Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Weapons and Strategies against COVID-19: A Perspective

Author(s): Raghav Mishra*, Kajal Chaudhary and Isha Mishra

Volume 25, Issue 2, 2024

Published on: 08 June, 2023

Page: [144 - 158] Pages: 15

DOI: 10.2174/1389201024666230525161432

Price: $65

Abstract

Currently, there are no approved treatments for the fatal infectious coronavirus disease. The process of identifying new applications for approved pharmaceuticals is called drug repurposing. It is a very successful strategy for drug development as it takes less time and cost to uncover a therapeutic agent than the de novo procedure. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the seventh coronavirus that has been identified as a causative agent in humans. SARS-CoV-2 has been recorded in 213 countries, with over 31 million confirmed cases and an estimated death rate of 3%. Medication repositioning may indeed be regarded as a unique therapeutic option for COVID-19 in the present situation. There are various drugs and techniques, which are being used to treat the symptoms of COVID-19. These agents are directed against the viral replication cycle, viral entrance, and viral translocation to the nucleus. Additionally, some can boost the innate antiviral immune response. Drug repurposing is a sensible method and could be a vital approach to treat COVID-19. Combining some of the drugs or supplements with an immunomodulatory diet, psychological assistance, and adherence to standards can ultimately act against COVID-19. A better knowledge of the virus itself and its enzymes will enable the development of more precise and efficient direct-acting antivirals. The primary aim of this review is to present the various aspects of this disease, including various strategies against COVID-19.

Graphical Abstract

[1]
Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol. Biosyst., 2015, 11(7), 2096-2102.
[http://dx.doi.org/10.1039/C5MB00306G] [PMID: 25998487]
[2]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[3]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[4]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[5]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[6]
Paolini, G.V.; Shapland, R.H.B.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006, 24(7), 805-815.
[http://dx.doi.org/10.1038/nbt1228] [PMID: 16841068]
[7]
Koch, U.; Hamacher, M.; Nussbaumer, P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(1), 156-161.
[http://dx.doi.org/10.1016/j.bbapap.2013.05.010] [PMID: 23707564]
[8]
Piro, R.M. Network medicine: Linking disorders. Hum. Genet., 2012, 131(12), 1811-1820.
[http://dx.doi.org/10.1007/s00439-012-1206-y] [PMID: 22825316]
[9]
Huang, F.; Zhang, C.; Liu, Q.; Zhao, Y.; Zhang, Y.; Qin, Y.; Li, X.; Li, C.; Zhou, C.; Jin, N.; Jiang, C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog., 2020, 16(3), e1008341.
[http://dx.doi.org/10.1371/journal.ppat.1008341] [PMID: 32176725]
[10]
Scherman, D.; Fetro, C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie, 2020, 75(2), 161-167.
[http://dx.doi.org/10.1016/j.therap.2020.02.007] [PMID: 32164975]
[11]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[12]
Debnath, N.; Al-Mawsawi, L.Q.; Neamati, N. Are we living in the end of the blockbuster drug era? Drug News Perspect., 2010, 23(10), 670-684.
[http://dx.doi.org/10.1358/dnp.2010.23.10.1506088] [PMID: 21180653]
[13]
Grabowski, H.G.; Vernon, J. The distribution of sales revenues from pharmaceutical innovation. PharmacoEconomics, 2000, 18(S1), 21-32.
[http://dx.doi.org/10.2165/00019053-200018001-00005] [PMID: 11151306]
[14]
Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(S11), S223-S227.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[15]
Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019, 11(1), 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[16]
Raj, K. Rohit; Ghosh, A.; Singh, S. Coronavirus as silent killer: Recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease, 2020, 31(2), 137-145.
[http://dx.doi.org/10.1007/s13337-020-00580-4] [PMID: 32313824]
[17]
Pilch, B.; Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol., 2006, 7(5), R40.
[http://dx.doi.org/10.1186/gb-2006-7-5-r40] [PMID: 16709260]
[18]
Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol., 2006, 7(9), R80.
[http://dx.doi.org/10.1186/gb-2006-7-9-r80] [PMID: 16948836]
[19]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[20]
Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human protein reference database--2009 update. Nucleic Acids Res, 2009, 37(Database), D767-D772.
[http://dx.doi.org/10.1093/nar/gkn892] [PMID: 18988627]
[21]
Rao, R.; Husain, A.; Bharti, A.C.; Kashyap, M.K. Discovery of a novel connecting link between renin–angiotensin system and cancer in barrett’s esophagus by proteomic screening. Proteomics Clin. Appl., 2019, 13(4), 1900006.
[http://dx.doi.org/10.1002/prca.201900006] [PMID: 30891939]
[22]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[23]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[24]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[25]
Gupta, N.; Zhao, Y.Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res., 2019, 181, 77-83.
[http://dx.doi.org/10.1016/j.thromres.2019.07.013] [PMID: 31376606]
[26]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[27]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[28]
Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047.
[http://dx.doi.org/10.1002/jmv.24736] [PMID: 27864902]
[29]
Báez-Santos, Y.M.; Mielech, A.M.; Deng, X.; Baker, S.; Mesecar, A.D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol., 2014, 88(21), 12511-12527.
[http://dx.doi.org/10.1128/JVI.01294-14] [PMID: 25142582]
[30]
Hemida, M.G.; Alnaeem, A. Some one health based control strategies for the middle east respiratory syndrome coronavirus. One Health, 2019, 8(100102), 100102.
[http://dx.doi.org/10.1016/j.onehlt.2019.100102] [PMID: 31485476]
[31]
World Health Organization. Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (‏MERS-CoV)‏ infection is suspected: interim guidance; World Health Organization, 2019.
[32]
Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051.
[http://dx.doi.org/10.1002/jmv.24678] [PMID: 27604059]
[33]
Elfiky, A.A. Zika virus: Novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728.
[http://dx.doi.org/10.2217/fvl-2017-0081]
[34]
Elfiky, A.A. Novel guanosine derivatives as Anti-HCV NS5b polymerase: A QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137.
[http://dx.doi.org/10.2174/1573406414666181015152511] [PMID: 30324891]
[35]
Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: A QSAR study. Med. Chem. Res., 2016, 25(5), 1005-1008.
[http://dx.doi.org/10.1007/s00044-016-1533-y] [PMID: 32214769]
[36]
Elfiky, A.A.; Elshemey, W.M. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J. Med. Virol., 2018, 90(1), 13-18.
[http://dx.doi.org/10.1002/jmv.24934] [PMID: 28922464]
[37]
Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A.; Desoky, O.S. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J., 2013, 32(1), 75-80.
[http://dx.doi.org/10.1007/s10930-013-9462-9] [PMID: 23322006]
[38]
Elfiky, A.A.; Ismail, A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci., 2019, 238(116958), 116958.
[http://dx.doi.org/10.1016/j.lfs.2019.116958] [PMID: 31628915]
[39]
Elfiky, A.A.; Ismail, A.M. Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virol., 2017, 12(7), 339-347.
[http://dx.doi.org/10.2217/fvl-2017-0027]
[40]
Ganesan, A.; Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin. Drug Discov., 2017, 12(4), 407-425.
[http://dx.doi.org/10.1080/17460441.2017.1291628] [PMID: 28164720]
[41]
Doublié, S.; Ellenberger, T. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol., 1998, 8(6), 704-712.
[http://dx.doi.org/10.1016/S0959-440X(98)80089-4] [PMID: 9914251]
[42]
Elfiky, A.A.; Ismail, A.M. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ. Res., 2018, 29(5), 409-418.
[http://dx.doi.org/10.1080/1062936X.2018.1454981] [PMID: 29652194]
[43]
Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, 287(7428), 76-77.
[http://dx.doi.org/10.1016/S0140-6736(66)92364-6] [PMID: 4158999]
[44]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[45]
Guan, W-J.; Ni, Z-Y.; Hu, Y.; Liang, W-H.; Ou, C-Q.; He, J-X.; Liu, L.; Shan, H.; Lei, C-L.; Hui, D.S.C.; Du, B.; Li, L-J.; Zeng, G.; Yuen, K-Y.; Chen, R-C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N-S. Clinical characteristics of 2019 novel coronavirus infection in China. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.06.20020974]
[46]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[47]
Bauch, C.T.; Lloyd-Smith, J.O.; Coffee, M.P.; Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology, 2005, 16(6), 791-801.
[http://dx.doi.org/10.1097/01.ede.0000181633.80269.4c] [PMID: 16222170]
[48]
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[49]
Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med, 2020, 12(546), eabc1931.
[http://dx.doi.org/10.1126/scitranslmed.abc1931] [PMID: 32493791]
[50]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[51]
Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) From publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[52]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[53]
Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[54]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[55]
Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J., 2020, 41(19), 1858.
[http://dx.doi.org/10.1093/eurheartj/ehaa254] [PMID: 32227120]
[56]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[57]
Roumen, R.M.; van Meurs, P.A.; Kuypers, H.H.; Kraak, W.A.; Sauerwein, R.W. Serum interleukin-6 and C reactive protein responses in patients after laparoscopic or conventional cholecystectomy. Eur. J. Surg., 1992, 158(10), 541-544.
[PMID: 1360826]
[58]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[59]
Vyakaranam, A.R.; Crona, J.; Norlén, O.; Hellman, P.; Sundin, A. 11C-hydroxy-ephedrine-PET/CT in the diagnosis of pheochromocytoma and paraganglioma. Cancers, 2019, 11(6), 847.
[http://dx.doi.org/10.3390/cancers11060847] [PMID: 31248124]
[60]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721.
[http://dx.doi.org/10.1148/radiol.2020200370] [PMID: 32053470]
[61]
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296(2), E32-E40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[62]
Li, X.; Zeng, X.; Liu, B.; Yu, Y. COVID-19 infection presenting with CT halo sign. Radiol. Cardiothorac. Imaging, 2020, 2(1), e200026.
[http://dx.doi.org/10.1148/ryct.2020200026] [PMID: 33778543]
[63]
Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin. Microbiol. Infect., 2020, 26(9), 1178-1182.
[http://dx.doi.org/10.1016/j.cmi.2020.06.019] [PMID: 32593741]
[64]
Chan, K.H.; Chan, J.F.W.; Tse, H.; Chen, H.; Lau, C.C.Y.; Cai, J.P.; Tsang, A.K.L.; Xiao, X.; To, K.K.W.; Lau, S.K.P.; Woo, P.C.Y.; Zheng, B.J.; Wang, M.; Yuen, K.Y. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, 67(2), 130-140.
[http://dx.doi.org/10.1016/j.jinf.2013.03.015] [PMID: 23583636]
[65]
Hoey, J. Updated SARS case definition using laboratory criteria. CMAJ, 2003, 168(12), 1566-1567.
[PMID: 12796338]
[66]
Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86(12), 1475-1479.
[http://dx.doi.org/10.1002/jctb.2721] [PMID: 32336860]
[67]
Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; Valizadeh, S.; Ahmadi, M. Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol., 2020, 89(Pt B), 107088.
[http://dx.doi.org/10.1016/j.intimp.2020.107088]
[68]
Hageman, J.R. The Coronavirus Disease 2019 (COVID-19). Pediatr. Ann., 2020, 49(3), e99-e100.
[http://dx.doi.org/10.3928/19382359-20200219-01] [PMID: 32155273]
[69]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[70]
Stebbing, J.; Krishnan, V.; Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence‐predicted testing in COVID ‐19 patients. EMBO Mol. Med., 2020, 12(8), e12697.
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[71]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[72]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[73]
Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.F.; Wei, Y.; Jin, N.; Jiang, C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[74]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[75]
Zhengli, S. Remdesivir and Chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30, 269-271.
[76]
Al-Bari, M.A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[77]
Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[78]
Marmor, M.F.; Kellner, U.; Lai, T.Y.Y.; Melles, R.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.058] [PMID: 26992838]
[79]
Colson, P.; Rolain, J.M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3), 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[80]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[81]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[82]
Kalra, R.S.; Tomar, D.; Meena, A.S.; Kandimalla, R. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens, 2020, 9(7), 546.
[http://dx.doi.org/10.3390/pathogens9070546] [PMID: 32645974]
[83]
Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256(117883), 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[84]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[85]
Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect., 2017, 5(1), e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[86]
McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1), 11-18.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[87]
Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye, 2017, 31(6), 828-845.
[http://dx.doi.org/10.1038/eye.2016.298] [PMID: 28282061]
[88]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[89]
Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[90]
Vastag, B. Old drugs for a new bug: Influenza, HIV drugs enlisted to fight SARS. JAMA, 2003, 290(13), 1695-1696.
[http://dx.doi.org/10.1001/jama.290.13.1695] [PMID: 14519691]
[91]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[92]
Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L.; Tse, M.W.; Que, T.L.; Peiris, J.S.M.; Sung, J.; Wong, V.C.W.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406.
[PMID: 14660806]
[93]
Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J., 2020, 19, 400-409.
[http://dx.doi.org/10.17179/excli2020-1189] [PMID: 32210741]
[94]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[95]
Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; Qiu, Y.; Wei, G.; Fang, Q.; Zhou, J.; Sheng, J.; Liang, T.; Li, L. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 147-157.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.02.02] [PMID: 32391658]
[96]
Han, W.; Quan, B.; Guo, Y.; Zhang, J.; Lu, Y.; Feng, G.; Wu, Q.; Fang, F.; Cheng, L.; Jiao, N.; Li, X.; Chen, Q. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J. Med. Virol., 2020, 92(5), 461-463.
[http://dx.doi.org/10.1002/jmv.25711] [PMID: 32073161]
[97]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[98]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[99]
Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[100]
Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nat. Med., 2013, 19(10), 1313-1317.
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[101]
Pasquau, L.J.; Hidalgo, T.C. Chemical characteristics, mechanism of action and antiviral activity of darunavir Enferm. Infecc. Microbiol. Clin., 2008, 26(S10), 3-9.
[http://dx.doi.org/10.1016/S0213-005X(08)76547-9] [PMID: 19195453]
[102]
Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J. Biomol. Struct. Dyn., 2021, 39(7), 2607-2616.
[http://dx.doi.org/10.1080/07391102.2020.1751298] [PMID: 32238094]
[103]
Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020, 15(8), 1577-1578.
[http://dx.doi.org/10.1007/s11739-020-02345-9] [PMID: 32347443]
[104]
Chen, Y.W.; Yiu, C.P.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[105]
Xie, S.; Chen, X.; Qiao, S.; Li, R.; Sun, Y.; Xia, S.; Wang, L.J.; Luo, X.; Deng, R.; Zhou, E.M.; Zhang, G.P. Identification of the RNA pseudoknot within the 3′ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J. Virol., 2018, 92(12), e00097-e18.
[http://dx.doi.org/10.1128/JVI.00097-18] [PMID: 29618647]
[106]
Baris, H.E.; Baris, S.; Karakoc-Aydiner, E.; Gokce, I.; Yildiz, N.; Cicekkoku, D.; Ogulur, I.; Ozen, A.; Alpay, H.; Barlan, I. The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur. J. Pediatr., 2016, 175(5), 685-693.
[http://dx.doi.org/10.1007/s00431-016-2694-x] [PMID: 26833050]
[107]
Thomas, H.; Foster, G.; Platis, D. Mechanisms of action of interferon and nucleoside analogues. J. Hepatol., 2003, 39(S1), 93-98.
[http://dx.doi.org/10.1016/S0168-8278(03)00207-1] [PMID: 14708685]
[108]
Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-B1b (MIRACLE Trial): Study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[109]
Chan, J.F.W.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[110]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 32373347]
[111]
Leneva, I.A.; Fediakina, I.T.; Gus’kova, T.A.; Glushkov, R.G. [Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A]. Ter. Arkh., 2005, 77(8), 84-88.
[PMID: 16206613]
[112]
Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[113]
Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res., 2014, 107, 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[114]
Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures Vopr. Virusol., 2008, 53(4), 9-13.
[PMID: 18756809]
[115]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[116]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[117]
Fedson, D.S.; Opal, S.M.; Rordam, O.M. Hiding in plain sight: An approach to treating patients with severe COVID-19 infection. MBio, 2020, 11(2), e00398-e20.
[http://dx.doi.org/10.1128/mBio.00398-20] [PMID: 32198163]
[118]
Wösten-van Asperen, R.M.; Bos, A.P.; Bem, R.A.; Dierdorp, B.S.; Dekker, T.; van Goor, H.; Kamilic, J.; van der Loos, C.M.; van den Berg, E.; Bruijn, M.; van Woensel, J.B.; Lutter, R. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2013, 14(9), e438-e441.
[http://dx.doi.org/10.1097/PCC.0b013e3182a55735] [PMID: 24226567]
[119]
Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[120]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[121]
Phadke, M.; Saunik, S. COVID ‐19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543.
[http://dx.doi.org/10.1002/ddr.21666] [PMID: 32227357]
[122]
Tikoo, K.; Patel, G.; Kumar, S.; Karpe, P.A.; Sanghavi, M.; Malek, V.; Srinivasan, K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochem. Pharmacol., 2015, 93(3), 343-351.
[http://dx.doi.org/10.1016/j.bcp.2014.11.013] [PMID: 25482567]
[123]
Ferrario, C.M. ACE2: More of Ang-(1–7) or less Ang II? Curr. Opin. Nephrol. Hypertens., 2011, 20(1), 1-6.
[http://dx.doi.org/10.1097/MNH.0b013e3283406f57] [PMID: 21045683]
[124]
Fedson, D.S. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med., 2016, 4(21), 421.
[http://dx.doi.org/10.21037/atm.2016.11.03] [PMID: 27942512]
[125]
Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, 13(9), 1972-1988.
[http://dx.doi.org/10.1080/21645515.2017.1316909] [PMID: 28841363]
[126]
Bersanelli, M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy, 2020, 12(5), 269-273.
[http://dx.doi.org/10.2217/imt-2020-0067] [PMID: 32212881]
[127]
Kelleni, M.T. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol. Res., 2020, 157(104874), 104874.
[http://dx.doi.org/10.1016/j.phrs.2020.104874] [PMID: 32360581]
[128]
Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[129]
Simsek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[130]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178(104787), 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[131]
Mehta, P.; Ciurtin, C.; Scully, M.; Levi, M.; Chambers, R.C. JAK inhibitors in COVID-19: The need for vigilance regarding increased inherent thrombotic risk. Eur. Respir. J., 2020, 56(3), 2001919.
[http://dx.doi.org/10.1183/13993003.01919-2020] [PMID: 32631841]
[132]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[133]
Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; Hofer, F.; Barouni, R.M.; Musiu, C.; Caligola, S.; Pinton, L.; Torroni, L.; Polati, E.; Donadello, K.; Friso, S.; Pizzolo, F.; Iezzi, M.; Facciotti, F.; Pelicci, P.G.; Righetti, D.; Bazzoni, P.; Rampudda, M.; Comel, A.; Mosaner, W.; Lunardi, C.; Olivieri, O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest., 2020, 130(12), 6409-6416.
[http://dx.doi.org/10.1172/JCI141772] [PMID: 32809969]
[134]
Turing, A. M. I. -computing machinery and intelligence. Mind, 1950, LIX(236), 433-460.
[http://dx.doi.org/10.1093/mind/LIX.236.433]
[135]
Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[136]
Mishra, R.; Chaudhary, K.; Mishra, I. AI in Health science: A Perspective. Curr. Pharm. Biotechnol., 2022.
[http://dx.doi.org/10.2174/1389201023666220929145220] [PMID: 36177622]
[137]
Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193.
[http://dx.doi.org/10.1007/s00894-022-05185-w] [PMID: 35716240]
[138]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[139]
Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528.
[http://dx.doi.org/10.1007/s11224-022-01943-x] [PMID: 35502321]
[140]
Mujwar, S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput. Biol. Med., 2021, 136(104748), 104748.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104748] [PMID: 34388463]
[141]
Jain, R.; Mujwar, S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Struct. Chem., 2020, 31(6), 2487-2499.
[http://dx.doi.org/10.1007/s11224-020-01605-w] [PMID: 32837119]
[142]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[143]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[144]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[145]
Dettmers, T.; Minervini, P.; Stenetorp, P. Convolutional 2D Knowledge Graph Embeddings; ArXiv, 2017.
[146]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[147]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[148]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[149]
Altaher, Y.; Nakanishi, M.; Kandeel, M. Annotation of camel genome for estimation of drug binding power, evolution and adaption of cytochrome P450 1a2. Int. J. Pharmacol., 2015, 11(3), 243-247.
[http://dx.doi.org/10.3923/ijp.2015.243.247]
[150]
Elhefnawi, M.; ElGamacy, M.; Fares, M. Multiple virtual screening approaches for finding new hepatitis C virus RNA-Dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinformatics, 2012, 13(S17), S5.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S5]
[151]
Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[152]
Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In silico discovery using virtual screening and molecular docking studies. Interdiscip. Sci., 2016, 8(2), 132-141.
[http://dx.doi.org/10.1007/s12539-015-0109-8] [PMID: 26286008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy