Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Study on Fu-Fang-Jin-Qian-Cao Inhibiting Autophagy in Calcium Oxalate-induced Renal Injury by UHPLC/Q-TOF-MS-based Metabonomics and Network Pharmacology Approaches

Author(s): Wen-Rui Liu, Mao-Ting Li, Qi Zhou, Song-Yan Gao, Jie-Bin Hou, Guo-Bin Yang, Nan-Mei Liu, Jia-Yan, Jian-Peng Yu, Jin Cheng* and Zhi-Yong Guo*

Volume 27, Issue 1, 2024

Published on: 15 June, 2023

Page: [90 - 100] Pages: 11

DOI: 10.2174/1386207326666230515151302

Price: $65

Abstract

Introduction: Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently.

Methods: Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry.

Results: Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment.

Conclusions: Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.

Graphical Abstract

[1]
Thongprayoon, C.; Krambeck, A.E.; Rule, A.D. Determining the true burden of kidney stone disease. Nat. Rev. Nephrol., 2020, 16(12), 736-746.
[http://dx.doi.org/10.1038/s41581-020-0320-7] [PMID: 32753740]
[2]
Wang, C.H.; Wu, S.B.; Wu, Y.T.; Wei, Y.H. Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Exp. Biol. Med., 2013, 238(5), 450-460.
[http://dx.doi.org/10.1177/1535370213493069] [PMID: 23856898]
[3]
Evan, A.P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol., 2010, 25(5), 831-841.
[http://dx.doi.org/10.1007/s00467-009-1116-y] [PMID: 19198886]
[4]
Khan, S.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: Evidence from clinical and experimental investigations. J. Urol., 2013, 189(3), 803-811.
[http://dx.doi.org/10.1016/j.juro.2012.05.078] [PMID: 23022011]
[5]
Khan, S.R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol., 2014, 3(3), 256-276.
[http://dx.doi.org/10.3978/j.issn.2223-4683.2014.06.04] [PMID: 25383321]
[6]
Chen, Z.; Liu, X.; Ma, S. The roles of Mitochondria in Autophagic Cell Death. Cancer Biother. Radiopharm., 2016, 31(8), 269-276.
[http://dx.doi.org/10.1089/cbr.2016.2057] [PMID: 27754749]
[7]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[8]
Reggiori, F.; Ungermann, C. Autophagosome maturation and fusion. J. Mol. Biol., 2017, 429(4), 486-496.
[http://dx.doi.org/10.1016/j.jmb.2017.01.002] [PMID: 28077293]
[9]
Nishida, K.; Yamaguchi, O.; Otsu, K. Crosstalk between autophagy and apoptosis in heart disease. Circ. Res., 2008, 103(4), 343-351.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.175448] [PMID: 18703786]
[10]
Xu, Y.; Yang, S.; Huang, J.; Ruan, S.; Zheng, Z.; Lin, J. Tgf-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells. Int. J. Mol. Med., 2012, 29(5), 781-790.
[http://dx.doi.org/10.3892/ijmm.2012.911] [PMID: 22322529]
[11]
Yang, C.; Kaushal, V.; Shah, S.V.; Kaushal, G.P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal Physiol., 2008, 294(4), F777-F787.
[http://dx.doi.org/10.1152/ajprenal.00590.2007] [PMID: 18256309]
[12]
Hou, J.; Chen, W.; Lu, H.; Zhao, H.; Gao, S.; Liu, W.; Dong, X.; Guo, Z. Exploring the therapeutic mechanism of Desmodium styracifolium on oxalate crystal-induced kidney injuries using comprehensive approaches based on proteomics and network pharmacology. Front. Pharmacol., 2018, 9, 620.
[http://dx.doi.org/10.3389/fphar.2018.00620] [PMID: 29950996]
[13]
Zhou, J.; Jin, J.; Li, X.; Zhao, Z.; Zhang, L.; Wang, Q.; Li, J.; Zhang, Q.; Xiang, S. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-l-proline-induced calcium oxalate urolithiasis in rats. Urolithiasis, 2018, 46(3), 231-241.
[http://dx.doi.org/10.1007/s00240-017-0985-y] [PMID: 28567512]
[14]
Liu, W.R.; Lu, H.T.; Zhao, T.T.; Ding, J.R.; Si, Y.C.; Chen, W.; Hou, J.B.; Gao, S.Y.; Dong, X.; Yu, B.; Guo, Z.Y.; Lu, J.R. Fu-Fang-Jin-Qian-Cao herbal granules protect against the calcium oxalate-induced renal EMT by inhibiting the TGF-β/smad pathway. Pharm. Biol., 2020, 58(1), 1124-1131.
[http://dx.doi.org/10.1080/13880209.2020.1844241] [PMID: 33191819]
[15]
Chen, W.; Liu, W.R.; Hou, J.B.; Ding, J.R.; Peng, Z.J.; Gao, S.Y.; Dong, X.; Ma, J.H.; Lin, Q.S.; Lu, J.R.; Guo, Z.Y. Metabolomic analysis reveals a protective effect of Fu-Fang-Jin-Qian-Chao herbal granules on oxalate-induced kidney injury. Biosci. Rep., 2019, 39(2), BSR20181833.
[http://dx.doi.org/10.1042/BSR20181833] [PMID: 30737304]
[16]
Zheng, Y.; Shi, X.; Hou, J.; Gao, S.; Chao, Y.; Ding, J.; Chen, L.; Qian, Y.; Shao, G.; Si, Y.; Chen, W. Integrating metabolomics and network pharmacology to explore Rhizoma Coptidis extracts against sepsis-associated acute kidney injury. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1164, 122525.
[http://dx.doi.org/10.1016/j.jchromb.2021.122525] [PMID: 33454441]
[17]
Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res., 2018, 46(W1), W486-W494.
[http://dx.doi.org/10.1093/nar/gky310] [PMID: 29762782]
[18]
Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res., 2016, 44(D1), D380-D384.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[19]
Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; Hanspers, K.; Isserlin, R.; Kelley, R.; Killcoyne, S.; Lotia, S.; Maere, S.; Morris, J.; Ono, K.; Pavlovic, V.; Pico, A.R.; Vailaya, A.; Wang, P.L.; Adler, A.; Conklin, B.R.; Hood, L.; Kuiper, M.; Sander, C.; Schmulevich, I.; Schwikowski, B.; Warner, G.J.; Ideker, T.; Bader, G.D. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2007, 2(10), 2366-2382.
[http://dx.doi.org/10.1038/nprot.2007.324] [PMID: 17947979]
[20]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[21]
Wang, J.; Zhou, J.Y.; Kho, D.; Reiners, J.J., Jr; Wu, G.S. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy, 2016, 12(10), 1791-1803.
[http://dx.doi.org/10.1080/15548627.2016.1203483] [PMID: 27459239]
[22]
Guo, J.Y.; Chen, H.Y.; Mathew, R.; Fan, J.; Strohecker, A.M.; Karsli-Uzunbas, G.; Kamphorst, J.J.; Chen, G.; Lemons, J.M.S.; Karantza, V.; Coller, H.A.; DiPaola, R.S.; Gelinas, C.; Rabinowitz, J.D.; White, E. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev., 2011, 25(5), 460-470.
[http://dx.doi.org/10.1101/gad.2016311] [PMID: 21317241]
[23]
Zeng, Y.; Yang, X.; Wang, J.; Fan, J.; Kong, Q.; Yu, X. Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS One, 2012, 7(1), e30312.
[http://dx.doi.org/10.1371/journal.pone.0030312] [PMID: 22276178]
[24]
Kaushal, G.P.; Kaushal, V.; Herzog, C.; Yang, C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy, 2008, 4(5), 710-712.
[http://dx.doi.org/10.4161/auto.6309] [PMID: 18497570]
[25]
Li, C.; Deng, Y.; Sun, B. Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis. Int. Urol. Nephrol., 2009, 41(4), 823-833.
[http://dx.doi.org/10.1007/s11255-009-9534-0] [PMID: 19241135]
[26]
Veena, C.K.; Josephine, A.; Preetha, S.P.; Rajesh, N.G.; Varalakshmi, P. Mitochondrial dysfunction in an animal model of hyperoxaluria: A prophylactic approach with fucoidan. Eur. J. Pharmacol., 2008, 579(1-3), 330-336.
[http://dx.doi.org/10.1016/j.ejphar.2007.09.044] [PMID: 18001705]
[27]
Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 426-431.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[28]
Jalmi, S.K.; Sinha, A.K. ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Front. Plant Sci., 2015, 6, 769.
[http://dx.doi.org/10.3389/fpls.2015.00769] [PMID: 26442079]
[29]
Kim, G.D.; Oh, J.; Park, H.J.; Bae, K.; Lee, S.K. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Int. J. Oncol., 2013, 43(2), 600-610.
[http://dx.doi.org/10.3892/ijo.2013.1959] [PMID: 23708970]
[30]
Milone, M.R.; Pucci, B.; Bruzzese, F.; Carbone, C.; Piro, G.; Costantini, S.; Capone, F.; Leone, A.; Di Gennaro, E.; Caraglia, M.; Budillon, A. Acquired resistance to zoledronic acid and the parallel acquisition of an aggressive phenotype are mediated by p38-MAP kinase activation in prostate cancer cells. Cell Death Dis., 2013, 4(5), e641.
[http://dx.doi.org/10.1038/cddis.2013.165] [PMID: 23703386]
[31]
Duan, W.J.; Li, Q.S.; Xia, M.Y.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species-p38 and c-Jun N-terminal kinase pathways. Biol. Pharm. Bull., 2011, 34(1), 47-53.
[http://dx.doi.org/10.1248/bpb.34.47] [PMID: 21212516]
[32]
Yuan, H.; Perry, C.N.; Huang, C.; Iwai-Kanai, E.; Carreira, R.S.; Glembotski, C.C.; Gottlieb, R.A. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(2), H470-H479.
[http://dx.doi.org/10.1152/ajpheart.01051.2008] [PMID: 19098111]
[33]
Schmukler, E.; Kloog, Y.; Pinkas-Kramarski, R. Ras and autophagy in cancer development and therapy. Oncotarget, 2014, 5(3), 577-586.
[http://dx.doi.org/10.18632/oncotarget.1775] [PMID: 24583697]
[34]
Rodríguez-Peña, A.B.; Santos, E.; Arévalo, M.; López-Novoa, J.M. Activation of small GTPase Ras and renal fibrosis. J. Nephrol., 2005, 18(3), 341-349.
[PMID: 16013027]
[35]
Hendry, B.M.; Sharpe, C.C. Targeting Ras genes in kidney disease. Nephron, Exp. Nephrol., 2004, 93(4), e129-e133.
[http://dx.doi.org/10.1159/000070236] [PMID: 12759573]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy