Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

B2M is a Biomarker Associated With Immune Infiltration In High Altitude Pulmonary Edema

Author(s): Mu Yuan, Xueting Hu, Wei Xing, Xiaofeng Wu, Chengxiu Pu, Wei Guo, Xiyan Zhu, Mengwei Yao, Luoquan Ao, Zhan Li* and Xiang Xu*

Volume 27, Issue 1, 2024

Published on: 15 May, 2023

Page: [168 - 185] Pages: 18

DOI: 10.2174/1386207326666230510095840

Price: $65

Abstract

Background: High altitude pulmonary edema (HAPE) is a serious mountain sickness with certain mortality. Its early diagnosis is very important. However, the mechanism of its onset and progression is still controversial.

Aim: This study aimed to analyze the HAPE occurrence and development mechanism and search for prospective biomarkers in peripheral blood.

Methods: The difference genes (DEGs) of the Control group and the HAPE group were enriched by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and then GSEA analysis was performed. After identifying the immune-related hub genes, QPCR was used to verify and analyze the hub gene function and diagnostic value with single-gene GSEA and ROC curves, and the drugs that acted on the hub gene was found in the CTD database. Immune infiltration and its association with the hub genes were analyzed using CIBERSORT. Finally, WGCNA was employed to investigate immune invasion cells' significantly related gene modules, following enrichment analysis of their GO and KEGG.

Results: The dataset enrichment analysis, immune invasion analysis and WGCNA analysis showed that the occurrence and early progression of HAPE were unrelated to inflammation. The hub genes associated with immunity obtained with MCODE algorithm of Cytoscape were JAK2 and B2M. RT-qPCR and ROC curves confirmed that the hub gene B2M was a specific biomarker of HAPE and had diagnostic value, and single-gene GSEA analysis confirmed that it participated in MHC I molecule-mediated antigen presentation ability decreased, resulting in reduced immunity.

Conclusion: Occurrence and early progression of high altitude pulmonary edema may not be related to inflammation. B2M may be a new clinical potential biomarker for HAPE for early diagnosis and therapeutic evaluation as well as therapeutic targets, and its decrease may be related to reduced immunity due to reduced ability of MCH I to participate in antigen submission.

Erratum In:
B2M is a Biomarker Associated With Immune Infiltration In High Altitude Pulmonary Edema

Graphical Abstract

[1]
Si, L.; Wang, H.; Jiang, Y.; Yi, Y.; Wang, R.; Long, Q.; Zhao, Y. MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility in the Chinese population. Sci. Rep., 2022, 12(1), 4346.
[http://dx.doi.org/10.1038/s41598-022-06944-8] [PMID: 35288592]
[2]
Wright, A.D.; Brearey, S.P.; Imray, C.H.E. High hopes at high altitudes: pharmacotherapy for acute mountain sickness and high-altitude cerebral and pulmonary oedema. Expert Opin. Pharmacother., 2008, 9(1), 119-127.
[http://dx.doi.org/10.1517/14656566.9.1.119] [PMID: 18076343]
[3]
Ascaso, F.J.; Nerín, M.A.; Villén, L.; Morandeira, J.R.; Cristóbal, J.A. Acute mountain sickness and retinal evaluation by optical coherence tomography. Eur. J. Ophthalmol., 2012, 22(4), 580-589.
[http://dx.doi.org/10.5301/ejo.5000091] [PMID: 22139614]
[4]
Sharma, K.R.; Mishra, R.; Gautam, J.; Alaref, A.; Hassan, A.; Jahan, N. Patchy vasoconstriction versus inflammation: A debate in the pathogenesis of high altitude pulmonary edema. Cureus, 2020, 12(9), e10371.
[http://dx.doi.org/10.7759/cureus.10371]
[5]
Sharma, M.; Singh, S.B.; Sarkar, S. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema. PLoS One, 2014, 9(1), e85902.
[http://dx.doi.org/10.1371/journal.pone.0085902] [PMID: 24465776]
[6]
Ahmad, Y.; Sharma, N.K.; Ahmad, M.F.; Sharma, M.; Garg, I.; Srivastava, M.; Bhargava, K. The proteome of hypobaric induced hypoxic lung: Insights from temporal proteomic profiling for biomarker discovery. Sci. Rep., 2015, 5(1), 10681.
[http://dx.doi.org/10.1038/srep10681] [PMID: 26022216]
[7]
Nussbaumer-Ochsner, Y.; Schuepfer, N.; Ursprung, J.; Siebenmann, C.; Maggiorini, M.; Bloch, K.E. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters. Sleep, 2012, 35(10), 1413-1421.
[http://dx.doi.org/10.5665/sleep.2126] [PMID: 23024440]
[8]
Maggiorini, M. High altitude-induced pulmonary oedema. Cardiovasc. Res., 2006, 72(1), 41-50.
[http://dx.doi.org/10.1016/j.cardiores.2006.07.004] [PMID: 16904089]
[9]
Hilty, M.P.; Zügel, S.; Schoeb, M.; Auinger, K.; Dehnert, C.; Maggiorini, M. Soluble urokinase-type plasminogen activator receptor plasma concentration may predict susceptibility to high altitude pulmonary edema. Mediators Inflamm., 2016, 2016, 1942460.
[http://dx.doi.org/10.1155/2016/1942460] [PMID: 27378823]
[10]
Bailey, D.M.; Kleger, G.R.; Holzgraefe, M.; Ballmer, P.E.; Bärtsch, P. Pathophysiological significance of peroxidative stress, neuronal damage, and membrane permeability in acute mountain sickness. J. Appl. Physiol., 2004, 96(4), 1459-1463.
[http://dx.doi.org/10.1152/japplphysiol.00704.2003] [PMID: 14594861]
[11]
Julian, C.G.; Subudhi, A.W.; Wilson, M.J.; Dimmen, A.C.; Pecha, T.; Roach, R.C. Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. J. Appl. Physiol., 2011, 111(2), 392-399.
[http://dx.doi.org/10.1152/japplphysiol.00391.2011] [PMID: 21636566]
[12]
Swenson, E.R.; Maggiorini, M.; Mongovin, S.; Gibbs, J.S.R.; Greve, I.; Mairbäurl, H.; Bärtsch, P. Pathogenesis of high-altitude pulmonary edema: Inflammation is not an etiologic factor. JAMA, 2002, 287(17), 2228-2235.
[http://dx.doi.org/10.1001/jama.287.17.2228] [PMID: 11980523]
[13]
Zhou, Q. Standardization of methods for early diagnosis and on-site treatment of high-altitude pulmonary edema. Pulm. Med., 2011, 2011, 190648.
[http://dx.doi.org/10.1155/2011/190648] [PMID: 21660284]
[14]
Mellor, A.; Boos, C.; Holdsworth, D.; Begley, J.; Hall, D.; Lumley, A.; Burnett, A.; Hawkins, A.; O’Hara, J.; Ball, S.; Woods, D. Cardiac biomarkers at high altitude. High Alt. Med. Biol., 2014, 15(4), 452-458.
[http://dx.doi.org/10.1089/ham.2014.1035] [PMID: 25330333]
[15]
Guo, L.; Tan, G.; Liu, P.; Li, H.; Tang, L.; Huang, L.; Ren, Q. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci. Rep., 2015, 5(1), 15126.
[http://dx.doi.org/10.1038/srep15126] [PMID: 26459926]
[16]
Janvilisri, T.; Suzuki, H.; Scaria, J.; Chen, J.W.; Charoensawan, V. High-throughput screening for biomarker discovery. Dis. Markers, 2015, 2015, 108064.
[http://dx.doi.org/10.1155/2015/108064] [PMID: 26060333]
[17]
Dai, F.; Chen, G.; Wang, Y.; Zhang, L.; Long, Y.; Yuan, M.; Yang, D.; Liu, S.; Cheng, Y.; Zhang, L. Identification of candidate biomarkers correlated with the diagnosis and prognosis of cervical cancer via integrated bioinformatics analysis. OncoTargets Ther., 2019, 12, 4517-4532.
[http://dx.doi.org/10.2147/OTT.S199615] [PMID: 31354287]
[18]
Yang, Y.X.; Li, L. Identification of potential biomarkers of sepsis using bioinformatics analysis. Exp. Ther. Med., 2017, 13(5), 1689-1696.
[http://dx.doi.org/10.3892/etm.2017.4178] [PMID: 28565754]
[19]
Huang, S.; Feng, C.; Zhai, Y.Z.; Zhou, X.; Li, B.; Wang, L.L.; Chen, W.; Lv, F.Q.; Li, T.S. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Exp. Ther. Med., 2017, 13(4), 1235-1244.
[http://dx.doi.org/10.3892/etm.2017.4151] [PMID: 28413462]
[20]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[21]
Chan, B.K.C. Data analysis using R programming. Adv. Exp. Med. Biol., 2018, 1082, 47-122.
[http://dx.doi.org/10.1007/978-3-319-93791-5_2] [PMID: 30357717]
[22]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[23]
Gustavsson, E.K.; Zhang, D.; Reynolds, R.H.; Garcia-Ruiz, S.; Ryten, M. ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics, 2022, 38(15), 3844-3846.
[http://dx.doi.org/10.1093/bioinformatics/btac409] [PMID: 35751589]
[24]
Hu, K. Become competent in generating rna-seq heat maps in one day for novices without prior R experience. Methods Mol. Biol., 2021, 2239, 269-303.
[http://dx.doi.org/10.1007/978-1-0716-1084-8_17] [PMID: 33226625]
[25]
Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One, 2017, 12(9), e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[26]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[27]
Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[28]
Zhang, T.; Zhao, L.L.; Zhang, Z.R.; Fu, P.D.; Su, Z.D.; Qi, L.C.; Li, X.Q.; Dong, Y.M. Interaction network analysis revealed biomarkers in myocardial infarction. Mol. Biol. Rep., 2014, 41(8), 4997-5003.
[http://dx.doi.org/10.1007/s11033-014-3366-4] [PMID: 24748432]
[29]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[30]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[31]
Wang, X.; Zhang, J.; Yang, Y.; Dong, W.; Wang, F.; Wang, L.; Li, X. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp. Ther. Med., 2013, 6(1), 263-267.
[http://dx.doi.org/10.3892/etm.2013.1116] [PMID: 23935758]
[32]
Xu, F.F.; Zhang, Z.B.; Wang, Y.Y.; Wang, T.H. Brain-derived glia maturation factor β participates in lung injury induced by acute cerebral ischemia by increasing ros in endothelial cells. Neurosci. Bull., 2018, 34(6), 1077-1090.
[http://dx.doi.org/10.1007/s12264-018-0283-x] [PMID: 30191459]
[33]
Qu, L.; Li, Y.; Chen, C.; Yin, T.; Fang, Q.; Zhao, Y.; Lv, W.; Liu, Z.; Chen, Y.; Shen, L. Caveolin-1 identified as a key mediator of acute lung injury using bioinformatics and functional research. Cell Death Dis., 2022, 13(8), 686.
[http://dx.doi.org/10.1038/s41419-022-05134-8] [PMID: 35933468]
[34]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[35]
Bhattacharya, S.; Andorf, S.; Gomes, L.; Dunn, P.; Schaefer, H.; Pontius, J.; Berger, P.; Desborough, V.; Smith, T.; Campbell, J.; Thomson, E.; Monteiro, R.; Guimaraes, P.; Walters, B.; Wiser, J.; Butte, A.J. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res., 2014, 58(2-3), 234-239.
[http://dx.doi.org/10.1007/s12026-014-8516-1] [PMID: 24791905]
[36]
Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res., 2021, 49(D1), D1144-D1151.
[http://dx.doi.org/10.1093/nar/gkaa1084] [PMID: 33237278]
[37]
Kayser, B. Nutrition and high altitude exposure. Int. J. Sports Med., 1992, 13(S1), S129-S132.
[http://dx.doi.org/10.1055/s-2007-1024616] [PMID: 1483750]
[38]
Tan, J.; Gao, C.; Wang, C.; Ma, L.; Hou, X.; Liu, X.; Li, Z. Expression of aquaporin-1 and aquaporin-5 in a rat model of high-altitude pulmonary edema and the effect of hyperbaric oxygen exposure. Dose Response, 2020, 18(4)
[http://dx.doi.org/10.1177/1559325820970821] [PMID: 33192205]
[39]
Ricciardolo, F.; Nijkamp, F.; Folkerts, G. Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Curr. Drug Targets, 2006, 7(6), 721-735.
[http://dx.doi.org/10.2174/138945006777435290] [PMID: 16787174]
[40]
Parker, J.C. Acute lung injury and pulmonary vascular permeability: Use of transgenic models. Compr. Physiol., 2011, 1(2), 835-882.
[http://dx.doi.org/10.1002/cphy.c100013] [PMID: 23737205]
[41]
Goto, T.; Hussein, M.H.; Kato, S.; Daoud, G.A.H.; Kato, T.; Kakita, H.; Mizuno, H.; Imai, M.; Ito, T.; Kato, I.; Suzuki, S.; Okada, N.; Togari, H.; Okada, H. Endothelin receptor antagonist attenuates inflammatory response and prolongs the survival time in a neonatal sepsis model. Intensive Care Med., 2010, 36(12), 2132-2139.
[http://dx.doi.org/10.1007/s00134-010-2040-0] [PMID: 20845025]
[42]
Chen, J.; Zhang, W.; Xu, Q.; Zhang, J.; Chen, W.; Xu, Z.; Li, C.; Wang, Z.; Zhang, Y.; Zhen, Y.; Feng, J.; Chen, J.; Chen, J. Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int. J. Mol. Med., 2018, 41(5), 2865-2878.
[http://dx.doi.org/10.3892/ijmm.2018.3507] [PMID: 29484371]
[43]
Shinha, T.; Mi, D.; Liu, Z.; Orschell, C.M.; Lederman, M.M.; Gupta, S.K. Relationships between renal parameters and serum and urine markers of inflammation in those with and without HIV infection. AIDS Res. Hum. Retroviruses, 2015, 31(4), 375-383.
[http://dx.doi.org/10.1089/aid.2014.0234] [PMID: 25646974]
[44]
Wu, H.H.; Niu, K.C.; Lin, C.H.; Lin, H.J.; Chang, C.P.; Wang, C.T. HSP-70-mediated hyperbaric oxygen reduces brain and pulmonary edema and cognitive deficits in rats in a simulated high-altitude exposure. BioMed Res. Int., 2018, 2018, 4608150.
[http://dx.doi.org/10.1155/2018/4608150] [PMID: 30515398]
[45]
She, J.; Goolaerts, A.; Shen, J.; Bi, J.; Tong, L.; Gao, L.; Song, Y.; Bai, C. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats. J. Cell. Mol. Med., 2012, 16(12), 3074-3084.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01588.x] [PMID: 22568566]
[46]
Sreejit, G.; Ahmed, A.; Parveen, N.; Jha, V.; Valluri, V.L.; Ghosh, S.; Mukhopadhyay, S. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog., 2014, 10(10), e1004446.
[http://dx.doi.org/10.1371/journal.ppat.1004446] [PMID: 25356553]
[47]
Seamon, K.; Kurlak, L.O.; Warthan, M.; Stratikos, E.; Strauss, J.F., III; Mistry, H.D.; Lee, E.D. The differential expression of ERAP1/ERAP2 and immune cell activation in pre-eclampsia. Front. Immunol., 2020, 11, 396.
[http://dx.doi.org/10.3389/fimmu.2020.00396] [PMID: 32210971]
[48]
Chi, S.; Weiss, A.; Wang, H. A CRISPR-based toolbox for studying T cell signal transduction. BioMed Res. Int., 2016, 2016, 5052369.
[http://dx.doi.org/10.1155/2016/5052369] [PMID: 27057542]
[49]
Zhang, Y.; Wang, Y.; Shao, L.; Pan, X.; Liang, C.; Liu, B.; Zhang, Y.; Xie, W.; Yan, B.; Liu, F.; Yu, X.; Li, Y. Knockout of beta‐2 microglobulin reduces stem cell‐induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR‐24/Bim pathway. J. Cell. Mol. Med., 2020, 24(1), 695-710.
[http://dx.doi.org/10.1111/jcmm.14778] [PMID: 31729180]
[50]
Watson, J.A.; Watson, C.J.; McCrohan, A.M.; Woodfine, K.; Tosetto, M.; McDaid, J.; Gallagher, E.; Betts, D.; Baugh, J.; O’Sullivan, J.; Murrell, A.; Watson, R.W.G.; McCann, A. Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum. Mol. Genet., 2009, 18(19), 3594-3604.
[http://dx.doi.org/10.1093/hmg/ddp307] [PMID: 19584087]
[51]
Zahran, A.M.; Abdallah, A.M.; Saad, K.; Osman, N.S.; Youssef, M.A.M.; Abdel-Raheem, Y.F.; Elsayh, K.I.; Abo Elgheet, A.M.; Darwish, S.F.; Alblihed, M.A.; Elhoufey, A. Peripheral blood B and T cell profiles in children with active juvenile idiopathic arthritis. Arch. Immunol. Ther. Exp. (Warsz.), 2019, 67(6), 427-432.
[http://dx.doi.org/10.1007/s00005-019-00560-7] [PMID: 31535168]
[52]
Lee, N.S.; Barber, L.; Akula, S.M.; Sigounas, G.; Kataria, Y.P.; Arce, S. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-cell compartment of patients with severe chronic sarcoidosis. Clin. Vaccine Immunol., 2011, 18(8), 1306-1316.
[http://dx.doi.org/10.1128/CVI.05118-11] [PMID: 21653741]
[53]
Baravalle, G.; Park, H.; McSweeney, M.; Ohmura-Hoshino, M.; Matsuki, Y.; Ishido, S.; Shin, J.S. Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J. Immunol., 2011, 187(6), 2966-2973.
[http://dx.doi.org/10.4049/jimmunol.1101643] [PMID: 21849678]
[54]
Meehan, R.; Duncan, U.; Neale, L.; Taylor, G.; Muchmore, H.; Scott, N.; Ramsey, K.; Smith, E.; Rock, P.; Goldblum, R.; Houston, C. Operation Everest II: Alterations in the immune system at high altitudes. J. Clin. Immunol., 1988, 8(5), 397-406.
[http://dx.doi.org/10.1007/BF00917156] [PMID: 2460489]
[55]
Soree, P.; Gupta, R.K.; Singh, K.; Desiraju, K.; Agrawal, A.; Vats, P.; Bharadwaj, A.; Baburaj, T.P.; Chaudhary, P.; Singh, V.K.; Verma, S.; Bajaj, A.C.; Singh, S.B. Raised HIF1α during normoxia in high altitude pulmonary edema susceptible non-mountaineers. Sci. Rep., 2016, 6(1), 26468.
[http://dx.doi.org/10.1038/srep26468] [PMID: 27210110]
[56]
Torrejon, D.Y.; Abril-Rodriguez, G.; Champhekar, A.S.; Tsoi, J.; Campbell, K.M.; Kalbasi, A.; Parisi, G.; Zaretsky, J.M.; Garcia-Diaz, A.; Puig-Saus, C.; Cheung-Lau, G.; Wohlwender, T.; Krystofinski, P.; Vega-Crespo, A.; Lee, C.M.; Mascaro, P.; Grasso, C.S.; Berent-Maoz, B.; Comin-Anduix, B.; Hu-Lieskovan, S.; Ribas, A. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov., 2020, 10(8), 1140-1157.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1409] [PMID: 32467343]
[57]
Reichel, J.; Chadburn, A.; Rubinstein, P.G.; Giulino-Roth, L.; Tam, W.; Liu, Y.; Gaiolla, R.; Eng, K.; Brody, J.; Inghirami, G.; Carlo-Stella, C.; Santoro, A.; Rahal, D.; Totonchy, J.; Elemento, O.; Cesarman, E.; Roshal, M. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood, 2015, 125(7), 1061-1072.
[http://dx.doi.org/10.1182/blood-2014-11-610436] [PMID: 25488972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy