Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Bioactive Compounds of Mustard, its Role in Consumer Health and in the Development of Potential Functional Foods

Author(s): Theertha Poyil, Prasad Rasane*, Jyoti Singh, Sawinder Kaur, Jaspreet Kaur, Mahendra Gunjal, Harshal Avinashe, Nidhi Dubey and Dipendra Singh Mahato

Volume 19, Issue 9, 2023

Published on: 10 April, 2023

Page: [950 - 960] Pages: 11

DOI: 10.2174/1573401319666230309151954

Price: $65

conference banner
Abstract

Mustard (Brassica spp.) is an annual oilseed crop that is widely cultivated in Asia and Europe for both culinary and medicinal purposes. It is a rich source of valuable nutritive and non-nutritive bioactive compounds which have gained importance for their pharmacological activities in recent years owing to increased attention towards achieving sustainable development goal of good health and wellbeing. The presence of traditional antinutrient factors like glucosinolates sustainable source of affordable nutraceuticals. The major bioactive components in mustard are glucosinolates (sinigrin and sinalbin) and its sulphur-rich degradation products (isothiocyanates), phenolic compounds, phytic acid and various phytosterols. These compounds possess specific activities like antioxidant, anti-inflammatory, anti-carcinogenic, antimicrobial, antiobesity as well as anti-depressant activity. Nutraceutical products like food supplements can be formulated by extracting these compounds which possess desirable properties and thus allow maximum use of the plant.

Graphical Abstract

[1]
India: Oilseeds and Products Annual (April 5, 2021) Available online: https://www.fas.usda.gov/data/india-oilseeds-and-products-annual-5
[2]
Kalia A, Shukla G, Mishra D, Mishra BP, Patel RR. Comparative trend analysis of mustard in Bundelkhand region, Uttar Pradesh and India. Indian J Ext Educ 2021; 57(1): 15-9.
[3]
Pocket Book of Agricultural Statistics 2017. Government of India Ministry of Agriculture & Farmers Welfare Department of Agriculture, Cooperation & Farmers Welfare Directorate of Economics & Statistics New Delhi. Available online: https://agricoop.nic.in/sites/default/files/pocketbook_0.pdf
[4]
Wanasundara JPD, McIntosh TC, Perera SP, Withana-Gamage TS, Mitra P. Canola/rapeseed protein-functionality and nutrition. OCL Oilseeds Fats Crops Lipids 2016; 23(4): D407.
[http://dx.doi.org/10.1051/ocl/2016028]
[5]
Lietzow J. Biologically active compounds in mustard seeds: A toxicological perspective. Foods 2021; 10(9): 2089.
[http://dx.doi.org/10.3390/foods10092089] [PMID: 34574199]
[6]
Sehwag S, Das M. A brief overview: Present status on utilization of mustard oil and cake. Indian J Tradit Knowl 2015; 14(2): 244-50.
[7]
Rathore SS, Shekhawat K, Dass A, Kandpal BK, Singh VK. Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci, India, Sect B Biol Sci 2019; 89(2): 419-27.
[http://dx.doi.org/10.1007/s40011-017-0885-5]
[8]
Chakraborty S, Paul K, Mallick P, et al. Consortia of bioactives in supercritical carbon dioxide extracts of mustard and small cardamom seeds lower serum cholesterol levels in rats: New leads for hypocholesterolaemic supplements from spices. J Nutr Sci 2019; 8: e32.
[http://dx.doi.org/10.1017/jns.2019.28] [PMID: 31595188]
[9]
Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem 2014; 165: 560-8.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.126] [PMID: 25038712]
[10]
L’Hocine L, Pitre M, Achouri A. Detection and identification of allergens from Canadian mustard varieties of Sinapis alba and Brassica juncea. Biomolecules 2019; 9(9): 489.
[http://dx.doi.org/10.3390/biom9090489] [PMID: 31540036]
[11]
Rani R, Badwaik LS. Functional properties of oilseed cakes and defatted meals of mustard, soybean and flaxseed. Waste Biomass Valoriz 2021; 12(10): 5639-47.
[http://dx.doi.org/10.1007/s12649-021-01407-z]
[12]
WHO/IUIS Allergen Nomenclature Sub-Committee.. Available from: http://www.allergen.org/
[13]
Sarker AK, Saha D, Begum H, Zaman A, Rahman MM. Comparison of cake compositions, pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes. AMB Express 2015; 5(1): 22.
[http://dx.doi.org/10.1186/s13568-015-0110-y] [PMID: 25859422]
[14]
Chmielewska A, Kozłowska M, Rachwał D, et al. Canola/rapeseed protein – nutritional value, functionality and food application: A review. Crit Rev Food Sci Nutr 2021; 61(22): 3836-56.
[http://dx.doi.org/10.1080/10408398.2020.1809342] [PMID: 32907356]
[15]
Chakraborty S, Gupta SS, Sengupta A, Ghosh M. Quality ascertain of different mustard oil samples obtained from the local market of West Bengal, India. J Dairy Foods Home Sci 2018; 37(2): 138-43.
[http://dx.doi.org/10.18805/ajdfr.DR-1197]
[16]
Bhattacharya S, Sinha S, Dey P, Das N, Maiti MK. Production of nutritionally desirable fatty acids in seed oil of Indian mustard (Brassica juncea L.) by metabolic engineering. Phytochem Rev 2012; 11(2-3): 197-209.
[http://dx.doi.org/10.1007/s11101-012-9228-6]
[17]
Food Safety and Standards (Food Products Standards and Food Additives) Regulations. 2011. Available online: https://www. fssai.gov.in/upload/uploadfiles/files/Compendium_Food_Additives_Regulations_08_09_2020-compressed.pdf
[18]
EFSA Panel on Contaminants in the Food Chain (CONTAM).. Erucic acid in feed and food. EFSA J 2016; 14(11): 4593.
[19]
Terpinc P, Čeh B, Ulrih NP, Abramovič H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts Ind Crops Prod 2012; 39: 210-7.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.023]
[20]
Nicácio AE, Rodrigues CA, Visentainer JV, Maldaner L. Evaluation of the QuEChERS method for the determination of phenolic compounds in yellow (Brassica alba), brown (Brassica juncea), and black (Brassica nigra) mustard seeds. Food Chem 2021; 340: 128162.
[http://dx.doi.org/10.1016/j.foodchem.2020.128162] [PMID: 33027718]
[21]
Đorđević BS, Todorović ZB, Troter DZ, et al. Extraction of phenolic compounds from black mustard (Brassica nigra L.) seed by deep eutectic solvents. J Food Meas Charact 2021; 15(2): 1931-8.
[http://dx.doi.org/10.1007/s11694-020-00772-y]
[22]
Martinović N,, Polak T,, Ulrih NP, Abramovič H. Mustard seed: Phenolic composition and effects on lipid oxidation in oil, oil-in-water emulsion and oleogel. Ind Crops Prod 2020; 156: 112851.
[http://dx.doi.org/10.1016/j.indcrop.2020.112851]
[23]
Kumar V, Singh D, Sangwan P, Gill PK. Management of environmental phosphorus pollution using phytases: Current challenges and future prospects. Appl Environ Biotechnol 2015; 97-114.
[24]
Nissar J, Ahad T, Naik HR, Hussain SZ. A review phytic acid: As antinutrient or nutraceutical. J Pharmacogn Phytochem 2017; 6(6): 1554-60.
[25]
Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 2015; 52(2): 676-84.
[http://dx.doi.org/10.1007/s13197-013-0978-y] [PMID: 25694676]
[26]
Bala M, Tushir S, Tyagi SK, Gupta RK. Antinutrients in oilseed brassica: Uses and potential applications. Anim Nutr Feed Technol 2015; 15(2): 295-310.
[http://dx.doi.org/10.5958/0974-181X.2015.00033.5]
[27]
Gupta T, Ratandeep P, Saya L. A comprehensive review on therapeutic properties of mustard oil and olive oil. Chem Biol Lett 2021; 9(1): 309.
[28]
Blažević I, Montaut S, Burčul F, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020; 169: 112100.
[http://dx.doi.org/10.1016/j.phytochem.2019.112100] [PMID: 31771793]
[29]
Hebert M, Mhemdi H, Vorobiev E. Selective and eco-friendly recovery of glucosinolates from mustard seeds (Brassica juncea) using process optimization and innovative pretreatment (high voltage electrical discharges). Food Bioprod Process 2020; 124: 11-23.
[http://dx.doi.org/10.1016/j.fbp.2020.04.009]
[30]
Marangoni F, Poli A. Phytosterols and cardiovascular health. Pharmacol Res 2010; 61(3): 193-9.
[http://dx.doi.org/10.1016/j.phrs.2010.01.001] [PMID: 20067836]
[31]
Gawrysiak-Witulska M, Siger A, Rudzińska M, Bartkowiak-Broda I. The effect of drying on the native tocopherol and phytosterol content of Sinapis alba L. seeds. J Sci Food Agric 2020; 100(1): 354-61.
[http://dx.doi.org/10.1002/jsfa.10047] [PMID: 31588554]
[32]
Sharma A, Rai PK, Prasad S. GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchem J 2018; 138: 488-93.
[http://dx.doi.org/10.1016/j.microc.2018.01.015]
[33]
Oh S, Kim K, Choi M. Antioxidant activity of different parts of Dolsan leaf. Food Sci Biotechnol 2016; 25(5): 1463-7.
[http://dx.doi.org/10.1007/s10068-016-0227-z] [PMID: 30263431]
[34]
Park SY, Jang HL, Lee JH, et al. Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. Food Sci Biotechnol 2017; 26(1): 105-12.
[http://dx.doi.org/10.1007/s10068-017-0014-5] [PMID: 30263516]
[35]
Manas D. The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. Int J Plant Physiol Biochem 2014; 6(6): 66-70.
[http://dx.doi.org/10.5897/IJPPB2014.0210]
[36]
Boulghobra D, Grillet PE, Laguerre M, et al. Sinapine, but not sinapic acid, counteracts mitochondrial oxidative stress in cardiomyocytes. Redox Biol 2020; 34: 101554.
[http://dx.doi.org/10.1016/j.redox.2020.101554] [PMID: 32464499]
[37]
Pandi A, Kalappan VM. Pharmacological and therapeutic applications of Sinapic acid—an updated review. Mol Biol Rep 2021; 48(4): 3733-45.
[http://dx.doi.org/10.1007/s11033-021-06367-0] [PMID: 33988797]
[38]
Tian Y, Deng F. Phytochemistry and biological activity of mustard (Brassica juncea): A review. CYTA J Food 2020; 18(1): 704-18.
[http://dx.doi.org/10.1080/19476337.2020.1833988]
[39]
Ippoushi K, Takeuchi A, Azuma K. Sinigrin suppresses nitric oxide production in rats administered intraperitoneally with lipopolysaccharide. Food Chem 2010; 120(4): 1119-21.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.035]
[40]
Hashmi SI, Satwadhar PN, Khotpal RR, Deshpande HW, Syed KA, Vibhute BP. Rapeseed meal nutraceuticals. J Oilseed Brassica 2016; 1(2): 43-54.
[41]
Jie M, Cheung WM, Yu V, Zhou Y, Tong PH, Ho JWS. Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. PLoS One 2014; 9(10): e110145.
[http://dx.doi.org/10.1371/journal.pone.0110145] [PMID: 25329483]
[42]
Bhattacharya A, Li Y, Wade KL, Paonessa JD, Fahey JW, Zhang Y. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carcinogenesis 2010; 31(12): 2105-10.
[http://dx.doi.org/10.1093/carcin/bgq202] [PMID: 20889681]
[43]
Ezzat SM, El-Halawany AM, Hamed AR, Abdel-Sattar E. Role phytochemicals play in the activation of antioxidant response elements (AREs) and phase II enzymes and their relation to cancer progression and prevention. Stud Nat Prod 2019; 60: 345-69.
[http://dx.doi.org/10.1016/B978-0-444-64181-6.00009-7]
[44]
Bassan P, Bhushan S, Kaur T, Arora R, Arora S, Vig AP. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. Physiol Mol Biol Plants 2018; 24(3): 399-409.
[http://dx.doi.org/10.1007/s12298-018-0509-4] [PMID: 29692548]
[45]
Xian YF, Hu Z, Ip SP, et al. Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. Phytomedicine 2018; 50: 196-204.
[http://dx.doi.org/10.1016/j.phymed.2018.05.010] [PMID: 30466979]
[46]
Yang R, Zhou Q, Wen C, et al. Mustard seed (Sinapis alba Linn) attenuates imiquimod-induced psoriasiform inflammation of BALB/c mice. J Dermatol 2013; 40(7): 543-52.
[http://dx.doi.org/10.1111/1346-8138.12119] [PMID: 23682616]
[47]
Lee H, Lee C, Kim J, Pyo S. The inhibitory effect of sinigrin on the production of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 macrophages (1056.5). FASEB J 2014; 28(S1): 1056-5.
[http://dx.doi.org/10.1096/fasebj.28.1_supplement.1056.5]
[48]
Adegbeye MJ, Elghandour MMMY, Faniyi TO, et al. Antimicrobial and antihelminthic impacts of black cumin, pawpaw and mustard seeds in livestock production and health. Agrofor Syst 2020; 94(4): 1255-68.
[http://dx.doi.org/10.1007/s10457-018-0337-0]
[49]
Clemente I, Aznar M, Silva F, Nerín C. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov Food Sci Emerg Technol 2016; 36: 26-33.
[http://dx.doi.org/10.1016/j.ifset.2016.05.013]
[50]
Dufour V, Stahl M, Baysse C. The antibacterial properties of isothiocyanates. Microbiology 2015; 161(2): 229-43.
[http://dx.doi.org/10.1099/mic.0.082362-0] [PMID: 25378563]
[51]
Miceli A, Aleo A, Corona O, Sardina MT, Mammina C, Settanni L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control 2014; 40: 157-64.
[http://dx.doi.org/10.1016/j.foodcont.2013.12.006]
[52]
Guijarro-Real C, Plazas M, Rodríguez-Burruezo A, Prohens J, Fita A. Potential in vitro inhibition of selected plant extracts against SARS-CoV-2 chymotripsin-like protease (3CLPro) activity. Foods 2021; 10(7): 1503.
[http://dx.doi.org/10.3390/foods10071503] [PMID: 34209659]
[53]
Lee NK, Lee JH, Lim SM, et al. Short communication: Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J Dairy Sci 2014; 97(9): 5383-6.
[http://dx.doi.org/10.3168/jds.2014-8016] [PMID: 25022686]
[54]
Mignone G, Shwaiki LN, Arendt EK, Coffey A. Isolation of the mustard Napin protein Allergen Sin a 1 and characterisation of its antifungal activity. Biochem Biophys Rep 2022; 29: 101208.
[http://dx.doi.org/10.1016/j.bbrep.2022.101208] [PMID: 35079640]
[55]
Makheswari MU, Sudarsanam D. Database on antidiabetic indigenous plants of Tamil Nadhu, India. Int J Pharm Sci Res 2012; 3(2): 287-93.
[56]
Tiwari P, Verma P, Gosami S. Brassica juncea’s anti-diabetic properties a review. Easy Chair Preprint no. 7811; 2022. Available online: https://easychair.org/publications/preprint/kQsl
[57]
Men X, Han X, Lee SJ, et al. Anti-adipogenic effects of sulforaphane-rich ingredient with broccoli sprout and mustard seed in 3T3-L1 preadipocytes. Planta Med 2022.
[http://dx.doi.org/10.1055/a-1853-7101] [PMID: 35577064]
[58]
Yokozawa T, Kim HY, Cho EJ, Choi JS, Chung HY. Antioxidant effects of isorhamnetin 3,7-di-O-beta-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J Agric Food Chem 2002; 50(19): 5490-5.
[http://dx.doi.org/10.1021/jf0202133] [PMID: 12207497]
[59]
Paul K, Chakraborty S, Mallick P, et al. Supercritical carbon dioxide extracts of small cardamom and yellow mustard seeds have fasting hypoglycaemic effects: diabetic rat, predictive iHOMA2 models and molecular docking study. Br J Nutr 2021; 125(4): 377-88.
[http://dx.doi.org/10.1017/S000711452000286X] [PMID: 32713360]
[60]
Kumar A, Rana AK, Singh A, Singh A. Bioactivity of methanolic extract of Brassica juncea in animal model of diabetes mellitus. Chin Herb Med 2019; 11(4): 434-7.
[http://dx.doi.org/10.1016/j.chmed.2019.04.007]
[61]
Thakur AK, Chatterjee SS, Kumar V. Antidepressant-like effects of Brassica juncea L. leaves in diabetic rodents. Indian J Exp Biol 2014; 52(6): 613-22.
[PMID: 24956892]
[62]
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119: 176-88.
[http://dx.doi.org/10.1016/j.fct.2018.04.052] [PMID: 29704578]
[63]
Chakraborty P, Bhattacharyya DK, Ghosh M. Extrusion treated meal concentrates of Brassica juncea as functionally improved ingredient in protein and fiber rich breadstick preparation. Lebensm Wiss Technol 2021; 142: 111039.
[http://dx.doi.org/10.1016/j.lwt.2021.111039]
[64]
Brettonnet A, Hewavitarana A, DeJong S, Lanari MC. Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chem 2010; 121(4): 927-33.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.021]
[65]
Abul-Fadl MM, El-Badry N, Ammar MS. Nutritional and chemical evaluation for two different varieties of mustard seeds. World Appl Sci J 2011; 15(9): 1225-33.
[66]
Danlami U, Orishadipe AT, Lawal DR. Phytochemical, nutritional and antimicrobial evaluations of the aqueous extract of Brassica nigra (Brassicaceae) seeds. Am J Appl Chem 2016; 4(4): 161.
[http://dx.doi.org/10.11648/j.ajac.20160404.17]
[67]
Gök V, Çağlar MY, Tomar O. Comparison of chemical properties, antioxidant capacity, and phenolic acids of autoclaved and unautoclaved ground mustard seeds. Food Sci Technol 2021; 41(2): 513-8.
[http://dx.doi.org/10.1590/fst.09020]
[68]
Lionneton E, Aubert G, Ochatt S, Merah O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 2004; 109(4): 792-9.
[http://dx.doi.org/10.1007/s00122-004-1682-0] [PMID: 15340689]
[69]
Katepa-Mupondwa F, Gugel RK, Raney JP. Genetic diversity for agronomic, morphological and seed quality traits in Sinapis alba L. (yellow mustard). Can J Plant Sci 2006; 86(4): 1015-25.
[http://dx.doi.org/10.4141/P05-185]
[70]
Polasa K, Kumar PU, Krishnaswamy K. Effect of Brassica nigra on Benzo[a]pyrene mutagenicity. Food Chem Toxicol 1994; 32(8): 777-81.
[http://dx.doi.org/10.1016/S0278-6915(09)80011-2] [PMID: 8070742]
[71]
Bell JM, Rakow G. Trypsin inhibitors and phytic acid in oil-extracted meals from seeds of several Brassica species and of Sinapis alba. Can J Anim Sci 1996; 76(3): 423-5.
[http://dx.doi.org/10.4141/cjas96-061]
[72]
Singh BK, Bala M, Rai PK. Fatty acid composition and seed meal characteristics of Brassica and allied genera. Natl Acad Sci Lett 2014; 37(3): 219-26.
[http://dx.doi.org/10.1007/s40009-014-0231-x]
[73]
Cui W, Eskin NA. Processing and properties of mustard products and components. Functional foods: Biochemical and processing aspects. Lancaster, UK: Technomic Publishing Company, Inc. 1998; pp. 235-64.
[74]
Kopsell DA, McElroy JS, Sams CE, Kopsell DE. Genetic variation in carotenoid concentrations among diploid and amphidiploid rapid-cycling Brassica species. Hortic Sci 2007; 42(3): 461-5.
[http://dx.doi.org/10.21273/HORTSCI.42.3.461]
[75]
Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 2007; 62(3): 85-91.
[http://dx.doi.org/10.1007/s11130-007-0046-8] [PMID: 17594521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy