Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nutraceuticals a Food for Thought in the Treatment of Parkinson’s Disease

Author(s): Keshav Bansal*, Sakshi Singh, Vanshita Singh and Meenakshi Bajpai

Volume 19, Issue 9, 2023

Published on: 05 June, 2023

Page: [961 - 977] Pages: 17

DOI: 10.2174/1573401319666230515104325

Price: $65

conference banner
Abstract

Background: Brain disorders are presently one of the most serious and challenging health issues in the world. A significant portion of morbidities and fatalities worldwide are caused by these brain disorders. Parkinson's disease (PD) is a neurological condition that develops when dopaminergic neurons are lost in the substantia nigra, causing cognitive and motor impairment.

Objectives: Conventional treatment modalities, including dopamine replacement therapy and optimization of dopaminergic transmission approaches, don’t address the pathogenic processes primary to the symptoms of PD and usually become the least essential with time. Researchers are aiming to provide effective treatment in treating PD with minimizing adverse consequences. In the past few years, a number of studies on nutraceuticals have been conducted to produce foods with fewer adverse effects and increased therapeutic effectiveness. The use of these nutraceuticals is typically risk-free and can be coupled with the patient's current common pharmacological therapy to enhance the standard of living and lessen PD symptoms.

Conclusion: The current review focuses on a number of important nutritional compounds and dietary changes that have been shown to be effective against a number of the pathogenic pathways involved in the onset and progression of Parkinson's disease (PD), and further lights the justification for their prospect use in the treatment and prevention of PD.

Graphical Abstract

[1]
Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188(16): 1157-65.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[2]
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm 2017; 124(8): 901-5.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[3]
Okunoye O, Marston L, Walters K, Schrag A. Change in the incidence of Parkinson’s disease in a large UK primary care database. NPJ Parkinsons Dis 2022; 8(1): 23.
[http://dx.doi.org/10.1038/s41531-022-00284-0] [PMID: 35292689]
[4]
Dommershuijsen LJ, Boon AJW, Ikram MK. Probing the pre-diagnostic phase of Parkinson’s disease in population-based studies. Front Neurol 2021; 12: 702502.
[http://dx.doi.org/10.3389/fneur.2021.702502] [PMID: 34276552]
[5]
Kim HJ, Jeon BS, Paek SH. Nonmotor symptoms and subthalamic deep brain stimulation in Parkinson’s disease. J Mov Disord 2015; 8(2): 83-91.
[http://dx.doi.org/10.14802/jmd.15010] [PMID: 26090080]
[6]
Carrera I, Cacabelos R. Current drugs and potential future neuroprotective compounds for Parkinson’s Disease. Curr Neuropharmacol 2019; 17(3): 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704] [PMID: 30479218]
[7]
Bansal K, Singh V, Singh S, Mishra S. Neuroprotective potential of hesperidin as therapeutic agent in the treatment of brain disorders: Preclinical evidence-based review. Curr Mol Med 2023; 23.
[http://dx.doi.org/10.2174/1566524023666230320144722] [PMID: 36959141]
[8]
Weininger J. Nutritional disease. Encyclopedia Britannica, inc 2019.
[9]
Grassi D, Desideri G, Ferri C. Flavonoids: Antioxidants against atherosclerosis. Nutrients 2010; 2(8): 889-902.
[http://dx.doi.org/10.3390/nu2080889] [PMID: 22254061]
[10]
Mukherjee PK, Harwansh RK, Bahadur S, Duraipandiyan V, Al-Dhabi NA. Factors to consider in development of nutraceutical and dietary supplements. In: Pharmacognosy Fundamentals. Applications and Strategies 2017; pp. 653-61.
[11]
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2007; 2(3): 257-73.
[http://dx.doi.org/10.1007/s12263-007-0056-z] [PMID: 18850181]
[12]
Abrescia P, Golino P. Free radicals and antioxidants in cardiovascular diseases. Expert Rev Cardiovasc Ther 2005; 3(1): 159-71.
[http://dx.doi.org/10.1586/14779072.3.1.159] [PMID: 15723584]
[13]
Rajasekaran A, Sivagnanam G, Xavier R. Nutraceuticals as therapeutic agents: A Review. Research. RJPT 2008; 1(4): 328-40.
[14]
Mali S, Rathod S, Kale N, Shinde N. Overview of nutraceuticals. AJPS 2022; 12(1): 61-70.
[15]
Fox S, Lang AE. Therapy of the motor features of Parkinson’s Disease. Blue Books Neurol 2010; 34(C): 252-72.
[http://dx.doi.org/10.1016/B978-1-4160-6641-5.00015-5]
[16]
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease. J Neurochem 2018; 144(6): 691-709.
[http://dx.doi.org/10.1111/jnc.14308] [PMID: 29341130]
[17]
Takeuchi H, Mizuno T, Zhang G, et al. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 2005; 280(11): 10444-54.
[http://dx.doi.org/10.1074/jbc.M413863200] [PMID: 15640150]
[18]
Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson’s disease and the neurobiology of axons. Ann Neurol 2010; 67(6): 715-25.
[http://dx.doi.org/10.1002/ana.21995] [PMID: 20517933]
[19]
Goldman JG, Postuma R. Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol 2014; 27(4): 434-41.
[http://dx.doi.org/10.1097/WCO.0000000000000112] [PMID: 24978368]
[20]
Logroscino G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ Health Perspect 2005; 113(9): 1234-8.
[http://dx.doi.org/10.1289/ehp.7573] [PMID: 16140634]
[21]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[22]
Pavese N, Brooks DJ. Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792(7): 722-9.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.003] [PMID: 18992326]
[23]
Hang L, Basil AH, Lim KL. Nutraceuticals in Parkinson’s disease. Neuromolecular Med 2016; 18(3): 306-21.
[http://dx.doi.org/10.1007/s12017-016-8398-6] [PMID: 27147525]
[24]
Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci 2020; 21(12): 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[25]
Chao J, Leung Y, Wang M, Chang RCC. Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr Rev 2012; 70(7): 373-86.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00484.x] [PMID: 22747840]
[26]
Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson’s disease. Front Aging Neurosci 2010; 2(34): 1-11.
[http://dx.doi.org/10.3389/fnagi.2010.00034] [PMID: 20890446]
[27]
Beal MF, Oakes D, Shoulson I, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit. JAMA Neurol 2014; 71(5): 543-52.
[http://dx.doi.org/10.1001/jamaneurol.2014.131] [PMID: 24664227]
[28]
Negida A, Menshawy A, El Ashal G, et al. Coenzyme Q10 for patients with Parkinson’s disease: A systematic review and meta-analysis. CNS Neurol Disord Drug Targets 2016; 15(1): 45-53.
[29]
Crane FL. Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 2007; 7(S7): S2-7.
[http://dx.doi.org/10.1016/j.mito.2007.02.011] [PMID: 17446142]
[30]
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10, ageing and the nervous system: An overview. Antioxidants 2021; 11(1): 2.
[http://dx.doi.org/10.3390/antiox11010002] [PMID: 35052506]
[31]
Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol 2018; 5(9): 1-11.
[32]
Park HW, Park CG, Park M, et al. Intrastriatal administration of coenzyme Q10 enhances neuroprotection in a Parkinson’s disease rat model. Sci Rep 2020; 10(1): 9572.
[http://dx.doi.org/10.1038/s41598-020-66493-w] [PMID: 32533070]
[33]
Abedi E, Sahari MA. Long‐chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2014; 2(5): 443-63.
[http://dx.doi.org/10.1002/fsn3.121] [PMID: 25473503]
[34]
Hernando S, Herran E, Hernandez RM, Igartua M. Nanostructured lipid carriers made of Ω-3 polyunsaturated fatty acids: In vitro evaluation of emerging nanocarriers to treat neurodegenerative diseases. Pharmaceutics 2020; 12(10): 928.
[http://dx.doi.org/10.3390/pharmaceutics12100928] [PMID: 33003360]
[35]
Mythri RB, Joshi AK, Bharath MMS. Nutraceuticals and other natural products in Parkinson’s disease therapy: focus on clinical applications. In: Bioactive nutraceuticals and dietary supplements in neurological and brain disease: prevention and therapy. 2015; pp. 421-31.
[36]
Miyake Y, Sasaki S, Tanaka K, et al. Dietary fat intake and risk of Parkinson’s disease: A case-control study in Japan. J Neurol Sci 2010; 288(1-2): 117-22.
[http://dx.doi.org/10.1016/j.jns.2009.09.021] [PMID: 19819467]
[37]
Li P, Song C. Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutr Neurosci 2022; 25(1): 180-91.
[http://dx.doi.org/10.1080/1028415X.2020.1735143] [PMID: 32124682]
[38]
Prema A, Janakiraman U, Manivasagam T, Justin TA. Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neurosci Lett 2015; 599: 12-9.
[http://dx.doi.org/10.1016/j.neulet.2015.05.024] [PMID: 25980996]
[39]
Rao AV, Ali A. Biologically active phytochemicals in human health: Lycopene. Int J Food Prop 2007; 10(2): 279-88.
[http://dx.doi.org/10.1080/10942910601052673]
[40]
Lei X, Lei L, Zhang Z, Cheng Y. Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemia-reperfusion in rats: The role of the Nrf2/HO-1 signaling pathway. Mol Med Rep 2016; 13(1): 412-8.
[http://dx.doi.org/10.3892/mmr.2015.4534] [PMID: 26572165]
[41]
Chen D, Huang C, Chen Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed Pharmacother 2019; 111: 791-801.
[http://dx.doi.org/10.1016/j.biopha.2018.12.151] [PMID: 30616078]
[42]
Erbakan K. Doğanoğlu A, Erbaş OENTAL. Basic effects of lycopene on neurodegenerative diseases. J Exp Med 2021; 2(1): 50-61.
[43]
Fayed AHA. Brain trace element concentration of rats treated with the plant alkaloid, vincamine. Biol Trace Elem Res 2010; 136(3): 314-9.
[http://dx.doi.org/10.1007/s12011-009-8550-3] [PMID: 19902161]
[44]
Lama A, Pirozzi C, Avagliano C, et al. Nutraceuticals: An integrative approach to starve Parkinson’s disease. Brain, Behavior, & Immunity - Health 2020; 2: 100037.
[http://dx.doi.org/10.1016/j.bbih.2020.100037] [PMID: 34589828]
[45]
Pinero DJ, Connor JR. Iron in the brain: An important contributor in normal and diseased states. Lancet Neurol 2016; 6(6): 435-53.
[46]
Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol 2006; 13(3): 142-8.
[http://dx.doi.org/10.1016/j.spen.2006.08.002] [PMID: 17101452]
[47]
Abo-Elmatty DM, Elshazly SM, Zaitone SA. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats. Indian J Pharmacol 2012; 44(6): 774-9.
[http://dx.doi.org/10.4103/0253-7613.103300] [PMID: 23248410]
[48]
Xu L, Chen WF, Wong MS. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson’s disease through the IGF-I receptor signalling pathway. Br J Pharmacol 2009; 158(3): 738-48.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00361.x] [PMID: 19703168]
[49]
Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type Ca2+ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun 2008; 365(3): 399-405.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.048] [PMID: 18023426]
[50]
Leung K, Wong A. Pharmacology of ginsenosides: A literature review. Chin Med 2010; 5(1): 20.
[http://dx.doi.org/10.1186/1749-8546-5-20] [PMID: 20537195]
[51]
Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL. Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model. J Asian Nat Prod Res 2005; 7(3): 215-24.
[http://dx.doi.org/10.1080/10286020410001690172] [PMID: 15621629]
[52]
Song L, Xu MB, Zhou XL, Zhang D, Zhang S, Zheng G. A preclinical systematic review of ginsenoside-rg1 in experimental Parkinson’s Disease. Oxid Med Cell Longev 2017; 2017: 2163053.
[http://dx.doi.org/10.1155/2017/2163053] [PMID: 28386306]
[53]
Kim MK, Park HJ, Kim Y, et al. Vinpocetine inhibits the proliferation and induces apoptosis in human colon cancer cells. Int J Oral Biol 2021; 46(1): 7-14.
[http://dx.doi.org/10.11620/IJOB.2021.46.1.7]
[54]
Ping Z, Xiaomu W, Xufang X, Liang S. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients. Neurol Sci 2019; 40(1): 113-20.
[http://dx.doi.org/10.1007/s10072-018-3592-y] [PMID: 30315378]
[55]
Noelker C, Morel L, Lescot T, et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 2013; 3(1): 1393.
[http://dx.doi.org/10.1038/srep01393] [PMID: 23462811]
[56]
Jeon KI, Xu X, Aizawa T, et al. Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci 2010; 107(21): 9795-800.
[http://dx.doi.org/10.1073/pnas.0914414107] [PMID: 20448200]
[57]
Dzamko N, Gysbers A, Perera G, et al. Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 2017; 133(2): 303-19.
[http://dx.doi.org/10.1007/s00401-016-1648-8] [PMID: 27888296]
[58]
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules 2021; 11(5): 767.
[http://dx.doi.org/10.3390/biom11050767] [PMID: 34065606]
[59]
Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008; 15(6): 558-66.
[http://dx.doi.org/10.1038/nsmb.1437] [PMID: 18511942]
[60]
Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MBH. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: Special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 2008; 15(2): 211-22.
[http://dx.doi.org/10.3233/JAD-2008-15207] [PMID: 18953110]
[61]
Xu Y, Zhang Y, Quan Z, et al. Epigallocatechin Gallate (EGCG) inhibits alpha-synuclein aggregation: A potential agent for Parkinson’s Disease. Neurochem Res 2016; 41(10): 2788-96.
[http://dx.doi.org/10.1007/s11064-016-1995-9] [PMID: 27364962]
[62]
Martinez Pomier K, Ahmed R, Melacini G. Catechins as tools to understand the molecular basis of neurodegeneration. Molecules 2020; 25(16): 3571.
[http://dx.doi.org/10.3390/molecules25163571] [PMID: 32781559]
[63]
Ghosh A, Langley MR, Harischandra DS, et al. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s Disease. J Neuroimmune Pharmacol 2016; 11(2): 259-78.
[http://dx.doi.org/10.1007/s11481-016-9650-4] [PMID: 26838361]
[64]
Li Y, Liu W, Oo TF, et al. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 2009; 12(7): 826-8.
[http://dx.doi.org/10.1038/nn.2349] [PMID: 19503083]
[65]
Dranka BP, Gifford A, McAllister D, et al. A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2R1441G) transgenic mouse model of Parkinson’s disease. Neurosci Lett 2014; 583(583): 159-64.
[http://dx.doi.org/10.1016/j.neulet.2014.09.042] [PMID: 25263790]
[66]
Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: Preclinical and clinical outcomes. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1282-94.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.007] [PMID: 24060637]
[67]
Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007; 47(1): 629-56.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105110] [PMID: 17014364]
[68]
Tauskela JS, Mito Q. MitoQ-a mitochondria-targeted antioxidant. IDrugs 2007; 10(6): 399-412.
[PMID: 17642004]
[69]
Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, et al. Antioxidant therapeutics in Parkinson’s Disease: Current challenges and opportunities. Antioxidants 2021; 10(3): 453.
[http://dx.doi.org/10.3390/antiox10030453] [PMID: 33803945]
[70]
Solesio ME, Prime TA, Logan A, et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832(1): 174-82.
[http://dx.doi.org/10.1016/j.bbadis.2012.07.009] [PMID: 22846607]
[71]
Ono K, Yamada M, Vitamin A. Vitamin A potently destabilizes preformed α-synuclein fibrils in vitro: Implications for Lewy body diseases. Neurobiol Dis 2007; 25(2): 446-54.
[http://dx.doi.org/10.1016/j.nbd.2006.10.010] [PMID: 17169566]
[72]
Ono K, Yamada M. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 2006; 97(1): 105-15.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03707.x] [PMID: 16524383]
[73]
Aung HH, Wang CZ, Ni M, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 2007; 29(3): 175-80.
[PMID: 18004240]
[74]
Hosseini A, Razavi BM, Hosseinzadeh H. Pharmacokinetic properties of saffron and its active components. Eur J Drug Metab Pharmacokinet 2018; 43(4): 383-90.
[http://dx.doi.org/10.1007/s13318-017-0449-3] [PMID: 29134501]
[75]
Haeri P, Mohammadipour A, Heidari Z, Ebrahimzadeh-bideskan A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson’s disease model of mice. Anat Sci Int 2019; 94(1): 119-27.
[http://dx.doi.org/10.1007/s12565-018-0457-7] [PMID: 30159851]
[76]
Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arq Neuropsiquiatr 2016; 74(9): 723-9.
[http://dx.doi.org/10.1590/0004-282X20160131] [PMID: 27706421]
[77]
Nam KN, Park YM, Jung HJ, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 2010; 648(1-3): 110-6.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.003] [PMID: 20854811]
[78]
Sowndhararajan K, Deepa P, Kim M, Park S, Kim S. Neuroprotective and cognitive enhancement potentials of baicalin: A review. Brain Sci 2018; 8(6): 104.
[http://dx.doi.org/10.3390/brainsci8060104] [PMID: 29891783]
[79]
Dong J, Zhang Y, Chen Y, et al. Baicalin inhibits the lethality of ricin in mice by inducing protein oligomerization. J Biol Chem 2015; 290(20): 12899-907.
[http://dx.doi.org/10.1074/jbc.M114.632828] [PMID: 25847243]
[80]
Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: A review. Aging Dis 2017; 8(6): 850-67.
[http://dx.doi.org/10.14336/AD.2017.0829] [PMID: 29344420]
[81]
Xiong P, Chen X, Guo C, Zhang N, Ma B. Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson’s disease rats. Neural Regen Res 2012; 7(27): 2092-8.
[PMID: 25558221]
[82]
Tu L, Wu ZY, Yang XL, et al. Neuroprotective effect and mechanism of baicalin on Parkinson’s disease model induced by 6-OHDA. Neuropsychiatr Dis Treat 2020; 15: 3615-25.
[http://dx.doi.org/10.2147/NDT.S165931] [PMID: 32099367]
[83]
Lei K, Lei K, Shen Y, et al. baicalin represses C/EBP β via its antioxidative effect in parkinson’s disease. Oxid Med Cell Longev 2020; 1-14.
[http://dx.doi.org/10.1155/2020/4132785]
[84]
Lv R, Du L, Zhou F, Yuan X, Liu X, Zhang L. Rosmarinic acid alleviates inflammation, apoptosis, and oxidative stress through regulating miR-155-5p in a mice model of Parkinson’s disease. ACS Chem Neurosci 2020; 11(20): 3259-66.
[http://dx.doi.org/10.1021/acschemneuro.0c00375] [PMID: 32946211]
[85]
Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sci 2019; 223: 158-65.
[http://dx.doi.org/10.1016/j.lfs.2019.03.030] [PMID: 30880023]
[86]
Takahashi R, Ono K, Takamura Y, et al. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 2015; 134(5): 943-55.
[http://dx.doi.org/10.1111/jnc.13180] [PMID: 26016728]
[87]
Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology 2008; 250(2-3): 109-15.
[http://dx.doi.org/10.1016/j.tox.2008.06.010] [PMID: 18644421]
[88]
Wang J, Xu H, Jiang H, Du X, Sun P, Xie J. Neurorescue effect of rosmarinic acid on 6-hydroxydopamine-lesioned nigral dopamine neurons in rat model of Parkinson’s disease. J Mol Neurosci 2012; 47(1): 113-9.
[http://dx.doi.org/10.1007/s12031-011-9693-1] [PMID: 22205146]
[89]
Chandrasekhar Y, Phani Kumar G, Ramya EM, Anilakumar KR. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem Res 2018; 43(6): 1150-60.
[http://dx.doi.org/10.1007/s11064-018-2530-y] [PMID: 29671234]
[90]
Badhani B, Sharma N, Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 2015; 5(35): 27540-57.
[http://dx.doi.org/10.1039/C5RA01911G]
[91]
Shabani S, Rabiei Z, Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: A review. Int J Food Prop 2020; 23(1): 736-52.
[http://dx.doi.org/10.1080/10942912.2020.1753769]
[92]
Liu Y, Carver JA, Calabrese AN, Pukala TL. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim Biophys Acta Proteins Proteomics 2014; 1844(9): 1481-5.
[http://dx.doi.org/10.1016/j.bbapap.2014.04.013] [PMID: 24769497]
[93]
You BR, Park WH. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol in vitro 2010; 24(5): 1356-62.
[http://dx.doi.org/10.1016/j.tiv.2010.04.009] [PMID: 20417267]
[94]
Kaur K, Gill JS, Bansal PK, Deshmukh R. Neuroinflammation - A major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci 2017; 381(381): 308-14.
[http://dx.doi.org/10.1016/j.jns.2017.08.3251] [PMID: 28991704]
[95]
Watson MB, Richter F, Lee SK, et al. Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 2012; 237(2): 318-34.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.025] [PMID: 22750327]
[96]
da Silva TM, Munhoz RP, Alvarez C, et al. Depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord 2008; 111(2-3): 351-9.
[http://dx.doi.org/10.1016/j.jad.2008.03.008] [PMID: 18485485]
[97]
Hernando S, Requejo C, Herran E, et al. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: The role of glia and NRf2 regulation. Neurobiol Dis 2019; 121: 252-62.
[http://dx.doi.org/10.1016/j.nbd.2018.10.001] [PMID: 30296616]
[98]
Delattre AM, Carabelli B, Mori MA, et al. Maternal omega-3 supplement improves dopaminergic system in pre- and postnatal inflammation-induced neurotoxicity in parkinson’s disease model. Mol Neurobiol 2017; 54(3): 2090-106.
[http://dx.doi.org/10.1007/s12035-016-9803-8] [PMID: 26924316]
[99]
Nebrisi EE. Neuroprotective activities of curcumin in Parkinson’s Disease: A review of the literature. Int J Mol Sci 2021; 22(20): 11248.
[http://dx.doi.org/10.3390/ijms222011248] [PMID: 34681908]
[100]
Mythri RB, Bharath MM. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 2012; 18(1): 91-9.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[101]
Grin IR, Konorovsky PG, Nevinsky GA, Zharkov DO. Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. Biochemistry 2009; 74(11): 1253-9.
[http://dx.doi.org/10.1134/S000629790911011X] [PMID: 19916941]
[102]
Hegde ML, Hegde PM, Holthauzen LMF, Hazra TK, Rao KSJ, Mitra S. Specific inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: Potential etiological linkage to neurodegenerative diseases. J Biol Chem 2010; 285(37): 28812-25.
[http://dx.doi.org/10.1074/jbc.M110.126664] [PMID: 20622253]
[103]
Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 2010; 11(1): 57.
[http://dx.doi.org/10.1186/1471-2202-11-57] [PMID: 20433710]
[104]
Ullah H, Khan H. Anti-parkinson potential of silymarin: Mechanistic insight and therapeutic standing. Front Pharmacol 2018; 9(9): 422.
[http://dx.doi.org/10.3389/fphar.2018.00422] [PMID: 29755356]
[105]
Nencini C, Giorgi G, Micheli L. Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine 2007; 14(2-3): 129-35.
[http://dx.doi.org/10.1016/j.phymed.2006.02.005] [PMID: 16638633]
[106]
Pérez-H J, Carrillo-S C, García E, Ruiz-Mar G, Pérez-Tamayo R, Chavarría A. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology 2014; 319(1): 38-43.
[http://dx.doi.org/10.1016/j.tox.2014.02.009] [PMID: 24607817]
[107]
Wang M, Li YJ, Ding Y, et al. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 2016; 53(2): 932-43.
[http://dx.doi.org/10.1007/s12035-014-9062-5] [PMID: 25561437]
[108]
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. Phytomedicine 2020; 79(153320): 153320.
[http://dx.doi.org/10.1016/j.phymed.2020.153320] [PMID: 32920285]
[109]
Jung UJ, Jeon MT, Choi MS, Kim SR. Silibinin attenuates MPP⁺-induced neurotoxicity in the substantia nigra in vivo. J Med Food 2014; 17(5): 599-605.
[http://dx.doi.org/10.1089/jmf.2013.2926] [PMID: 24660866]
[110]
Tripathi MK, Rajput C, Mishra S, Rasheed MS, Singh MP. Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: Feats, constraints, and flaws of modulators. Neurotox Res 2019; 35(1): 260-70.
[http://dx.doi.org/10.1007/s12640-018-9917-z] [PMID: 29949106]
[111]
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front Pharmacol 2018; 9(9): 892.
[http://dx.doi.org/10.3389/fphar.2018.00892] [PMID: 30233358]
[112]
Krishnamurthy RG, Senut MC, Zemke D, et al. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res 2009; 87(11): 2541-50.
[http://dx.doi.org/10.1002/jnr.22071] [PMID: 19382233]
[113]
Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr Neurosci 2017; 20(6): 351-9.
[http://dx.doi.org/10.1080/1028415X.2015.1135559] [PMID: 26856988]
[114]
Ding H, Xiong Y, Sun J, Chen C, Gao J, Xu H. Asiatic acid prevents oxidative stress and apoptosis by inhibiting the translocation of α-synuclein into mitochondria. Front Neurosci 2018; 12(431): 431.
[http://dx.doi.org/10.3389/fnins.2018.00431] [PMID: 30002614]
[115]
Chen D, Zhang XY, Sun J, et al. Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing mitochondrial ROS production. Biomol Ther 2019; 27(5): 442-9.
[http://dx.doi.org/10.4062/biomolther.2018.188] [PMID: 30971058]
[116]
Tamtaji OR, Hadinezhad T, Fallah M, et al. The therapeutic potential of quercetin in Parkinson’s Disease: Insights into its molecular and cellular regulation. Curr Drug Targets 2020; 21(5): 509-18.
[http://dx.doi.org/10.2174/1389450120666191112155654] [PMID: 31721700]
[117]
Wattanathorn J, Sriraksa N, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K. Cognitive-enhancing effect of quercetin in a rat model of parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med 2012; 2012: 823206.
[118]
Shrivastava A, Gupta JK, Goyal MK. Neuroprotective efficacy of quercetin with lamotrigine and gabapentin against pentylenetetrazole-induced kindling and associated behavioral comorbidities in mice. Indian J Pharm Educ Res 2022; 56(4s): s659-68.
[http://dx.doi.org/10.5530/ijper.56.4s.212]
[119]
Xiong N, Yang H, Liu L, et al. bFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson’s disease. Environ Toxicol Pharmacol 2013; 36(2): 411-22.
[http://dx.doi.org/10.1016/j.etap.2013.05.005] [PMID: 23770451]
[120]
El-Horany HE, El-latif RNA, ElBatsh MM, Emam MN. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (Quercetin on Experimental Parkinson’s Disease). J Biochem Mol Toxicol 2016; 30(7): 360-9.
[http://dx.doi.org/10.1002/jbt.21821] [PMID: 27252111]
[121]
Lv C, Hong T, Yang Z, et al. Effect of quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Evid Based Complement Alternat Med 2012; 2012: 928643.
[http://dx.doi.org/10.1155/2012/928643] [PMID: 22454690]
[122]
Pathania R, Chawla P, Khan H, Kaushik R, Khan MA. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: A natural food legume. 3 Biotech 2020; 10(6): 1-15.
[123]
Goyal A, Agrawal N. Quercetin: A potential candidate for the treatment of arthritis. Curr Mol Med 2022; 22(4): 325-35.
[http://dx.doi.org/10.2174/1566524021666210315125330] [PMID: 33719956]
[124]
Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinson’s and in some other diseases: Recent advancement and future prospective. 3 Biotech 2020; 10(12): 1-11.
[125]
Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T. A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 2010; 16(7): 458-65.
[http://dx.doi.org/10.1016/j.parkreldis.2010.04.015] [PMID: 20570206]
[126]
Pandey SN, Singh G, Semwal BC, et al. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer’s disease. J Food Biochem 2022; 46(12): e14426.
[http://dx.doi.org/10.1111/jfbc.14426] [PMID: 36169224]
[127]
Deokar G, Kakulte H, Kshirsagar S. Phytochemistry and pharmacological activity of Mucuna pruriens: A review. Pharm Biol 2016; 3(1): 50-9.
[128]
Lieu CA, Venkiteswaran K, Gilmour TP, et al. The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-Treated nonhuman primate. Evid Based Complement Alternat Med 2012; 2012: 840247.
[http://dx.doi.org/10.1155/2012/840247] [PMID: 22997535]
[129]
Williams RJ, Mohanakumar KP, Beart PM. Neuro-nutraceuticals: Natural products nourish the brain but be aware of contrary effects. Neurochem Int 2021; 150: 105159.
[http://dx.doi.org/10.1016/j.neuint.2021.105159] [PMID: 34400236]
[130]
Meenambal R, Srinivas Bharath MM. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem Int 2020; 140: 104851.
[http://dx.doi.org/10.1016/j.neuint.2020.104851] [PMID: 32976906]
[131]
Navarro A, Boveris A. Brain mitochondrial dysfunction and oxidative damage in Parkinson’s disease. J Bioenerg Biomembr 2009; 41(6): 517-21.
[http://dx.doi.org/10.1007/s10863-009-9250-6] [PMID: 19915964]
[132]
Sarris J, Marx W, Ashton MM, et al. Plant-based medicines (Phytoceuticals) in the treatment of psychiatric disorders: A meta-review of meta-analyses of randomized controlled trials: Les médicaments à base de plantes (phytoceutiques) dans le traitement des troubles psychiatriques: une méta-revue des méta-analyses d’essais randomisés contrôlés. Can J Psychiat 2021; 66(10): 849-62.
[http://dx.doi.org/10.1177/0706743720979917] [PMID: 33596697]
[133]
Nemane ST, Shinde NN, Katu YM, Waghmare RR. A review article on: Nutraceuticals. World J Pharm Res 2020; 9: 110-3.
[134]
Saini R. Coenzyme Q10: The essential nutrient. J Pharm Bioallied Sci 2011; 3(3): 466-7.
[http://dx.doi.org/10.4103/0975-7406.84471] [PMID: 21966175]
[135]
Abdin AA, Hamouda HE. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 2008; 55(8): 1340-6.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.033] [PMID: 18817789]
[136]
Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020; 9(8): 706.
[http://dx.doi.org/10.3390/antiox9080706] [PMID: 32759751]
[137]
Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017; 41(4): 435-43.
[http://dx.doi.org/10.1016/j.jgr.2016.08.004] [PMID: 29021688]
[138]
He YB, Liu YL, Yang ZD, et al. Effect of ginsenoside Rg1 on experimental Parkinson’s disease: A systematic review and meta analysis of animal studies. Exp Ther Med 2021; 21(6): 552.
[http://dx.doi.org/10.3892/etm.2021.9984] [PMID: 33850524]
[139]
Dastidar SG, Rajagopal D, Ray A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr Opin Investig Drugs 2007; 8(5): 364-72.
[PMID: 17520865]
[140]
Zhang Y, Li J, Yan C. An update on vinpocetine: New discoveries and clinical implications. Eur J Pharmacol 2018; 819(819): 30-4.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.041] [PMID: 29183836]
[141]
Mähler A, Mandel S, Lorenz M, et al. Epigallocatechin-3-gallate: A useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J 2013; 4(1): 5.
[http://dx.doi.org/10.1186/1878-5085-4-5] [PMID: 23418936]
[142]
’T Hart B A, Copray S, Philippens I. Apocynin, a low molecular oral treatment for neurodegenerative disease. BioMed Res Int 2014; 2014: 1-6.
[143]
Sulaimon LA, Afolabi LO, Adisa RA, et al. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Adv Redox Research 2022; 5: 100037.
[http://dx.doi.org/10.1016/j.arres.2022.100037]
[144]
Singla KR, Bhat GV. Crocin: An Overview. Indo. Am J Pharm 2011; 1(4): 281-6.
[145]
Farkhondeh T, Samarghandian S, Shaterzadeh TH, Samini F. The protective effects of crocin in the management of neurodegenerative diseases: A review. Am J Neurodegener Dis 2018; 7(1): 1-10.
[PMID: 29531865]
[146]
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. Iran J Basic Med Sci 2022; 25(1): 14-26.
[PMID: 35656442]
[147]
Luo C, Zou L, Sun H, et al. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 2020; 11(153): 153.
[http://dx.doi.org/10.3389/fphar.2020.00153] [PMID: 32184728]
[148]
Cai G, Lin F, Wu D, et al. Rosmarinic acid inhibits mitochondrial damage by alleviating unfolded protein response. Front Pharmacol 2022; 13(1529): 859978.
[http://dx.doi.org/10.3389/fphar.2022.859978] [PMID: 35652041]
[149]
Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 2019; 22(3): 225-37.
[PMID: 31156781]
[150]
Bai J, Zhang Y, Tang C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133: 110985.
[http://dx.doi.org/10.1016/j.biopha.2020.110985] [PMID: 33212373]
[151]
Fuloria S, Mehta J, Chandel A, et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front Pharmacol 2022; 13: 820806.
[http://dx.doi.org/10.3389/fphar.2022.820806] [PMID: 35401176]
[152]
Yang J, Song S, Li J, Liang T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat. Pathol Res Pract 2014; 210(6): 357-62.
[http://dx.doi.org/10.1016/j.prp.2014.02.005] [PMID: 24642369]
[153]
Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011; 14(4): 308-17.
[PMID: 23492971]
[154]
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on asiatic acid and its derivatives: A potential compound. SLAS Technol 2018; 23(2): 111-27.
[http://dx.doi.org/10.1177/2472630317751840] [PMID: 29361877]
[155]
Chao P, Lee H, Yin M. Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice. Food Funct 2016; 7(4): 1999-2005.
[http://dx.doi.org/10.1039/C6FO00041J] [PMID: 26999333]
[156]
Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. The magic velvet bean of Mucuna pruriens. J Tradit Complement Med 2012; 2(4): 331-9.
[http://dx.doi.org/10.1016/S2225-4110(16)30119-5] [PMID: 24716148]
[157]
Rai SN, Birla H, Zahra W, Singh SS, Singh SP. Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). J Chem Neuroanat 2017; 85(85): 27-35.
[http://dx.doi.org/10.1016/j.jchemneu.2017.06.005] [PMID: 28642128]
[158]
Jamali B, Entezari M, Babaei N, Hashemi M, Heidari M. β-Carotene has the neuroprotective effects in Parkinson’s disease by regulating mitochondrial apoptotic pathway genes. JGG 2020; 4(2): 1-12.
[159]
Anand R, Mohan L, Bharadvaja N. Disease prevention and treatment using β-carotene: The ultimate provitamin A. Rev Bras Farmacogn 2022; 32(4): 491-501.
[http://dx.doi.org/10.1007/s43450-022-00262-w] [PMID: 35669276]
[160]
Arbo BD, André-Miral C, Nasre-Nasser RG, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 2020; 12(103): 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[161]
Salehi B, Mishra A, Nigam M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018; 6(3): 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[162]
Li T, Zhang W, Kang X, et al. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D‐ND6 pathway in the MPTP/MPP+ ‐induced model of Parkinson’s disease. J Neurochem 2020; 153(2): 276-89.
[http://dx.doi.org/10.1111/jnc.14868] [PMID: 31520529]
[163]
Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Devel Ther 2018; 12: 1479-89.
[http://dx.doi.org/10.2147/DDDT.S160776] [PMID: 29872270]
[164]
Deb S, Dutta A, Phukan BC, et al. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int 2019; 129: 104478.
[http://dx.doi.org/10.1016/j.neuint.2019.104478] [PMID: 31145971]
[165]
Nobre AC, Rao A, Owen GN. L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac J Clin Nutr 2008; 17(S1): 167-8.
[PMID: 18296328]
[166]
Xu W, Zheng D, Liu Y, et al. Alleviates lipopolysaccharide-Induced Parkinson’s Disease by inhibiting TLR/NF-KB and activating Nrf2/HO-1 pathway. Cell Physiol Biochem 2017; 44(6): 2091-104.
[http://dx.doi.org/10.1159/000485947] [PMID: 29241205]
[167]
Xiang Z, Wu X, Liu X, Jin Y, Glaucocalyxin A. Glaucocalyxin A: A review. Nat Prod Res 2014; 28(24): 2221-36.
[http://dx.doi.org/10.1080/14786419.2014.934235] [PMID: 25033290]
[168]
Pizzorno J, Ercal N. Glutathione! Integr Med 2014; 13(1): 8-12.
[PMID: 26770075]
[169]
Wang HL, Zhang J, Li YP, Dong L, Chen YZ. Potential use of glutathione as a treatment for Parkinson’s disease. Exp Ther Med 2020; 21(2): 125.
[http://dx.doi.org/10.3892/etm.2020.9557] [PMID: 33376507]
[170]
Que DLS, Jamora RDG. Citicoline as adjuvant therapy in Parkinson’s disease: A systematic review. Clin Ther 2021; 43(1): e19-31.
[http://dx.doi.org/10.1016/j.clinthera.2020.11.009] [PMID: 33279231]
[171]
Qureshi I, Endres JR. Citicoline: A novel therapeutic agent with neuroprotective, neuromodulatory, and neuroregenerative properties. J Nat Med 2010; 2(6): 11-25.
[172]
Boldyrev A, Fedorova T, Stepanova M, et al. Carnosine increases efficiency of DOPA therapy of Parkinson’s disease: A pilot study. Rejuvenation Res 2008; 11(4): 821-7.
[http://dx.doi.org/10.1089/rej.2008.0716] [PMID: 18729814]
[173]
Jukić I, Kolobarić N, Stupin A, et al. Carnosine, small but mighty—prospect of use as functional ingredient for functional food formulation. Antioxidants 2021; 10(7): 1037.
[http://dx.doi.org/10.3390/antiox10071037] [PMID: 34203479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy