Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in Estrogen-related Receptor Gamma (ERRγ) Agonists and Inverse Agonists

Author(s): Yong Zheng, Yongli Du*, Haibin Zhang, Huiting Lv, Zhijia Yan, Ning Dong, Qunyi Li and Tianxiao Wang

Volume 31, Issue 24, 2024

Published on: 12 July, 2023

Page: [3653 - 3667] Pages: 15

DOI: 10.2174/0929867330666230518140631

Price: $65

Abstract

Estrogen-related receptor gamma (ERRγ), one of three members of the ERR family, is an inducible transcription factor. ERRγ has dual functions in different tissues. The decreased expression of ERRγ in the brain, stomach, prostate, and fat cells can cause neuropsychological dysfunction, gastric cancer, prostate cancer, and obesity. However, when ERRγ is present in the liver, pancreas, and thyroid follicular cells, ERRγ overexpression is related to liver cancer, type II diabetes, oxidative liver injury, and anaplastic thyroid carcinoma. Signaling pathway studies have confirmed that ERRγ agonists or inverse agonists can regulate ERRγ expression to treat related diseases. The collision between residue Phe435 and the modulator is a key factor determining the activation or inhibition of ERRγ. Although more than 20 agonists and inverse agonists of ERRγ have been reported, no clinical studies have been found in the literature. This review summarizes the important relationship between ERRγ-related signaling pathways and diseases, research progress, and the structure-activity relationship of modulators. These findings provide guidance for further study on new ERRγ modulators.

Next »
[1]
Ghanbari, F.; Hebert-Losier, A.; Barry, J.; Poirier, D.; Giguere, V.; Mader, S.; Philip, A. Isolation and functional characterization of a novel endogenous inverse agonist of estrogen related receptors (ERRs) from human pregnancy urine. J. Steroid Biochem. Mol. Biol., 2019, 191, 105352.
[http://dx.doi.org/10.1016/j.jsbmb.2019.04.001] [PMID: 30954508]
[2]
Schoepke, E.; Billon, C.; Haynes, K.M.; Avdagic, A.; Sitaula, S.; Sanders, R.; Adeyemi, C.M.; Walker, J.K.; Burris, T.P. A selective ERRα/γ inverse agonist, SLU-PP-1072, inhibits the warburg effect and induces apoptosis in prostate cancer cells. ACS Chem. Biol., 2020, 15(9), 2338-2345.
[http://dx.doi.org/10.1021/acschembio.0c00670] [PMID: 32897058]
[3]
Zhou, W.; Lo, S.C.; Liu, J.H.; Hannink, M.; Lubahn, D.B. ERRβ: A potent inhibitor of Nrf2 transcriptional activity. Mol. Cell. Endocrinol., 2007, 278(1-2), 52-62.
[http://dx.doi.org/10.1016/j.mce.2007.08.011] [PMID: 17920186]
[4]
Lim, J.; Choi, H.S.; Choi, H.J. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells. J. Neurochem., 2015, 133(4), 544-557.
[http://dx.doi.org/10.1111/jnc.13085] [PMID: 25727910]
[5]
Huang, B.; Mu, P.; Yu, Y.; Zhu, W.; Jiang, T.; Deng, R.; Feng, G.; Wen, J.; Zhu, X.; Deng, Y. Inhibition of EZH2 and activation of ERRγ synergistically suppresses gastric cancer by inhibiting FOXM1 signaling pathway. Gastric Cancer, 2021, 24(1), 72-84.
[http://dx.doi.org/10.1007/s10120-020-01097-x] [PMID: 32529327]
[6]
Yu, S.; Wang, X.; Ng, C.F.; Chen, S.; Chan, F.L. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer. Cancer Res., 2007, 67(10), 4904-4914.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3855] [PMID: 17510420]
[7]
Xu, S.; Mao, L.; Ding, P.; Zhuang, X.; Zhou, Y.; Yu, L.; Liu, Y.; Nie, T.; Xu, T.; Xu, Y.; Liu, J.; Smaill, J.; Ren, X.; Wu, D.; Ding, K. 1-Benzyl-4-phenyl-1H-1,2,3-triazoles improve the transcriptional functions of estrogen-related receptor γ and promote the browning of white adipose. Bioorg. Med. Chem., 2015, 23(13), 3751-3760.
[http://dx.doi.org/10.1016/j.bmc.2015.03.082] [PMID: 25910584]
[8]
Kim, D.K.; Choi, H.S. Emerging role of the orphan nuclear receptor estrogen-related receptor gamma in liver metabolic diseases. Liver Res., 2019, 3(2), 99-105.
[http://dx.doi.org/10.1016/j.livres.2019.03.001]
[9]
Yoshihara, E.; Wei, Z.; Lin, C.S.; Fang, S.; Ahmadian, M.; Kida, Y.; Tseng, T.; Dai, Y.; Yu, R.T.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metab., 2016, 23(4), 622-634.
[http://dx.doi.org/10.1016/j.cmet.2016.03.005] [PMID: 27076077]
[10]
Singh, T.D.; Song, J.; Kim, J.; Chin, J.; Ji, H.D.; Lee, J.E.; Lee, S.B.; Yoon, H.; Yu, J.H.; Kim, S.K.; Yoon, G.S.; Hwang, H.; Lee, H.W.; Oh, J.M.; Lee, S.W.; Lee, J.; Choi, H.S.; Na, S.Y.; Choi, W.I.; Park, Y.J.; Song, Y.S.; Kim, Y.A.; Lee, I.K.; Cho, S.J.; Jeon, Y.H. A novel orally active inverse agonist of Estrogen-related Receptor Gamma (ERRγ), DN200434, a booster of NIS in anaplastic thyroid cancer. Clin. Cancer Res., 2019, 25(16), 5069-5081.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3007] [PMID: 31010838]
[11]
Kim, J.H.; Choi, Y.K.; Byun, J.K.; Kim, M.K.; Kang, Y.N.; Kim, S.H.; Lee, S.; Jang, B.K.; Park, K.G. Estrogen-related receptor γ is upregulated in liver cancer and its inhibition suppresses liver cancer cell proliferation via induction of p21 and p27. Exp. Mol. Med., 2016, 48(3), e213.
[http://dx.doi.org/10.1038/emm.2015.115] [PMID: 26940882]
[12]
Kim, D.K.; Kim, Y.H.; Lee, J.H.; Jung, Y.S.; Kim, J.; Feng, R.; Jeon, T.I.; Lee, I.K.; Cho, S.J.; Im, S.S.; Dooley, S.; Osborne, T.F.; Lee, C.H.; Choi, H.S. Estrogen-related receptor γ controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(12), 158521.
[http://dx.doi.org/10.1016/j.bbalip.2019.158521] [PMID: 31479733]
[13]
Kim, J.; Song, J.; Ji, H.D.; Yoo, E.K.; Lee, J.E.; Lee, S.B.; Oh, J.M.; Lee, S.; Hwang, J.S.; Yoon, H.; Kim, D.S.; Lee, S.J.; Jeong, M.; Lee, S.; Kim, K.H.; Choi, H.S.; Lee, S.W.; Park, K.G.; Lee, I.K.; Kim, S.H.; Hwang, H.; Jeon, Y.H.; Chin, J.; Cho, S.J. Discovery of potent, selective, and orally bioavailable estrogen-related receptor-γ inverse agonists to restore the sodium iodide symporter function in anaplastic thyroid cancer. J. Med. Chem., 2019, 62(4), 1837-1858.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01296] [PMID: 30657313]
[14]
Seth, A.; Steel, J.H.; Nichol, D.; Pocock, V.; Kumaran, M.K.; Fritah, A.; Mobberley, M.; Ryder, T.A.; Rowlerson, A.; Scott, J.; Poutanen, M.; White, R.; Parker, M. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab., 2007, 6(3), 236-245.
[http://dx.doi.org/10.1016/j.cmet.2007.08.004] [PMID: 17767910]
[15]
Misra, J.; Kim, D.K.; Choi, H.S. ERRγ: A junior orphan with a senior role in metabolism. Trends Endocrinol. Metab., 2017, 28(4), 261-272.
[http://dx.doi.org/10.1016/j.tem.2016.12.005] [PMID: 28209382]
[16]
Kang, M.H.; Choi, H.; Oshima, M.; Cheong, J.H.; Kim, S.; Lee, J.H.; Park, Y.S.; Choi, H.S.; Kweon, M.N.; Pack, C.G.; Lee, J.S.; Mills, G.B.; Myung, S.J.; Park, Y.Y. Estrogen-related receptor gamma functions as a tumor suppressor in gastric cancer. Nat. Commun., 2018, 9(1), 1920.
[http://dx.doi.org/10.1038/s41467-018-04244-2] [PMID: 29765046]
[17]
Gesta, S.; Tseng, Y.H.; Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell, 2007, 131(2), 242-256.
[http://dx.doi.org/10.1016/j.cell.2007.10.004] [PMID: 17956727]
[18]
Dixen, K.; Basse, A.L.; Murholm, M.; Isidor, M.S.; Hansen, L.H.L.; Petersen, M.C.H.; Madsen, L.; Petrovic, N.; Nedergaard, J.; Quistorff, B.; Hansen, J.B. ERRγ enhances UCP1 expression and fatty acid oxidation in brown adipocytes. Obesity (Silver Spring), 2013, 21(3), 516-524.
[http://dx.doi.org/10.1002/oby.20067] [PMID: 23404793]
[19]
Kim, D.K.; Ryu, D.; Koh, M.; Lee, M.W.; Lim, D.; Kim, M.J.; Kim, Y.H.; Cho, W.J.; Lee, C.H.; Park, S.B.; Koo, S.H.; Choi, H.S. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis. J. Biol. Chem., 2012, 287(26), 21628-21639.
[http://dx.doi.org/10.1074/jbc.M111.315168] [PMID: 22549789]
[20]
Vecchi, C.; Montosi, G.; Garuti, C.; Corradini, E.; Sabelli, M.; Canali, S.; Pietrangelo, A. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology, 2014, 146(4), 1060-1069.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.12.016] [PMID: 24361124]
[21]
Martino, M.R.; Gutiérrez-Aguilar, M.; Yiew, N.K.H.; Lutkewitte, A.J.; Singer, J.M.; McCommis, K.S.; Ferguson, D.; Liss, K.H.H.; Yoshino, J.; Renkemeyer, M.K.; Smith, G.I.; Cho, K.; Fletcher, J.A.; Klein, S.; Patti, G.J.; Burgess, S.C.; Finck, B.N. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep., 2022, 41(7), 111633.
[http://dx.doi.org/10.1016/j.celrep.2022.111633] [PMID: 36384117]
[22]
Choi, J.H.; Park, M.J.; Kim, K.W.; Choi, Y.H.; Park, S.H.; An, W.G.; Yang, U.S.; Cheong, J. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Lett., 2005, 579(13), 2795-2801.
[http://dx.doi.org/10.1016/j.febslet.2005.03.097] [PMID: 15907483]
[23]
Imperatore, R.; Morello, G.; Luongo, L.; Taschler, U.; Romano, R.; De Gregorio, D.; Belardo, C.; Maione, S.; Di Marzo, V.; Cristino, L. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB 1 R signaling and anxiety-like behavior. J. Neurochem., 2015, 135(4), 799-813.
[http://dx.doi.org/10.1111/jnc.13267] [PMID: 26223500]
[24]
Kim, T.; Kim, H.I.; Oh, H.; Jeon, Y.; Shin, H.; Kim, H.S.; Lim, J.; Lim, C.; Yoo, J.; Suh, Y.G.; Son, W.S.; Choi, H.J.; Kim, S.H. Discovery of new ERRγ agonists regulating dopaminergic neuronal phenotype in SH-SY5Y cells. Bioorg. Chem., 2022, 122, 105716.
[http://dx.doi.org/10.1016/j.bioorg.2022.105716] [PMID: 35303621]
[25]
Kim, H.I.; Lee, S.; Lim, J.; Chung, S.; Koo, T.S.; Ji, Y.G.; Suh, Y.G.; Son, W.S.; Kim, S.H.; Choi, H.J. ERRγ ligand HPB2 upregulates BDNF-TrkB and enhances dopaminergic neuronal phenotype. Pharmacol. Res., 2021, 165, 105423.
[http://dx.doi.org/10.1016/j.phrs.2021.105423] [PMID: 33434621]
[26]
Wang, L.; Zuercher, W.J.; Consler, T.G.; Lambert, M.H.; Miller, A.B.; Orband-Miller, L.A.; McKee, D.D.; Willson, T.M.; Nolte, R.T. X-ray crystal structures of the estrogen-related receptor-gamma ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J. Biol. Chem., 2006, 281(49), 37773-37781.
[http://dx.doi.org/10.1074/jbc.M608410200] [PMID: 16990259]
[27]
Li, R.; Du, Y.; Shen, J. Designing of novel ERRγ inverse agonists by molecular modeling studies of docking and 3D-QSAR on hydroxytamoxifen derivatives. Med. Chem. Res., 2019, 28(10), 1661-1673.
[http://dx.doi.org/10.1007/s00044-019-02402-9]
[28]
Zuercher, W.J.; Gaillard, S.; Orband-Miller, L.A.; Chao, E.Y.H.; Shearer, B.G.; Jones, D.G.; Miller, A.B.; Collins, J.L.; McDonnell, D.P.; Willson, T.M. Identification and structure-activity relationship of phenolic acyl hydrazones as selective agonists for the estrogen-related orphan nuclear receptors ERRbeta and ERRgamma. J. Med. Chem., 2005, 48(9), 3107-3109.
[http://dx.doi.org/10.1021/jm050161j] [PMID: 15857113]
[29]
Yu, D.D.; Forman, B.M. Identification of an agonist ligand for estrogen-related receptors ERRβ/γ. Bioorg. Med. Chem. Lett., 2005, 15(5), 1311-1313.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.025] [PMID: 15713377]
[30]
Kim, Y.; Koh, M.; Kim, D.K.; Choi, H.S.; Park, S.B. Efficient discovery of selective small molecule agonists of estrogen-related receptor gamma using combinatorial approach. J. Comb. Chem., 2009, 11(5), 928-937.
[http://dx.doi.org/10.1021/cc900081j] [PMID: 19746993]
[31]
Lin, H.; Doebelin, C.; Patouret, R.; Garcia-Ordonez, R.D.; Chang, M.R.; Dharmarajan, V.; Bayona, C.R.; Cameron, M.D.; Griffin, P.R.; Kamenecka, T.M. Design, synthesis, and evaluation of simple phenol amides as ERRγ agonists. Bioorg. Med. Chem. Lett., 2018, 28(8), 1313-1319.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.019] [PMID: 29548571]
[32]
Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. Lett., 2006, 167(2), 95-105.
[http://dx.doi.org/10.1016/j.toxlet.2006.08.012] [PMID: 17049190]
[33]
Matsushima, A.; Teramoto, T.; Okada, H.; Liu, X.; Tokunaga, T.; Kakuta, Y.; Shimohigashi, Y. ERRγ tethers strongly bisphenol A and 4-α-cumylphenol in an induced-fit manner. Biochem. Biophys. Res. Commun., 2008, 373(3), 408-413.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.050] [PMID: 18582436]
[34]
Suyama, K.; Kaneko, S.; Kesamaru, H.; Liu, X.; Matsushima, A.; Kakuta, Y.; Okubo, T.; Kasatani, K.; Nose, T. Evaluation of the influence of halogenation on the binding of bisphenol A to the estrogen-related receptor γ. Chem. Res. Toxicol., 2020, 33(4), 889-902.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00379] [PMID: 32105061]
[35]
Coward, P.; Lee, D.; Hull, M.V.; Lehmann, J.M. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor γ. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8880-8884.
[http://dx.doi.org/10.1073/pnas.151244398] [PMID: 11447273]
[36]
Yu, D.D.; Huss, J.M.; Li, H.; Forman, B.M. Identification of novel inverse agonists of estrogen-related receptors ERRγ and ERRβ. Bioorg. Med. Chem., 2017, 25(5), 1585-1599.
[http://dx.doi.org/10.1016/j.bmc.2017.01.019] [PMID: 28189393]
[37]
Chao, E.Y.H.; Collins, J.L.; Gaillard, S.; Miller, A.B.; Wang, L.; Orband-Miller, L.A.; Nolte, R.T.; McDonnell, D.P.; Willson, T.M.; Zuercher, W.J. Structure-guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRγ. Bioorg. Med. Chem. Lett., 2006, 16(4), 821-824.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.030] [PMID: 16307879]
[38]
Kim, J.; Chin, J.; Im, C.Y.; Yoo, E.K.; Woo, S.; Hwang, H.J.; Cho, J.; Seo, K.; Song, J.; Hwang, H.; Kim, K.H.; Kim, N.D.; Yoon, S.K.; Jeon, J.H.; Yoon, S.Y.; Jeon, Y.H.; Choi, H.S.; Lee, I.K.; Kim, S.H.; Cho, S.J. Synthesis and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma inverse agonists. Eur. J. Med. Chem., 2016, 120, 338-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.076] [PMID: 27236015]
[39]
Kim, J.; Im, C.Y.; Yoo, E.K.; Ma, M.J.; Kim, S.B.; Hong, E.; Chin, J.; Hwang, H.; Lee, S.; Kim, N.D.; Jeon, J.H.; Lee, I.K.; Jeon, Y.H.; Choi, H.S.; Kim, S.H..; Cho, S.J. Identification of selective ERRgamma inverse agonists. Molecules, 2016, 21(1), 80.
[http://dx.doi.org/10.3390/molecules21010080] [PMID: 26771593]
[40]
Kim, J.; Woo, S.Y.; Im, C.Y.; Yoo, E.Y.; Lee, S.; Kim, H.J.; Hwang, H.J.; Cho, J.H.; Lee, W.S.; Yoon, H.; Kim, S.; Kwon, O.B.; Hwang, H.; Kim, K.H.; Jeon, J.H.; Singh, T.D.; Kim, S.W.; Hwang, S.Y.; Choi, H.S.; Lee, I.K.; Kim, S.H.; Jeon, Y.H.; Chin, J.; Cho, J. Insights of a lead optimization study and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma (ERRgamma) inverse agonists. J. Med. Chem., 2016, 59(22), 10209-10227.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01204] [PMID: 27805390]
[41]
Kim, J.; Hwang, H.; Yoon, H.; Lee, J.E.; Oh, J.M.; An, H.; Ji, H.D.; Lee, S.; Cha, E.; Ma, M.J.; Kim, D.S.; Lee, S.J.; Kadayat, T.M.; Song, J.; Lee, S.W.; Jeon, J.H.; Park, K.G.; Lee, I.K.; Jeon, Y.H.; Chin, J.; Cho, S.J. An orally available inverse agonist of estrogen-related receptor gamma showed expanded efficacy for the radioiodine therapy of poorly differentiated thyroid cancer. Eur. J. Med. Chem., 2020, 205, 112501.
[http://dx.doi.org/10.1016/j.ejmech.2020.112501] [PMID: 32758860]
[42]
Yang, S.H.; Khadka, D.B.; Han, J.; Na, S.Y.; Shin, M.; Kim, D.K.; Oh, B.C.; Kim, E.Y.; Choi, H.S.; Cho, W.J. Structure-based discovery of pyrazolamides as novel ERRγ inverse agonists. Eur. J. Med. Chem., 2023, 250, 115174.
[http://dx.doi.org/10.1016/j.ejmech.2023.115174] [PMID: 36805944]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy