Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside

Author(s): Amir Masoud Jafari-Nozad, Amirsajad Jafari, Saman Yousefi, Hasan Bakhshi, Tahereh Farkhondeh* and Saeed Samarghandian*

Volume 31, Issue 24, 2024

Published on: 04 October, 2023

Page: [3715 - 3732] Pages: 18

DOI: 10.2174/0929867331666230721154653

Price: $65

Abstract

Background: Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities.

Objective: This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease.

Methods: Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included.

Results: According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels.

Conclusion: In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.

[1]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130, 110590.
[http://dx.doi.org/10.1016/j.biopha.2020.110590]
[2]
Galvão, I.; Dias, A.C.F.; Tavares, L.D.; Rodrigues, I.P.S.; Queiroz-Junior, C.M.; Costa, V.V.; Reis, A.C.; Ribeiro Oliveira, R.D.; Louzada-Junior, P.; Souza, D.G.; Leng, L.; Bucala, R.; Sousa, L.P.; Bozza, M.T.; Teixeira, M.M.; Amaral, F.A. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout. J. Leukoc. Biol., 2016, 99(6), 1035-1043.
[http://dx.doi.org/10.1189/jlb.3MA0915-418R] [PMID: 26868525]
[3]
Bhole, V.; de Vera, M.; Rahman, M.M.; Krishnan, E.; Choi, H. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum., 2010, 62(4), 1069-1076.
[http://dx.doi.org/10.1002/art.27338] [PMID: 20131266]
[4]
Patil, T.; Soni, A.; Acharya, S. A brief review on in vivo models for gouty arthritis. Metabolism. Open, 2021, 11, 100100.
[http://dx.doi.org/10.1016/j.metop.2021.100100] [PMID: 34189452]
[5]
Desai, J.; Steiger, S. Molecular pathophysiology of gout. Trends Mol. Med., 2017, 23(8), 756-768.
[http://dx.doi.org/10.1016/j.molmed.2017.06.005.] [PMID: 28732688]
[6]
Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390.
[http://dx.doi.org/10.1038/s41584-020-0441-1] [PMID: 32541923]
[7]
Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013, 62(10), 3307-3315.
[http://dx.doi.org/10.2337/db12-1814] [PMID: 24065788]
[8]
Bugyei-Twum, A.; Abadeh, A.; Thai, K.; Zhang, Y.; Mitchell, M.; Kabir, G.; Connelly, K.A. Suppression of NLRP3 inflammasome activation ameliorates chronic kidney disease-induced cardiac fibrosis and diastolic dysfunction. Sci. Rep., 2016, 6(1), 1-11.
[http://dx.doi.org/10.1038/srep39551] [PMID: 28000751]
[9]
Dinesh, P.; Rasool, M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int. Immunopharmacol., 2017, 44, 26-37.
[http://dx.doi.org/10.1016/j.intimp.2016.12.031.] [PMID: 28068647]
[10]
Martin, W.J.; Walton, M.; Harper, J.J.A. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis. Rheum., 2009, 60(1), 281-9.
[http://dx.doi.org/10.1002/art.24185.] [PMID: 19116939]
[11]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J.J.N. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-41.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[12]
Cronstein, B.N.; Sunkureddi, P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J. Clin. Rheumatol., 2013, 19(1), 19-29.
[http://dx.doi.org/10.1097/RHU.0b013e31827d8790] [PMID: 23319019]
[13]
Shehzad, A.; Lee, Y.J.D.F. Curcumin: Multiple molecular targets mediate multiple pharmacological actions- A review. Drugs Future, 2010, 35(2), 113.
[14]
Jafari-Nozad, A.M.; Jafari, A.; Aschner, M.; Farkhondeh, T.; Samarghandian, S. Curcumin combats against organophosphate pesticides toxicity: A review of the current evidence and molecular pathways. Curr. Med. Chem., 2022, 30(20), 2312-2339.
[PMID: 35980068]
[15]
Aldebasi, Y.H.; Aly, S.M.; Rahmani, A. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int. J. Physiol. Pathophysiol. Pharmacol., 2013, 5(4), 194-202.
[PMID: 24379904]
[16]
Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38.
[PMID: 29629341]
[17]
Sankhwar, R.; Yadav, S.; Kumar, A.; Kr. Gupta, R. Application of nano-curcumin as a natural antimicrobial agent against gram-positive pathogens. J. Appl. Nat. Sci., 2021, 13(1), 126.
[18]
Samarghandian, S.; Borji, A.; Hidar Tabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc. Haematological Disord. Drug Targets. (Formerly Current Drug Targets-Cardiovasc. Hematol. Disord.), 2013, 13(3), 231-236.
[19]
Mathews, V.; Binu, P.; Paul, M.S.; Abhilash, M.; Manju, A. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity. Asian Pac. J. Trop. Biomed., 2012, 2(2), S706-S711.
[20]
Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[21]
Singh, S. From exotic spice to modern drug? Cell, 2007, 130(5), 765-768.
[http://dx.doi.org/10.1016/j.cell.2007.08.024] [PMID: 17803897]
[22]
Jafari-Nozad, A.M.; Jafari, A.; Zangooie, A.; Behdadfard, M.; Zangouei, A.S.; Aschner, M. Curcumin combats against gastrointestinal cancer: A review of current knowledge regarding epigenetics mechanisms with a focus on DNA methylation. Curr. Med. Chem., 2023, 30(38), 4374-4388.
[23]
Epstein, J.; Sanderson, I.R. Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. Br. J. Nutr., 2010, 103(11), 1545-57.
[24]
Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Haematological. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018, 18(1), 52-60.
[25]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442.] [PMID: 30317564]
[26]
Gupte, P.A.; Giramkar, S.A.; Harke, S.M.; Kulkarni, S.K.; Deshmukh, A.P.; Hingorani, L.L.; Mahajan, M.P.; Bhalerao, S.S. Evaluation of the efficacy and safety of Capsule Longvida® Optimized curcumin (solid lipid curcumin particles) in knee osteoarthritis: A pilot clinical study. J. Inflamm. Res., 2019, 12, 145-152.
[27]
Samarghandian, S.; Samini, F.; Azimi-Nezhad, M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett.2017; 659:26-32.
[http://dx.doi.org/10.1016/j.neulet.2017.08.065]
[28]
Gaffo, A.L.; Jacobs, D.R., J.r.; Lewis, C.E.; Mikuls, T.R.; Saag, K.G. Association between being African-American, serum urate levels and the risk of developing hyperuricemia: Findings from the Coronary Artery Risk Development in Young Adults cohort. Arthritis Res. Ther., 2012, 14(1), R4.
[http://dx.doi.org/10.1186/ar3552] [PMID: 22225548]
[29]
Edwards, N.L. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve. Clin. J. Med., 2008, 75(Suppl. 5), S13-S16.
[http://dx.doi.org/10.3949/ccjm.75.Suppl_5.S13] [PMID: 18822470]
[30]
Yamanaka, H. Japanese guideline for the management of hyperuricemia and gout: Second edition. Nucleosides Nucleotides Nucleic Acids, 2011, 30(12), 1018-1029.
[http://dx.doi.org/10.1080/15257770.2011.596496] [PMID: 22132951]
[31]
Nuki, G.; Simkin, P.A. A concise history of gout and hyperuricemia and their treatment. Arthritis Res. Ther., 2006, 8(Suppl 1), S1.
[http://dx.doi.org/10.1186/ar1906] [PMID: 16820040]
[32]
Pauff, J.M.; Hille, R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod., 2009, 72(4), 725-731.
[http://dx.doi.org/10.1021/np8007123] [PMID: 19388706]
[33]
Bupparenoo, P.; Pakchotanon, R.; Narongroeknawin, P.; Asavatanabodee, P.; Chaiamnuay, S. Effect of curcumin on serum urate in asymptomatic hyperuricemia: A randomized placebo-controlled trial. J. Diet. Suppl., 2021, 18(3), 248-260.
[http://dx.doi.org/10.1080/19390211.2020.1757798] [PMID: 32420786]
[34]
Lin, J.K.; Shih, C.A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NJH3T3 cells. Carcinogenesis, 1994, 15(8), 1717-1721.
[http://dx.doi.org/10.1093/carcin/15.8.1717] [PMID: 8055654]
[35]
Shen, L.; Ji, H.F. Insights into the inhibition of xanthine oxidase by curcumin. Bioorg. Med. Chem. Lett., 2009, 19(21), 5990-5993.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.076] [PMID: 19800788]
[36]
Ao, G.Z.; Zhou, M.Z.; Li, Y.Y.; Li, S.N.; Wang, H.N.; Wan, Q.W.; Li, H.Q.; Hu, Q.H. Discovery of novel curcumin derivatives targeting xanthine oxidase and urate transporter 1 as anti-hyperuricemic agents. Bioorg. Med. Chem., 2017, 25(1), 166-174.
[http://dx.doi.org/10.1016/j.bmc.2016.10.022] [PMID: 28340987]
[37]
Kong, L.D.; Cai, Y.; Huang, W.W.; Cheng, C.H.K.; Tan, R.X. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol., 2000, 73(1-2), 199-207.
[http://dx.doi.org/10.1016/S0378-8741(00)00305-6] [PMID: 11025157]
[38]
Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Berghe, D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
[39]
Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun., 2002, 294(1), 167-172.
[http://dx.doi.org/10.1016/S0006-291X(02)00442-4] [PMID: 12054758]
[40]
Wang, F.; Yang, L.; Huang, K.; Li, X.; Hao, X.; Stöckigt, J.; Zhao, Y. Preparation of ferulic acid derivatives and evaluation of their xanthine oxidase inhibition activity. Nat. Prod. Res., 2007, 21(3), 196-202.
[http://dx.doi.org/10.1080/14786410601129648] [PMID: 17365708]
[41]
Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem., 2014, 25(2), 144-150.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.013] [PMID: 24445038]
[42]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229.
[http://dx.doi.org/10.1097/FJC.0000000000000406] [PMID: 27124606]
[43]
Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr. Drug Targets, 2019, 20(5), 593-603.
[http://dx.doi.org/10.2174/1389450120666181122100511] [PMID: 30465499]
[44]
Peng, F.; Tao, Q.; Wu, X.; Dou, H.; Spencer, S.; Mang, C.; Xu, L.; Sun, L.; Zhao, Y.; Li, H.; Zeng, S.; Liu, G.; Hao, X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 2012, 83(3), 568-585.
[http://dx.doi.org/10.1016/j.fitote.2011.12.028] [PMID: 22248534]
[45]
Wempe, M.F.; Jutabha, P.; Quade, B.; Iwen, T.J.; Frick, M.M.; Ross, I.R.; Rice, P.J.; Anzai, N.; Endou, H. Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J. Med. Chem., 2011, 54(8), 2701-2713.
[http://dx.doi.org/10.1021/jm1015022] [PMID: 21449597]
[46]
Kang, B.Y.; Song, Y.J.; Kim, K.M.; Choe, Y.K.; Hwang, S.Y.; Kim, T.S. Curcumin inhibits Th1 cytokine profile in CD4 + T cells by suppressing interleukin-12 production in macrophages. Br. J. Pharmacol., 1999, 128(2), 380-384.
[http://dx.doi.org/10.1038/sj.bjp.0702803] [PMID: 10510448]
[47]
Mathy-Hartert, M.; Jacquemond-Collet, I.; Priem, F.; Sanchez, C.; Lambert, C.; Henrotin, Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm. Res., 2009, 58(12), 899-908.
[http://dx.doi.org/10.1007/s00011-009-0063-1] [PMID: 19579007]
[48]
Miquel, J.; Bernd, A.; Sempere, J.M.; Díaz-Alperi, J.; Ramírez, A. The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch. Gerontol. Geriatr., 2002, 34(1), 37-46.
[http://dx.doi.org/10.1016/S0167-4943(01)00194-7] [PMID: 14764309]
[49]
Pourhabibi-Zarandi, F.; Shojaei-Zarghani, S.; Rafraf, M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int. J. Clin. Pract., 2021, 75(10), e14280.
[http://dx.doi.org/10.1111/ijcp.14280] [PMID: 33914984]
[50]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[51]
Samarghandian, S.; Shoshtari, M.E.; Sargolzaei, J.; Hossinimoghadam, H.; Farahzad, J.A. Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn. Mag., 2014, 10(Suppl 2), S419.
[52]
Gu, Y.; Zhu, Y.; Deng, G.; Liu, S.; Sun, Y.; Lv, W. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107375.
[http://dx.doi.org/10.1016/j.intimp.2021.107375] [PMID: 33517224]
[53]
Liu, X.; Jin, X.; Yu, D.; Liu, G. Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int. Immunopharmacol., 2019, 76, 105886.
[http://dx.doi.org/10.1016/j.intimp.2019.105886] [PMID: 31520990]
[54]
Yang, G.; Lee, H.E.; Moon, S.J.; Ko, K.M.; Koh, J.H.; Seok, J.K.; Min, J.K.; Heo, T.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Fitzgerald, K.A.; Lee, J.Y. Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol., 2020, 72(7), 1192-1202.
[http://dx.doi.org/10.1002/art.41245] [PMID: 32134203]
[55]
Yuan, X.; Fan, Y.S.; Xu, L.; Xie, G.Q.; Feng, X.H.; Qian, K. Jia-Wei-Si-Miao-Wan alleviates acute gouty arthritis by targeting NLRP3 inflammasome. J. Biol. Regul. Homeost. Agents, 2019, 33(1), 63-71.
[PMID: 30697988]
[56]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Preventive effect of safranal against oxidative damage in aged male rat brain. Experimental Animals. 2015; 64(1):65-71.
[http://dx.doi.org/10.1538/expanim.14-0027] [PMID: 25312506]
[57]
Mijanović, O.; Branković, A.; Panin, A.N.; Savchuk, S.; Timashev, P.; Ulasov, I.; Lesniak, M.S. Cathepsin B: A sellsword of cancer progression. Cancer Lett., 2019, 449, 207-214.
[http://dx.doi.org/10.1016/j.canlet.2019.02.035] [PMID: 30796968]
[58]
Peng, S.; Gao, J.; Liu, W.; Jiang, C.; Yang, X.; Sun, Y.; Guo, W.; Xu, Q. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget, 2016, 7(49), 80262-80274.
[http://dx.doi.org/10.18632/oncotarget.12918] [PMID: 27793052]
[59]
Amaral, E.P.; Riteau, N.; Moayeri, M.; Maier, N.; Mayer-Barber, K.D.; Pereira, R.M.; Lage, S.L.; Kubler, A.; Bishai, W.R.; D’Império-Lima, M.R.; Sher, A.; Andrade, B.B. Lysosomal cathepsin release is required for NLRP3-inflammasome activation by Mycobacterium tuberculosis in infected macrophages. Front. Immunol., 2018, 9, 1427.
[http://dx.doi.org/10.3389/fimmu.2018.01427] [PMID: 29977244]
[60]
Nidorf, S.M.; Fiolet, A.; Abela, G.S. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J. Clin. Lipidol., 2020, 14(5), 619-630.
[http://dx.doi.org/10.1016/j.jacl.2020.07.003] [PMID: 32792218]
[61]
Wang, D.; Zhang, J.; Jiang, W.; Cao, Z.; Zhao, F.; Cai, T.; Aschner, M.; Luo, W. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 2017, 13(5), 914-927.
[http://dx.doi.org/10.1080/15548627.2017.1293766] [PMID: 28318352]
[62]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol., 2015, 6, 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[63]
Mirzaei, S.; Zarrabi, A.; Asnaf, S.E.; Hashemi, F.; Zabolian, A.; Hushmandi, K.; Raei, M.; Goharrizi MASB, Makvandi P, Samarghandian S, Najafi M, Ashrafizadeh M, Aref AR, Hamblin MR. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci. 2021; 268:119005.
[http://dx.doi.org/10.1016/j.lfs.2020.119005.]
[64]
Wang, S.; Zhao, X.; Yang, S.; Chen, B.; Shi, J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem. Biol. Interact., 2017, 278, 48-53.
[http://dx.doi.org/10.1016/j.cbi.2017.10.012] [PMID: 29031534]
[65]
Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Hematol. Disord. Drug Targets. 2018; 18(1), 52-60.
[http://dx.doi.org/10.2174/1871529X18666180212114816.]
[66]
Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19.
[http://dx.doi.org/10.1016/j.molimm.2018.09.004] [PMID: 30396035]
[67]
Li, X.; Xu, D.Q.; Sun, D.Y.; Zhang, T.; He, X.; Xiao, D.M. Curcumin ameliorates monosodium urate-induced gouty arthritis through nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J. Cell. Biochem., 2019, 120(4), 6718-6728.
[http://dx.doi.org/10.1002/jcb.27969] [PMID: 30592318]
[68]
Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother., 2019, 118, 109195.
[http://dx.doi.org/10.1016/j.biopha.2019.109195] [PMID: 31362244]
[69]
Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther., 2019, 21(1), 193.
[http://dx.doi.org/10.1186/s13075-019-1974-z] [PMID: 30606217]
[70]
Banerjee, S.; Ji, C.; Mayfield, J.E.; Goel, A. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. National Aca. Sci., 2018, 115(32), 201806797.
[71]
Fan, Z.; Jing, H.; Yao, J.; Li, Y.; Hu, X.; Shao, H.; Shen, G.; Pan, J.; Luo, F.; Tian, X. The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid. Med. Cell Longev., 2014, 2014, 191624.
[http://dx.doi.org/10.1155/2014/191624] [PMID: 25215173]
[72]
Ni, H.; Jin, W.; Zhu, T.; Wang, J.; Yuan, B.; Jiang, J.; Liang, W.; Ma, Z. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J. Spinal Cord Med., 2015, 38(2), 199-206.
[http://dx.doi.org/10.1179/2045772313Y.0000000179] [PMID: 24621048]
[73]
Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846.
[http://dx.doi.org/10.4049/jimmunol.1701495] [PMID: 29549176]
[74]
Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev., 2011, 243(1), 152-162.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01043.x] [PMID: 21884174]
[75]
Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell, 2002, 109(2), S81-S96.
[http://dx.doi.org/10.1016/S0092-8674(02)00703-1] [PMID: 11983155]
[76]
Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18(18), 2195-2224.
[http://dx.doi.org/10.1101/gad.1228704] [PMID: 15371334]
[77]
Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[78]
Mohamed, D.A.; Al-Okbi, S.Y. Evaluation of anti-gout activity of some plant food extracts. Pol. J. Food Nutr. Sci., 2008, 58(3)
[79]
Urano, W.; Yamanaka, H.; Tsutani, H.; Nakajima, H.; Matsuda, Y.; Taniguchi, A.; Hara, M.; Kamatani, N. The inflammatory process in the mechanism of decreased serum uric acid concentrations during acute gouty arthritis. J. Rheumatol., 2002, 29(9), 1950-1953.
[PMID: 12233891]
[80]
Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res., 2006, 55(4), 168-175.
[http://dx.doi.org/10.1007/s00011-006-0067-z] [PMID: 16807698]
[81]
Ammon, H.P.T.; Safayhi, H.; Mack, T.; Sabieraj, J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol., 1993, 38(2-3), 105-112.
[http://dx.doi.org/10.1016/0378-8741(93)90005-P] [PMID: 8510458]
[82]
Flynn, D.L.; Rafferty, M.F.; Boctor, A.M. Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: Inhibitory activities of curcuminoids and yakuchinones. Prostaglandins Leukot. Med., 1986, 22(3), 357-360.
[http://dx.doi.org/10.1016/0262-1746(86)90146-0] [PMID: 3460103]
[83]
Madan, B.; Ghosh, B. Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock, 2003, 19(1), 91-96.
[http://dx.doi.org/10.1097/00024382-200301000-00017] [PMID: 12558151]
[84]
Limasset, B.; Le Doucen, C.; Dore, J.C.; Ojasoo, T.; Damon, M.; De Paulet, A.C. Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Biochem. Pharmacol., 1993, 46(7), 1257-1271.
[http://dx.doi.org/10.1016/0006-2952(93)90476-D] [PMID: 8216378]
[85]
Bisset, S.; Sobhi, W.; Bensouici, C.; Khenchouche, A. Chain-breaking/preventive antioxidant, urate-lowering, and anti-inflammatory effects of pure curcumin. Curr. Nutr. Food Sci., 2020, 17(1), 66-74.
[http://dx.doi.org/10.2174/1573401316999200421095134]
[86]
Umar, H.I.; Ajayi, A.; Josiah, S.S.; Saliu, T.; Danjuma, J.B.; Chukwuemeka, P.O. In silico molecular docking of selected polyphenols against interleukin-17A target in gouty arthritis. Eur. J. Biol. Res., 2020, 10(4), 352-367.
[87]
Liu, S.; Song, X.; Chrunyk, B.A.; Shanker, S.; Hoth, L.R.; Marr, E.S. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat. Commun., 2013, 4, 1888.
[88]
Chang, S.H.; Reynolds, J.M.; Pappu, B.P.; Chen, G.; Martinez, G.J.; Dong, C. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity, 2011, 35(4), 611-621.
[http://dx.doi.org/10.1016/j.immuni.2011.09.010] [PMID: 21982598]
[89]
Gaffen, SLJNRI. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol., 2009, 9(8), 556-67.
[90]
Raucci, F.; Iqbal, A.J.; Saviano, A.; Minosi, P.; Piccolo, M.; Irace, C. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol. Res., 2019, 147, 104351.
[http://dx.doi.org/10.1016/j.phrs.2019.104351] [PMID: 31315067]
[91]
Cavalcanti, N.G.; Marques, C.D.L.; Lins e Lins, T.U.; Pereira, M.C. Cytokine profile in gout: Inflammation driven by IL-6 and IL-18? Immunol. Invest., 2016, 45(5), 383-95.
[http://dx.doi.org/10.3109/08820139.2016.1153651] [PMID: 27219123]
[92]
Liu, Y.; Zhao, Q.; Yin, Y.; McNutt, M.A.; Zhang, T.; Cao, Y. Serum levels of IL-17 are elevated in patients with acute gouty arthritis. Biochem. Biophys. Res. Commun., 2018, 497(3), 897-902.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.166] [PMID: 29476737]
[93]
Miossec, P. Update on interleukin-17: A role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open, 2017, 3(1), e000284.
[http://dx.doi.org/10.1136/rmdopen-2016-000284.] [PMID: 28243466]
[94]
Zhang, X.; Angkasekwinai, P.; Dong, C.; Tang, H.J.P. Structure and function of interleukin-17 family cytokines. Protein Cell, 2011, 2(1), 26-40.
[http://dx.doi.org/10.1007/s13238-011-1006-5.] [PMID: 21337007]
[95]
Le Goff, B.; Bouvard, B.; Lequerre, T.; Lespessailles, E.; Marotte, H.; Pers, Y.M.; Cortet, B. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases. Mediators Inflamm., 2019, 2019, 8659302.
[http://dx.doi.org/10.1155/2019/8659302] [PMID: 31485194]
[96]
Kuwabara, T.; Ishikawa, F.; Kondo, M. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 3908061.
[http://dx.doi.org/10.1155/2017/3908061.] [PMID: 28316374]
[97]
Zhou, Z.; Li, X.; Li, H.; Guo, M.; Liu, S. Genetic analysis of IL-17 gene polymorphisms in gout in a male Chinese Han population. PLoS One, 2016, 11(2), e0148082.
[http://dx.doi.org/10.1371/journal.pone.0148082.] [PMID: 26890073]
[98]
Ranade, S.Y.; Gaud, R.S. Current strategies in herbal drug delivery for arthritis: An overview. Int. J. Pharm. Sci. Res., 2013, 4(10), 3782.
[99]
Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 2022, 11(3), 322.
[http://dx.doi.org/10.3390/antibiotics11030322] [PMID: 35326785]
[100]
Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin-An updated overview. Pharmaceutics, 2021, 13(12), 2102.
[http://dx.doi.org/10.3390/pharmaceutics13122102] [PMID: 34959384]
[101]
Mustafa Kiyani, M.M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Imran Bokhari, S.A. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug. Medicina, 2019, 55(1), 10.
[http://dx.doi.org/10.3390/medicina55010010] [PMID: 30642012]
[102]
Walsh, A.S.; Yin, H.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5(7), 5427-5432.
[http://dx.doi.org/10.1021/nn2005574] [PMID: 21696187]
[103]
Appelboom, T.; MsciBiost, C.M. MsciBiost CM. Flexofytol, a purified curcumin extract, in fibromyalgia and gout: A retrospective study. Open J. Rheumatol. Autoimmune Dis., 2013, 3(2), 104-107.
[http://dx.doi.org/10.4236/ojra.2013.32015]
[104]
WHO. The burden of musculoskeletal conditions at the start of the new millenium: Report of a WHO scientific group. 2003. Available from: https://apps.who.int/iris/handle/10665/42721
[105]
Xu, Y.T.; Leng, Y.R.; Liu, M.M.; Dong, R.F.; Bian, J.; Yuan, L.L.; Zhang, J.; Xia, Y.Z.; Kong, L.Y. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int. Immunopharmacol., 2020, 87, 106842.
[http://dx.doi.org/10.1016/j.intimp.2020.106842] [PMID: 32738598]
[106]
Wortmann, R.L. The management of gout: It should be crystal clear. J. Rheumatol., 2006, 33(10), 1921-1922.
[PMID: 17014007]
[107]
Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 2019, 20(13), 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[108]
Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci., 2014, 1319(1), 82-95.
[http://dx.doi.org/10.1111/nyas.12458] [PMID: 24840700]
[109]
Wu, M.; Tian, Y.; Wang, Q.; Guo, C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol., 2020, 39(10), 2849-2859.
[http://dx.doi.org/10.1007/s10067-020-05090-8] [PMID: 32382830]
[110]
Dinarello, C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, 15(10), 612-632.
[http://dx.doi.org/10.1038/s41584-019-0277-8] [PMID: 31515542]
[111]
Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[112]
Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617.
[http://dx.doi.org/10.1016/j.autrev.2020.102617] [PMID: 32663626]
[113]
Fields, J.K.; Günther, S.; Sundberg, E.J. Structural basis of IL-1 family cytokine signaling. Front. Immunol., 2019, 10, 1412.
[http://dx.doi.org/10.3389/fimmu.2019.01412] [PMID: 31281320]
[114]
Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci., 2019, 20(3), 649.
[http://dx.doi.org/10.3390/ijms20030649] [PMID: 30717382]
[115]
Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev., 2018, 281(1), 138-153.
[http://dx.doi.org/10.1111/imr.12616] [PMID: 29247988]
[116]
Nakanishi, K. Unique action of interleukin-18 on T cells and other immune cells. Front. Immunol., 2018, 9, 763.
[http://dx.doi.org/10.3389/fimmu.2018.00763] [PMID: 29731751]
[117]
Choe, J.Y.; Choi, C.H.; Park, K.Y.; Kim, S.K. High-mobility group box 1 is responsible for monosodium urate crystal-induced inflammation in human U937 macrophages. Biochem. Biophys. Res. Commun., 2018, 503(4), 3248-3255.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.139] [PMID: 30166062]
[118]
Son, C.N.; Bang, S.Y.; Kim, J.H.; Choi, C.B.; Kim, T.H.; Jun, J.B. Caspase-1 level in synovial fluid is high in patients with spondyloarthropathy but not in patients with gout. J. Korean Med. Sci., 2013, 28(9), 1289-1292.
[http://dx.doi.org/10.3346/jkms.2013.28.9.1289] [PMID: 24015032]
[119]
Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271.
[http://dx.doi.org/10.1172/JCI28075] [PMID: 16886064]
[120]
Trøseid, M.; Seljeflot, I.; Hjerkinn, E.M.; Arnesen, H. Interleukin-18 is a strong predictor of cardiovascular events in elderly men with the metabolic syndrome: Synergistic effect of inflammation and hyperglycemia. Diabetes Care, 2009, 32(3), 486-492.
[http://dx.doi.org/10.2337/dc08-1710] [PMID: 19092166]
[121]
Schlesinger, N.; Brunetti, L. Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin. Arthritis. Rheum., 2020, 50(3), 444-450.
[http://dx.doi.org/10.1016/j.semarthrit.2019.11.009]
[122]
Yin, C.; Liu, B.; Li, Y.; Li, X.; Wang, J.; Chen, R.; Tai, Y.; Shou, Q.; Wang, P.; Shao, X.; Liang, Y.; Zhou, H.; Mi, W.; Fang, J.; Liu, B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics, 2020, 10(26), 12189-12203.
[http://dx.doi.org/10.7150/thno.48028] [PMID: 33204337]
[123]
Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol., 2020, 177(9), 2042-2057.
[http://dx.doi.org/10.1111/bph.14967] [PMID: 31883118]
[124]
Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Silva, C.R.; Fusi, C.; Tonello, R.; Minocci, D.; Guerra, G.P.; Materazzi, S.; Nassini, R.; Geppetti, P.; Ferreira, J. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic. Biol. Med., 2014, 72, 200-209.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.021] [PMID: 24780252]
[125]
Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Ineu, R.P.; Guerra, G.P.; Materazzi, S.; Fusi, C.; Nassini, R.; Geppetti, P.; Ferreira, J. Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum., 2013, 65(11), 2984-2995.
[http://dx.doi.org/10.1002/art.38112] [PMID: 23918657]
[126]
Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677.
[http://dx.doi.org/10.1126/science.1156995] [PMID: 18403674]
[127]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[128]
Alberts, B.M.; Bruce, C.; Basnayake, K.; Ghezzi, P.; Davies, K.A.; Mullen, L.M. Secretion of IL-1β from monocytes in gout is redox independent. Front. Immunol., 2019, 10, 70.
[http://dx.doi.org/10.3389/fimmu.2019.00070] [PMID: 30761138]
[129]
Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221.
[http://dx.doi.org/10.3390/ijms22179221] [PMID: 34502127]
[130]
Mitroulis, I.; Kambas, K.; Ritis, K. Neutrophils, IL-1β, and gout: Is there a link? Semin. Immunopathol., 2013, 35(4), 501-12.
[http://dx.doi.org/10.1007/s00281-013-0361-0]
[131]
Liu, M.L.; Lyu, X.; Werth, V.P. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J., 2022, 289(14), 3954-3966.
[http://dx.doi.org/10.1111/febs.16036] [PMID: 34042290]
[132]
Daily, JW.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. food, 2016, 19(8), 717-29.
[133]
Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725.
[http://dx.doi.org/10.1002/ptr.4639] [PMID: 22407780]
[134]
Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study. J. Orthop. Sci., 2014, 19(6), 933-939.
[http://dx.doi.org/10.1007/s00776-014-0633-0] [PMID: 25308211]
[135]
Dewangan, A.K.; Varkey, S.; Mazumder, S. Synthesis of curcumin loaded CMCAB nanoparticles for treatment of rheumatoid arthritis. International Conference on Chemical, Environmental and Biological Sciences (CEBS), Dubai (UAE) 18-19, 2015.
[136]
Coradini, K.; Friedrich, R.B.; Fonseca, F.N.; Vencato, M.S.; Andrade, D.F.; Oliveira, C.M.; Battistel, A.P.; Guterres, S.S.; da Rocha, M.I.U.M.; Pohlmann, A.R.; Beck, R.C.R. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci., 2015, 78, 163-170.
[http://dx.doi.org/10.1016/j.ejps.2015.07.012] [PMID: 26206297]
[137]
Arora, R.; Kuhad, A.; Kaur, I.P.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain, 2015, 19(7), 940-952.
[http://dx.doi.org/10.1002/ejp.620] [PMID: 25400173]
[138]
Xiang, B.; Dong, D-W.; Shi, N-Q.; Gao, W.; Yang, Z-Z.; Cui, Y.; Cao, D-Y.; Qi, X-R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34(28), 6979-91.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.055] [PMID: 23777916]
[139]
Khezri, K.; Saeedi, M.; Mohammadamini, H.; Zakaryaei, A.S. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res., 2021, 35(10), 5527-5563.
[http://dx.doi.org/10.1002/ptr.7190] [PMID: 34131980]
[140]
Sun, H.; Zhan, M.; Mignani, S.; Shcharbin, D.; Majoral, J-P.; Rodrigues, J.; Shi, X.; Shen, M. Modulation of macrophages using nanoformulations with curcumin to treat inflammatory diseases: A concise review. Pharmaceutics, 2022, 14(10), 2239.
[http://dx.doi.org/10.3390/pharmaceutics14102239] [PMID: 36297677]
[141]
Liu, C.; Rokavec, M.; Huang, Z.; Hermeking, H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ., 2023, 1-15.
[142]
Huang, J.; Wu, T.; Zhong, Y.; Huang, J.; Kang, Z.; Zhou, B.; Zhao, H.; Liu, D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR / MYD88 signaling pathway. Phytother. Res., 2023, 37(2), 731-742.
[http://dx.doi.org/10.1002/ptr.7656] [PMID: 36196887]
[143]
Miyazaki, K.; Morine, Y.; Xu, C.; Nakasu, C.; Wada, Y.; Teraoku, H. Curcumin-mediated resistance to lenvatinib via EGFR signaling pathway in hepatocellular carcinoma. Cells, 2023, 12(4), 612.
[http://dx.doi.org/10.3390/cells12040612]
[144]
Zhang, H.; Li, H.; Wang, H.; Lei, S.; Yan, LJB. Overexpression of TRPM7 promotes the therapeutic effect of curcumin in wound healing through the STAT3/SMAD3 signaling pathway in human fibroblasts. Burns, 2023, 49(4), 889-900.
[http://dx.doi.org/10.1016/j.burns.2022.06.016] [PMID: 35850880]
[145]
Benameur, T.; Frota Gaban, S.V.; Giacomucci, G.; Filannino, F.M.; Trotta, T.; Polito, R.; Messina, G.; Porro, C.; Panaro, M.A. The effects of curcumin on inflammasome: Latest update. Molecules, 2023, 28(2), 742.
[http://dx.doi.org/10.3390/molecules28020742] [PMID: 36677800]
[146]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921.] [PMID: 32464325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy