Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

TiO2 Nanoparticles in Cancer Therapy as Nanocarriers in Paclitaxel’s Delivery and Nanosensitizers in Phototherapies and/or Sonodynamic Therapy

Author(s): Fernanda M.P. Tonelli*, Flávia C.P. Tonelli and Helon G. Cordeiro

Volume 25, Issue 2, 2024

Published on: 08 June, 2023

Page: [133 - 143] Pages: 11

DOI: 10.2174/1389201024666230518124829

Price: $65

conference banner
Abstract

Nanomaterials have been offering improvements in different areas due to their unique characteristics, but cytotoxicity associated with their use is still a topic that concerns researchers. Causing cell death, at first glance, may seem to be a problem and the studies regarding signaling pathways involved in this toxicity are still in their infancy. However, there are scenarios in which this feature is desirable, such as in cancer treatment. Anti-cancer therapies aim to eliminate the cells of malignant tumors as selectively as possible. From this perspective, titanium dioxide (TiO2) nanoparticles (NPs) deserve to be highlighted as important and efficient tools. Besides being able to induce cell death, these NPs can also be used to deliver anti-cancer therapeutics. These drugs can be obtained from natural sources, such as paclitaxel (an antitumoral molecule derived from a vegetal source). The present review aims to explore the recent knowledge of TiO2 NPs as nanocarriers (promoting the nanodelivery of paclitaxel) and as nanosensitizers to be used in phototherapies and/or sonodynamic therapy aiming to treat cancer. Signaling pathways triggered by this nanomaterial inside cells leading to apoptosis (a desirable fate when targeting tumor cells) and challenges related to the clinical translation of these NPs will also receive attention.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[3]
Bukhari, S.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics, 2022, 14(4), 866.
[http://dx.doi.org/10.3390/pharmaceutics14040866] [PMID: 35456698]
[4]
Li, R.; Chen, Z.; Dai, Z.; Yu, Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol. Med., 2021, 18(2), 388-400.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0328] [PMID: 33755377]
[5]
Qu, Y.; Kang, M.; Cheng, X.; Zhao, J. Chitosan-coated titanium dioxide-embedded paclitaxel nanoparticles enhance anti-tumor efficacy against osteosarcoma. Front. Oncol., 2020, 10, 577280.
[http://dx.doi.org/10.3389/fonc.2020.577280] [PMID: 33014883]
[6]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[7]
Hasanzadeh Kafshgari, M.; Kah, D.; Mazare, A.; Nguyen, N.T.; Distaso, M.; Peukert, W.; Goldmann, W.H.; Schmuki, P.; Fabry, B. Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci. Rep., 2019, 9(1), 13439.
[http://dx.doi.org/10.1038/s41598-019-49513-2] [PMID: 31530838]
[8]
Çeşmeli, S.; Biray-Avci, C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target., 2018, 2018, 1-13.
[PMID: 30252540]
[9]
Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1145-1162.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[10]
Sungur, Ş. Titanium dioxide nanoparticles. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V.; Torres-Martínez, L.M.; Kharisov, B.I., Eds.; Springer: Amsterdam, 2020; pp. 1-18.
[http://dx.doi.org/10.1007/978-3-030-11155-7_9-1]
[11]
Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A review on green synthesis of TiO2 NPs: Photocatalysis and antimicrobial applications. Polymers, 2022, 14(7), 1444.
[http://dx.doi.org/10.3390/polym14071444] [PMID: 35406317]
[12]
Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar, D.A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), 855-872.
[http://dx.doi.org/10.1080/21691401.2018.1517769] [PMID: 30328732]
[13]
Salama, B.; El-Sherbini, E.S.; El-Sayed, G.; El-Adl, M.; Kanehira, K.; Taniguchi, A. The effects of TiO2 nanoparticles on cisplatin cytotoxicity in cancer cell lines. Int. J. Mol. Sci., 2020, 21(2), 605.
[http://dx.doi.org/10.3390/ijms21020605] [PMID: 31963452]
[14]
Gojznikar, J. Zdravković B.; Vidak, M.; Leskošek, B.; Ferk, P. TiO2 nanoparticles and their effects on eukaryotic cells: A double-edged sword. Int. J. Mol. Sci., 2022, 23(20), 12353.
[http://dx.doi.org/10.3390/ijms232012353] [PMID: 36293217]
[15]
Shabbir, S.; Kulyar, M.F.A.; Bhutta, Z.A.; Boruah, P.; Asif, M. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. Bionanoscience, 2021, 11(2), 621-632.
[http://dx.doi.org/10.1007/s12668-021-00836-3] [PMID: 33520589]
[16]
Brassolatti, P.; de Almeida, R.J.M. Franco de, G.K.; de Castro, C.A.; Flores, L.G.L.; Dias de, L.F.B.; Pedrino, M.; Assis, M.; Nani, L.M.; Cancino-Bernardi, J.; Speglich, C.; Frade, M.A.; de Freitas, A.F. Functionalized titanium nanoparticles induce oxidative stress and cell death in human skin cells. Int. J. Nanomedicine, 2022, 17, 1495-1509.
[http://dx.doi.org/10.2147/IJN.S325767] [PMID: 35388270]
[17]
Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine, 2020, 15, 3447-3470.
[http://dx.doi.org/10.2147/IJN.S249441] [PMID: 32523343]
[18]
Sun, Q.; Ishii, T.; Kanehira, K.; Sato, T.; Taniguchi, A. Uniform TiO 2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner. Biomater. Sci., 2017, 5(5), 1014-1021.
[http://dx.doi.org/10.1039/C6BM00946H] [PMID: 28338134]
[19]
Rahmani Kukia, N.; Rasmi, Y.; Abbasi, A.; Koshoridze, N.; Shirpoor, A.; Burjanadze, G.; Saboory, E. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac. J. Cancer Prev., 2018, 19(10), 2821-2829.
[PMID: 30361551]
[20]
Zhang, L.; Xie, X.; Zhou, Y.; Yu, D.; Deng, Y.; Ouyang, J.; Yang, B.; Luo, D.; Zhang, D.; Kuang, H. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int. J. Nanomedicine, 2018, 13, 777-789.
[http://dx.doi.org/10.2147/IJN.S152400] [PMID: 29440900]
[21]
Waseem, M.; Kaushik, P.; Dutta, S.; Chakraborty, R.; Hassan, M.I.; Parvez, S. Modulatory role of quercetin in mitochondrial dysfunction in titanium dioxide nanoparticle-induced hepatotoxicity. ACS Omega, 2022, 7(4), 3192-3202.
[http://dx.doi.org/10.1021/acsomega.1c04740] [PMID: 35128232]
[22]
He, Q.; Zhou, X.; Liu, Y.; Gou, W.; Cui, J.; Li, Z.; Wu, Y.; Zuo, D. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. Environ. Toxicol. Pharmacol., 2018, 63, 6-15.
[http://dx.doi.org/10.1016/j.etap.2018.08.003] [PMID: 30114659]
[23]
Fattori, A.C.M.; Brassolatti, P.; Feitosa, K.A.; Matheus, P.; Correia, R.O.; Albuquerque, Y.R.; Rodolpho, J.M.A.; Luna, G.L.F.; Cancino-Bernardi, J.; Zucolotto, V.; Speglich, C.; Rossi, K.N.Z.P.; Freitas Anibal, F. Titanium dioxide nanoparticle (TiO2 NP) induces toxic effects on la-9 mouse fibroblast cell line. Cell. Physiol. Biochem., 2023, 57(2), 63-81.
[http://dx.doi.org/10.33594/000000616] [PMID: 36945889]
[24]
Hong, J.; Hong, F.; Ze, Y.; Zhang, Y.Q. The nano-TiO2 exposure can induce hepatic inflammation involving in a JAK–STAT signalling pathway. J. Nanopart. Res., 2016, 18(6), 162.
[http://dx.doi.org/10.1007/s11051-016-3472-4]
[25]
Zhao, Y.; Tang, Y.; Liu, S.; Jia, T.; Zhou, D.; Xu, H. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage. Foods, 2021, 10(5), 986.
[http://dx.doi.org/10.3390/foods10050986] [PMID: 33946424]
[26]
Grissa, I.; ElGhoul, J.; Mrimi, R.; Mir, L.E.; Cheikh, H.B.; Horcajada, P. In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Res. Bull., 2020, 155, 119-128.
[http://dx.doi.org/10.1016/j.brainresbull.2019.10.005] [PMID: 31715315]
[27]
Ze, Y.; Sheng, L.; Zhao, X.; Hong, J.; Ze, X.; Yu, X.; Pan, X.; Lin, A.; Zhao, Y.; Zhang, C.; Zhou, Q.; Wang, L.; Hong, F. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One, 2014, 9(3), e92230.
[http://dx.doi.org/10.1371/journal.pone.0092230] [PMID: 24658543]
[28]
Krüger, K.; Schrader, K.; Klempt, M. Cellular response to titanium dioxide nanoparticles in intestinal epithelial caco-2 cells is dependent on endocytosis-associated structures and mediated by EGFR. Nanomaterials, 2017, 7(4), 79.
[http://dx.doi.org/10.3390/nano7040079] [PMID: 28387727]
[29]
Hong, F.; Wang, L.; Yu, X.; Zhou, Y.; Hong, J.; Sheng, L. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. Nanoscale Res. Lett., 2015, 10(1), 326.
[http://dx.doi.org/10.1186/s11671-015-1029-6] [PMID: 26269254]
[30]
Ye, L.; Hong, F.; Ze, X.; Li, L.; Zhou, Y.; Ze, Y. Toxic effects of TiO 2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated Ca2+/PKC/p38 MAPK/NF-κB cascade. J. Biomed. Mater. Res. A, 2017, 105(5), 1374-1382.
[http://dx.doi.org/10.1002/jbm.a.36021] [PMID: 28188686]
[31]
Bischoff, N.S.; de Kok, T.M.; Sijm, D.T.H.M.; van Breda, S.G.; Briedé, J.J.; Castenmiller, J.J.M.; Opperhuizen, A.; Chirino, Y.I.; Dirven, H.; Gott, D.; Houdeau, E.; Oomen, A.G.; Poulsen, M.; Rogler, G.; van Loveren, H. Possible adverse effects of food additive E171 (Titanium Dioxide) related to particle specific human toxicity, including the immune system. Int. J. Mol. Sci., 2020, 22(1), 207.
[http://dx.doi.org/10.3390/ijms22010207] [PMID: 33379217]
[32]
Behnam, M.A.; Emami, F.; Sobhani, Z.; Dehghanian, A.R. The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran. J. Basic Med. Sci., 2018, 21(11), 1133-1139.
[PMID: 30483386]
[33]
Zhang, D.Y.; Liu, H.; Younis, M.R.; Lei, S.; Chen, Y.; Huang, P.; Lin, J. In-situ TiO2-x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics. J. Nanobiotechnology, 2022, 20(1), 53.
[http://dx.doi.org/10.1186/s12951-022-01253-8] [PMID: 35090484]
[34]
Sargazi, S.; Er, S.; Sacide Gelen, S.; Rahdar, A.; Bilal, M.; Arshad, R.; Ajalli, N.; Farhan Ali Khan, M.; Pandey, S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J. Drug Deliv. Sci. Technol., 2022, 75, 103605.
[http://dx.doi.org/10.1016/j.jddst.2022.103605]
[35]
Liang, X.; Xie, Y.; Wu, J.; Wang, J. Petković M.; Stepić M.; Zhao, J.; Ma, J.; Mi, L. Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. J. Photochem. Photobiol. B, 2021, 215, 112122.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112122] [PMID: 33433386]
[36]
Al-Nemrawi, N.; Hameedat, F.; Al-Husein, B.; Nimrawi, S. Photolytic controlled release formulation of methotrexate loaded in chitosan/TiO2 nanoparticles for breast cancer. Pharmaceuticals, 2022, 15(2), 149.
[http://dx.doi.org/10.3390/ph15020149] [PMID: 35215259]
[37]
Garcia Diosa, J.A.; Gonzalez Orive, A.; Weinberger, C.; Schwiderek, S.; Knust, S.; Tiemann, M.; Grundmeier, G.; Keller, A.; Camargo Amado, R.J. TIO 2 nanoparticle coatings on glass surfaces for the selective trapping of leukemia cells from peripheral blood. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(12), 2142-2153.
[http://dx.doi.org/10.1002/jbm.b.34862] [PMID: 33982864]
[38]
Ma, M.; Cheng, L.; Wang, L.; Liang, X.; Yang, L.; Zhang, A. Enhanced photodynamic therapy of TiO2/N-succinyl-chitosan composite for killing cancer cells. Braz. J. Pharm. Sci., 2022, 58, e181116.
[http://dx.doi.org/10.1590/s2175-97902022e181116]
[39]
Wan, G.Y.; Wan, G-Y.; Liu, Y.; Chen, B-W.; Liu, Y-Y.; Wang, Y-S.; Zhang, N.; Liu, Y.; Chen, B-W.; Liu, Y-Y.; Wang, Y-S.; Zhang, N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med., 2016, 13(3), 325-338.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0068] [PMID: 27807500]
[40]
Lin, X.; Huang, R.; Huang, Y.; Wang, K.; Li, H.; Bao, Y.; Wu, C.; Zhang, Y.; Tian, X.; Wang, X. Nanosonosensitizer-augmented sonodynamic therapy combined with checkpoint blockade for cancer immunotherapy. Int. J. Nanomedicine, 2021, 16, 1889-1899.
[http://dx.doi.org/10.2147/IJN.S290796] [PMID: 33707944]
[41]
Lee, G.P.; Willis, A.; Pernal, S.; Phakatkar, A.; Shokuhfar, T.; Blot, V.; Engelhard, H.H. Targeted sonodynamic destruction of glioblastoma cells using antibody–titanium dioxide nanoparticle conjugates. Nanomedicine, 2021, 16(7), 523-534.
[http://dx.doi.org/10.2217/nnm-2020-0452] [PMID: 33660528]
[42]
Kim, S.; Im, S.; Park, E.Y.; Lee, J.; Kim, C.; Kim, T.; Kim, W.J. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine, 2020, 24, 102110.
[http://dx.doi.org/10.1016/j.nano.2019.102110] [PMID: 31666202]
[43]
Tan, X.; Huang, J.; Wang, Y.; He, S.; Jia, L.; Zhu, Y.; Pu, K.; Zhang, Y.; Yang, X. Transformable nanosensitizer with tumor microenvironment‐activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew. Chem. Int. Ed., 2021, 60(25), 14051-14059.
[http://dx.doi.org/10.1002/anie.202102703] [PMID: 33797161]
[44]
Aksel, M.; Kesmez, Ö. Yavaş A.; Bilgin, M.D. Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer. J. Photochem. Photobiol. B, 2021, 225, 112333.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112333] [PMID: 34688979]
[45]
Akram, M.W.; Raziq, F.; Fakhar-e-Alam, M.; Aziz, M.H.; Alimgeer, K.S.; Atif, M.; Amir, M.; Hanif, A.; Aslam Farooq, W. Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications. J. Photochem. Photobiol. Chem., 2019, 384, 112040.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112040]
[46]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[47]
Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13.
[http://dx.doi.org/10.1007/s13659-020-00293-7] [PMID: 33389713]
[48]
Varsha, K.; Sharma, A.; Kaur, A.; Madan, J.; Pandey, R.S.; Jain, U.K. Natural plant-derived anticancer drugs nanotherapeutics: A review on preclinical to clinical success. In: Nanostructures for Cancer Therapy Micro and Nano Technologies; 1st ed; Ficai, A.; Grumezescu, A.M., Eds.; Elsevier: New York, 2017; p. 775-809.
[http://dx.doi.org/10.1016/B978-0-323-46144-3.00028-3]
[49]
Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: Historic achievements in natural products research. J. Nat. Prod., 2004, 67(2), 129-135.
[http://dx.doi.org/10.1021/np030498t] [PMID: 14987046]
[50]
Leung, J.C.; Cassimeris, L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: Roles of depolymerizing kinesins and severing proteins. Cancer Biol. Ther., 2019, 20(10), 1337-1347.
[http://dx.doi.org/10.1080/15384047.2019.1638678] [PMID: 31345098]
[51]
Zhang, H.; Qiu, L. Bruton’s Tyrosine Kinase (BTK) inhibitors as sensitizing agents for cancer chemotherapy. In: Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy: Cancer Sensitizing Agents for Chemotherapy; 1st ed; Chen, Z.S.; Yang, D.H., Eds.; Academic Press: New York, 2019; p. 109-124.
[http://dx.doi.org/10.1016/B978-0-12-816435-8.00008-0]
[52]
Sideris, S.; Aoun, F.; Zanaty, M.; Martinez, N.C.; Latifyan, S.; Awada, A.; Gil, T. Efficacy of weekly paclitaxel treatment as a single agent chemotherapy following first-line cisplatin treatment in urothelial bladder cancer. Mol. Clin. Oncol., 2016, 4(6), 1063-1067.
[http://dx.doi.org/10.3892/mco.2016.821] [PMID: 27284445]
[53]
Zhang, Y.; Tang, Y.; Tang, X.; Wang, Y.; Zhang, Z.; Yang, H. Paclitaxel induces the apoptosis of prostate cancer cells via ros-mediated HIF-1α Expression. Molecules, 2022, 27(21), 7183.
[http://dx.doi.org/10.3390/molecules27217183] [PMID: 36364008]
[54]
Gupta, A.; Gomes, F.; Lorigan, P. The role for chemotherapy in the modern management of melanoma. Melanoma Manag., 2017, 4(2), 125-136.
[http://dx.doi.org/10.2217/mmt-2017-0003] [PMID: 30190915]
[55]
Khalifa, A.M.; Elsheikh, M.A.; Khalifa, A.M.; Elnaggar, Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release, 2019, 311-312, 125-137.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.034] [PMID: 31476342]
[56]
Patel, V.K.; Sarim, K.M.; Patel, A.K.; Rout, P.K.; Kalra, A. Synthetic microbial ecology and nanotechnology for the production of Taxol and its precursors: A step towards sustainable production of cancer therapeutics. Design of Nanostructures for Theranostics Applications, 1st ed; Grumezescu, A.M., Ed.; William Andrew: New York, 2018, pp. 563-587.
[57]
De Luca, R.; Profita, G.; Cicero, G. Nab-paclitaxel in pretreated metastatic breast cancer: Evaluation of activity, safety, and quality of life. OncoTargets Ther., 2019, 12, 1621-1627.
[http://dx.doi.org/10.2147/OTT.S191519] [PMID: 30881017]
[58]
Raza, F.; Zafar, H.; Khan, M.W.; Ullah, A.; Khan, A.U.; Baseer, A.; Fareed, R.; Sohail, M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Materials Advances, 2022, 3(5), 2268-2290.
[http://dx.doi.org/10.1039/D1MA00961C]
[59]
Devanand Venkatasubbu, G.; Ramasamy, S.; Ramakrishnan, V.; Kumar, J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol., 2013, 24(6), 947-954.
[http://dx.doi.org/10.1016/j.apt.2013.01.008]
[60]
Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater., 2015, 13, 354-363.
[http://dx.doi.org/10.1016/j.actbio.2014.11.010] [PMID: 25462846]
[61]
Wu, Z.; Setyawati, M.I.; Lim, H.K.; Ng, K.W.; Tay, C.Y. Nanoparticle-induced chemoresistance: The emerging modulatory effects of engineered nanomaterials on human intestinal cancer cell redox metabolic adaptation. Nanoscale, 2022, 14(39), 14491-14507.
[http://dx.doi.org/10.1039/D2NR03893E] [PMID: 36106385]
[62]
Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci., 2021, 8(17), 2004381.
[http://dx.doi.org/10.1002/advs.202004381] [PMID: 34196474]
[63]
Lee, S.; Kim, J.; Kim, J.; Hoshiar, A.K.; Park, J.; Lee, S.; Kim, J.; Pané, S.; Nelson, B.J.; Choi, H. A needle‐type microrobot for targeted drug delivery by affixing to a microtissue. Adv. Healthc. Mater., 2020, 9(7), 1901697.
[http://dx.doi.org/10.1002/adhm.201901697] [PMID: 32129011]
[64]
Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B, 2022, 12(7), 3049-3062.
[http://dx.doi.org/10.1016/j.apsb.2022.02.002] [PMID: 35865092]
[65]
Zhang, X.; Zhang, Y.; Ye, X.; Guo, X.; Zhang, T.; He, J. Overview of phase IV clinical trials for postmarket drug safety surveillance: A status report from the ClinicalTrials.gov registry. BMJ Open, 2016, 6(11), e010643.
[http://dx.doi.org/10.1136/bmjopen-2015-010643] [PMID: 27881517]
[66]
Clinicaltrials.gov. 9 Studies found for: TiO2; U.S. National Library of Medicine: Bethesda (MD), 2023.
[67]
Application of palliative treatment in children with brain stem glioma and recurrent high-grade tumors in the central nervous system with the nanomaterial NPt-Ca; U.S. National Library of Medicine: Bethesda, MD, 2022.
[68]
Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; Corchero, J.L.; Céspedes, M.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules, 2022, 12(6), 784.
[http://dx.doi.org/10.3390/biom12060784] [PMID: 35740909]
[69]
FDA. Nanotechnology Guidance Documents; U.S. Food and Drug Administration: Silver Spring (MD), 2018.
[70]
Paradise, J. Regulating nanomedicine at the food and drug administration. AMA J. Ethics, 2019, 21(4), E347-E355.
[http://dx.doi.org/10.1001/amajethics.2019.347] [PMID: 31012422]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy