu, M.; Zhu, W.; Zhu, J.; Huang, C.; Ma, X.; Xu, W.; Zhong, C.; Han, H. Effects of curcumin on tobacco smoke-induced hepatic MAPK pathway activation and epithelial-mesenchymal transition in vivo. Phytother. Res., 2017, 31(8), 1230-1239.
[http://dx.doi.org/10.1002/ptr.5844] [PMID: 28585748]
[137]
Qu, J.; Lu, W.; Chen, M.; Gao, W.; Zhang, C.; Guo, B.; Yang, J. Combined effect of recombinant human adenovirus p53 and curcumin in the treatment of liver cancer. Exp. Ther. Med., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/etm.2020.9145] [PMID: 32934683]
[138]
Tsai, C.F.; Hsieh, T.H.; Lee, J.N.; Hsu, C.Y.; Wang, Y.C.; Kuo, K.K.; Wu, H.L.; Chiu, C.C.; Tsai, E.M.; Kuo, P.L. Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J. Agric. Food Chem., 2015, 63(48), 10388-10398.
[http://dx.doi.org/10.1021/acs.jafc.5b04415] [PMID: 26585812]
[139]
Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[140]
Murwanti, R.; Kholifah, E.; Sudarmanto, B.S.A.; Hermawan, A. Effect of curcumin on NF-κB P105/50 expression on triple-negative breast cancer (TNBC) and its possible mechanism of action. The 6th International Conference on Biological Science ICBS 2019, 2020.
[141]
Sato, A.; Kudo, C.; Yamakoshi, H.; Uehara, Y.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci., 2011, 102(5), 1045-1051.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01886.x] [PMID: 21272158]
[142]
Chiu, T.L.; Su, C.C. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int. J. Mol. Med., 2009, 23(4), 469-475.
[PMID: 19288022]
[143]
Zong, H.; Wang, F.; Fan, Q.; Wang, L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808.
[http://dx.doi.org/10.1007/s11033-011-1273-5] [PMID: 21947854]
[144]
Mengshol, J.A.; Vincenti, M.P.; Coon, C.I.; Barchowsky, A.; Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-jun N-terminal kinase, and nuclear factor κB Differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum., 2000, 43(4), 801-811.
[http://dx.doi.org/10.1002/1529-0131(200004)43:4<801::AID-ANR10>3.0.CO;2-4] [PMID: 10765924]
[145]
Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922.
[http://dx.doi.org/10.1016/j.phymed.2009.04.008] [PMID: 19524420]
[146]
Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W. Jr Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639.
[http://dx.doi.org/10.1128/MCB.17.7.3629] [PMID: 9199297]
[147]
Katsori, A.M.; Palagani, A.; Bougarne, N.; Hadjipavlou-Litina, D.; Haegeman, G.; Vanden Berghe, W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules, 2015, 20(1), 863-878.
[http://dx.doi.org/10.3390/molecules20010863] [PMID: 25580684]
[148]
Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; Miller, A.H.; Pace, T.W.W. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol., 2012, 12(2), 368-377.
[http://dx.doi.org/10.1016/j.intimp.2011.12.009] [PMID: 22197802]
[149]
Adams, B.K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.J.; Sun, A.; Snyder, J.P.; Liotta, D.C.; Jones, D.P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs, 2005, 16(3), 263-275.
[http://dx.doi.org/10.1097/00001813-200503000-00005] [PMID: 15711178]
[150]
Kasinski, A.L.; Du, Y.; Thomas, S.L.; Zhao, J.; Sun, S.Y.; Khuri, F.R.; Wang, C.Y.; Shoji, M.; Sun, A.; Snyder, J.P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol., 2008, 74(3), 654-661.
[http://dx.doi.org/10.1124/mol.108.046201] [PMID: 18577686]
[151]
Coker-Gurkan, A.; Celik, M.; Ugur, M.; Arisan, E.D.; Obakan-Yerlikaya, P.; Durdu, Z.B.; Palavan-Unsal, N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids, 2018, 50(8), 1045-1069.
[http://dx.doi.org/10.1007/s00726-018-2581-z] [PMID: 29770869]
[152]
Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382.
[http://dx.doi.org/10.1021/jf100135h] [PMID: 20486686]
[153]
Yen, F.L.; Tsai, M.H.; Yang, C.M.; Liang, C.J.; Lin, C.C.; Chiang, Y.C.; Lee, H.C.; Ko, H.H.; Lee, C.W. Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways. PLoS One, 2013, 8(5), e63845.
[http://dx.doi.org/10.1371/journal.pone.0063845] [PMID: 23671702]
[154]
Liang, D.; Wen, Z.; Han, W.; Li, W.; Pan, L.; Zhang, R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol. Cell. Biochem., 2021, 476(7), 2823-2835.
[http://dx.doi.org/10.1007/s11010-021-04127-z] [PMID: 33730297]
[155]
Li, N.; Liu, T. H.; Yu, J. Z.; Li, C. X.; Liu, Y.; Wu, Y. Y.; Yang, Z. S.; Yuan, J. L. Curcumin and curcumol inhibit NF-κB and TGF-β1/smads signaling pathways in CSEtreated RAW246.7 cells. Evid.-based Complement. Altern. Med., 2019, 3035125.
[156]
Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem., 2010, 53(23), 8260-8273.
[http://dx.doi.org/10.1021/jm1004545] [PMID: 21070043]
[157]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[158]
Notarbartolo, M.; Poma, P.; Perri, D.; Dusonchet, L.; Cervello, M.; D’Alessandro, N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett., 2005, 224(1), 53-65.
[http://dx.doi.org/10.1016/j.canlet.2004.10.051] [PMID: 15911101]
[159]
Bortel, N.; Armeanu-Ebinger, S.; Schmid, E.; Kirchner, B.; Frank, J.; Kocher, A.; Schiborr, C.; Warmann, S.; Fuchs, J.; Ellerkamp, V. Effects of curcumin in pediatric epithelial liver tumors: Inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways. Oncotarget, 2015, 6(38), 40680-40691.
[http://dx.doi.org/10.18632/oncotarget.5673] [PMID: 26515460]
[160]
Adewale, O.; Akomolafe, S.F.; Asogwa, N.T. Curcumin alleviates potassium bromate-induced hepatic damage by repressing CRP induction through TNF-α and IL-1βand by suppressing oxidative stress. Notulae Scientia Biologicae, 2019, 11(4), 337-344.
[161]
Ibrahim Fouad, G.; Ahmed, K.A. Curcumin ameliorates doxorubicin-induced cardiotoxicity and hepatotoxicity via suppressing oxidative stress and modulating iNOS, NF-κB, and TNF-α in Rats. Cardiovasc. Toxicol., 2022, 22(2), 152-166.
[http://dx.doi.org/10.1007/s12012-021-09710-w] [PMID: 34837640]
[162]
El-Houseini, M.E.; El-Agoza, I.A.; Sakr, M.M.; El-Malky, G.M. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp. Ther. Med., 2017, 13(1), 29-36.
[http://dx.doi.org/10.3892/etm.2016.3952] [PMID: 28123463]
[163]
Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031] [PMID: 18755156]
[164]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[165]
Rowe, D.L.; Ozbay, T.; O’Regan, R.M.; Nahta, R. Modulation of the BRCA1 protein and induction of apoptosis in triple negative breast cancer cell lines by the polyphenolic compound curcumin. Breast Cancer (Auckl.), 2009, 3, BCBCR.S3067.
[http://dx.doi.org/10.4137/BCBCR.S3067] [PMID: 19809577]
[166]
Elmegeed, G.A.; Yahya, S.M.M.; Abd-Elhalim, M.M.; Mohamed, M.S.; Mohareb, R.M.; Elsayed, G.H. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells. Steroids, 2016, 115, 80-89.
[http://dx.doi.org/10.1016/j.steroids.2016.08.014] [PMID: 27553725]
[167]
Huang, Y.W.; Chen, J.H.; Qin, Z.X.; Chen, J.K.; Hu, R.D.; Wu, Z.; Lin, X. Chloride channel involved in the regulation of curcumin-induced apoptosis of human breast cancer cells-. Asian Pac. J. Trop. Med., 2018, 11, 240-244.
[168]
Ali, N.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Ky, H.; Pauzi, A.Z.M.; Ho, W.Y.; Tan, S.W.; Alan-Ong, H.K.; Zareen, S.; Alitheen, N.B.; Akhtar, M.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int., 2017, 17(1), 30.
[http://dx.doi.org/10.1186/s12935-017-0400-3] [PMID: 28239299]
[169]
Wang, Y.; Xiao, J.; Zhou, H.; Yang, S.; Wu, X.; Jiang, C.; Zhao, Y.; Liang, D.; Li, X.; Liang, G. A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J. Med. Chem., 2011, 54(11), 3768-3778.
[http://dx.doi.org/10.1021/jm200017g] [PMID: 21504179]
[170]
Wang, A.; Wang, J.; Zhang, S.; Zhang, H.; Xu, Z.; Li, X. Curcumin inhibits the development of non small cell lung cancer by inhibiting autophagy and apoptosis. Exp. Ther. Med., 2017, 14(5), 5075-5080.
[http://dx.doi.org/10.3892/etm.2017.5172] [PMID: 29201217]
[171]
Liu, Z.; Sun, Y.; Ren, L.; Huang, Y.; Cai, Y.; Weng, Q.; Shen, X.; Li, X.; Liang, G.; Wang, Y. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer, 2013, 13, 494.
[172]
Ye, M.; Zhang, J.; Zhang, J.; Miao, Q.; Yao, L.; Zhang, J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett., 2015, 357(1), 196-205.
[http://dx.doi.org/10.1016/j.canlet.2014.11.028] [PMID: 25444916]
[173]
Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223.
[http://dx.doi.org/10.3892/or_00000975] [PMID: 20878113]
[174]
Zhao, Z.; Yang, Y.; Liu, W.; Li, Z. T59, a new compound reconstructed from curcumin, induces cell apoptosis through reactive oxygen species activation in human lung cancer cells. Molecules, 2018, 23(6), 1251.
[http://dx.doi.org/10.3390/molecules23061251] [PMID: 29882920]
[175]
Ye, M.X.; Zhao, Y.L.; Li, Y.; Miao, Q.; Li, Z.K.; Ren, X.L.; Song, L.Q.; Yin, H.; Zhang, J. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine, 2012, 19(8-9), 779-787.
[http://dx.doi.org/10.1016/j.phymed.2012.03.005] [PMID: 22483553]
[176]
Nair, P.; Malhotra, A.; Dhawan, D.K. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem., 2015, 400(1-2), 51-56.
[http://dx.doi.org/10.1007/s11010-014-2261-6] [PMID: 25359171]
[177]
Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp. Biol. Med., 2015, 240(11), 1416-1425.
[http://dx.doi.org/10.1177/1535370215571881] [PMID: 25716014]
[178]
Zhou, T.; Ye, L.; Bai, Y.; Sun, A.; Cox, B.; Liu, D.; Li, Y.; Liotta, D.; Snyder, J.P.; Fu, H.; Huang, B. Autophagy and apoptosis in hepatocellular carcinoma induced by EF25-(GSH)2: a novel curcumin analog. PLoS One, 2014, 9(9), e107876.
[http://dx.doi.org/10.1371/journal.pone.0107876] [PMID: 25268357]
[179]
Zhao, X.; Chen, Q.; Liu, W.; Li, Y.; Tang, H.; Liu, X.; Yang, X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int. J. Nanomedicine, 2014, 10, 257-270.
[PMID: 25565818]
[180]
Muangnoi, C.; Na Bhuket, P.R.; Jithavech, P.; Supasena, W.; Paraoan, L.; Patumraj, S.; Rojsitthisak, P. Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction - Scientific Reports. Nature, 2019.
[181]
Wang, J.; Xie, H.; Gao, F.; Zhao, T.; Yang, H.; Kang, B. Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol., 2016, 37(3), 4203-4212.
[http://dx.doi.org/10.1007/s13277-015-4029-3] [PMID: 26490992]
[182]
Sumirtanurdin, R.; Sungkar, S.; Hisprastin, Y.; Sidharta, K.D.; Nurhikmah, D.D. Molecular docking simulation studies of curcumin and its derivatives as cyclin-dependent kinase 2 inhibitors. Turk. J. Pharm. Sci., 2020, 17(4), 417-423.
[183]
Kesharwani, R.K.; Singh, D.B.; Singh, D.V.; Misra, K. Computational study of curcumin analogues by targeting DNA topoisomerase II: A structure-based drug designing approach. Netw. Model. Anal. Health Inform. Bioinform., 2018, 7(1), 15.
[http://dx.doi.org/10.1007/s13721-018-0179-8]
[184]
Yadav, I.S.; Nandekar, P.P.; Shrivastava, S.; Sangamwar, A.; Chaudhury, A.; Agarwal, S.M. Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene, 2014, 539(1), 82-90.
[http://dx.doi.org/10.1016/j.gene.2014.01.056] [PMID: 24491504]
[185]
Laali, K.K.; Greves, W.J.; Zwarycz, A.T.; Correa Smits, S.J.; Troendle, F.J.; Borosky, G.L.; Akhtar, S.; Manna, A.; Paulus, A.; Chanan-Khan, A.; Nukaya, M.; Kennedy, G.D. Synthesis, computational docking study, and biological evaluation of a library of heterocyclic curcuminoids with remarkable antitumor activity. ChemMedChem, 2018, 13(18), 1895-1908.
[http://dx.doi.org/10.1002/cmdc.201800320] [PMID: 30079563]
[186]
Ghrifi, F.; Allam, L.; Wiame, L.; Ibrahimi, A. Curcumin-synthetic analogs library screening by docking and quantitative structure-activity relationship studies for AXL tyrosine kinase inhibition in cancers. J. Comput. Biol., 2019, 26(10), 1156-1167.
[187]
Bhuvaneswari, K.; Sivaguru, P.; Lalitha, A. Synthesis, biological evaluation and molecular docking of novel curcumin derivatives as Bcl-2 inhibitors targeting human breast cancer MCF-7 cells. ChemistrySelect, 2017, 2(35), 11552-11560.
[http://dx.doi.org/10.1002/slct.201702406]
[188]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Comparative insilico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J. Young Pharm., 2017, 9(4), 480-485.
[189]
Widyananda, M.H.; Ansori, A.N.M.; Kharisma, V.D. Investigating the potential of curcumin, demethoxycurcumin and bisdemethoxycurcumin as wildtype and mutant her2 inhibitors against various cancer types using bioinformatics analysis. Biochem. Cell. Arch., 2021, 21, 3335-3343.
[190]
Panda, S.S.; Tran, Q.L.; Rajpurohit, P.; Pillai, G.G.; Thomas, S.J.; Bridges, A.E.; Capito, J.E.; Thangaraju, M.; Lokeshwar, B.L. Design, synthesis, and molecular docking studies of curcumin hybrid conjugates as potential therapeutics for breast cancer. Pharmaceuticals, 2022, 15(4), 451.
[http://dx.doi.org/10.3390/ph15040451] [PMID: 35455448]
[191]
Mirzai, M.; Nazemi, H. In silico interactions between curcumin derivatives and monoamine oxidase-A enzyme. Biointerface Res. Appl. Chem., 2021.
[192]
Zuo, Y.; Huang, J.; Zhou, B.; Wang, S.; Shao, W.; Zhu, C.; Lin, L.; Wen, G.; Wang, H.; Du, J.; Bu, X. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur. J. Med. Chem., 2012, 55, 346-357.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.039] [PMID: 22889562]
[193]
Ahsan, M.J.; Choudhary, K.; Jadav, S.S.; Yasmin, S.; Ansari, M.Y.; Sreenivasulu, R. Synthesis, antiproliferative activity, and molecular docking studies of curcumin analogues bearing pyrazole ring. Med. Chem. Res., 2015, 24(12), 4166-4180.
[http://dx.doi.org/10.1007/s00044-015-1457-y]
[194]
Rodrigues, F.C.; Kumar, N.V.A.; Hari, G.; Pai, K.S.R.; Thakur, G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. Chem. Zvesti, 2021, 75(11), 5995-6008.
[http://dx.doi.org/10.1007/s11696-021-01775-9]
[195]
Hoda, N.; Naz, H.; Jameel, E.; Shandilya, A.; Dey, S.; Hassan, M.I.; Ahmad, F.; Jayaram, B. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2016, 34(3), 572-584.
[http://dx.doi.org/10.1080/07391102.2015.1046934] [PMID: 25929263]
[196]
Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Arockia Babu, M.; Madan, J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. J. Biomol. Struct. Dyn., 2020, 38(1), 200-218.
[http://dx.doi.org/10.1080/07391102.2019.1578264] [PMID: 30784365]
[197]
Sufi, S.A.; Adigopula, L.N.; Syed, S.B.; Mukherjee, V.; Coumar, M.S.; Rao, H.S.; Rajagopalan, R. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed. Pharmacother., 2017, 85, 389-398.
[198]
Bustanji, Y.; Taha, M.O.; Almasri, I.M.; Al-Ghussein, M.A.S.; Mohammad, M.K.; Alkhatib, H.S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 771-778.
[http://dx.doi.org/10.1080/14756360802364377] [PMID: 18720192]
[199]
Furlan, V.; Konc, J.; Bren, U. Inverse molecular docking as a novel approach to study anticarcinogenic and anti-neuroinflammatory effects of curcumin. Molecules, 2018, 23(12), 3351.
[http://dx.doi.org/10.3390/molecules23123351] [PMID: 30567342]
[200]
Rampogu, S.; Lee, G.; Park, J.S.; Lee, K.W.; Kim, M.O. Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. Int. J. Mol. Sci., 2022, 23(3), 1771.
[http://dx.doi.org/10.3390/ijms23031771] [PMID: 35163692]
[201]
Bukhari, S.N.A.; Jantan, I.; Unsal Tan, O.; Sher, M. Naeem-ul-Hassan, M.; Qin, H.L. Biological activity and molecular docking studies of curcumin-related αβ-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J. Agric. Food Chem., 2014, 62(24), 5538-5547.
[http://dx.doi.org/10.1021/jf501145b] [PMID: 24901506]
[202]
Sarhan, A.E.; Elhefny, E.A.; Nasef, A.M.; Aly, M.S.; Fawzy, N.M. Synthesis, cytotoxicity evaluation, and molecular docking studies of novel pyrrole derivatives of khellin and visnagin via one-pot condensation reaction with curcumin. Russ. J. Bioorganic Chem., 2020, 46(6), 1117-1127.
[http://dx.doi.org/10.1134/S1068162020060072]
[203]
Cheemanapalli, S.; Chinthakunta, N.; Shaikh, N.M.; Shivaranjani, V.; Pamuru, R.R.; Chitta, S.K. Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-kB cascade: A combined molecular docking approach. Netw. Model. Anal. Health Inform. Bioinform., 2019, 8(1), 15.
[http://dx.doi.org/10.1007/s13721-019-0196-2]
[204]
Ali, A.; Ali, A.; Tahir, A.; Bakht, M.A. Salahuddin; Ahsan, M.J. Molecular engineering of curcumin, an active constituent of Curcuma longa L. (Turmeric) of the family Zingiberaceae with improved antiproliferative activity. Plants, 2021, 10(8), 1559.
[http://dx.doi.org/10.3390/plants10081559] [PMID: 34451604]
[205]
Chowrasia, D.; Jafri, A.; Azad, I.; Rais, J.; Sharma, N.; Khan, F.; Kumar, A.; Kumar, S.; Arshad, M. In vitro and in silico growth inhibitory, anti-ovarian & anti-lung carcinoma effects of 1,5 diarylpenta-1,4-dien-3-one as synthetically modified curcumin analogue. J. Biomol. Struct. Dyn., 2021, 1-18. Advance online publication
[PMID: 33955334]
[206]
Kumar, A.; Bora, U. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip. Sci., 2014, 6(4), 285-291.
[http://dx.doi.org/10.1007/s12539-012-0048-6] [PMID: 25118649]
[207]
Liang, Y.; Zhang, T.; Ren, L.; Jing, S.; Li, Z.; Zuo, P.; Li, T.; Wang, Y.; Zhang, J.; Wei, Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. Environ. Toxicol. Pharmacol., 2021, 81, 103542.
[http://dx.doi.org/10.1016/j.etap.2020.103542] [PMID: 33161110]
[208]
Aman, L.O.; Kartasasmita, R.E.; Tjahjono, D.H. Virtual screening of curcumin analogues as DYRK2 inhibitor: Pharmacophore analysis, molecular docking and dynamics, and ADME prediction. F1000 Res., 2021, 10, 394.
[http://dx.doi.org/10.12688/f1000research.28040.1]
[209]
Shah, V.; Bhaliya, J.; Patel, G.M. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct. Chem., 2022, 33(2), 571-600.
[http://dx.doi.org/10.1007/s11224-021-01871-2] [PMID: 35106036]
[210]
Kandagalla, S.; Sharath, B.S.; Bharath, B.R. hani, U.; Manjunatha, H. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol., 2017, 5(1), 15.
[http://dx.doi.org/10.1007/s40203-017-0034-0] [PMID: 29308351]
[211]
Ramya, P.V.S.; Guntuku, L.; Angapelly, S.; Digwal, C.S.; Lakshmi, U.J.; Sigalapalli, D.K.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 216-231.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.010] [PMID: 29174816]
[212]
Liu, M.; Yuan, M.; Luo, M.; Bu, X.; Luo, H.B.; Hu, X. Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis. Biophys. Chem., 2010, 147(1-2), 28-34.
[http://dx.doi.org/10.1016/j.bpc.2009.12.007] [PMID: 20071071]
[213]
Mahajanakatti, A.B.; Murthy, G.; Sharma, N.; Skariyachan, S. Exploring inhibitory potential of curcumin against various cancer targets by in silico virtual screening. Interdiscip. Sci., 2014, 6(1), 13-24.
[http://dx.doi.org/10.1007/s12539-014-0170-8] [PMID: 24464700]
[214]
Sharma, R.; Jadav, S.S.; Yasmin, S.; Bhatia, S.; Khalilullah, H.; Ahsan, M.J. Simple, efficient, and improved synthesis of Biginelli-type compounds of curcumin as anticancer agents. Med. Chem. Res., 2015, 24(2), 636-644.
[http://dx.doi.org/10.1007/s00044-014-1146-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy