Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Hydrogenation Influences the Created Giant Dielectric Behaviors of (Bi+W) Codoped Anatase TiO2

Author(s): A.A. Dakhel*

Volume 17, Issue 3, 2024

Published on: 26 May, 2023

Page: [266 - 273] Pages: 8

DOI: 10.2174/2666145416666230428155602

Price: $65

Abstract

Introductions: TiO2 nanoparticles ceramic (NPs) codoped with Bi and W ions have been synthesized by a hydrothermal technique. A portion of the prepared ceramic was posthydrogenated. Ceramic NPs were characterized by traditional methods. Crystalline structures and optical properties were investigated using X-Ray diffraction (XRD) and diffuse reflection spectroscopy, respectively.

Methods: The present work has focused on the creation of a colossal (giant) dielectric permittivity (GP) behavior with the TiO2 host NCs through the Bi/W codoping to construct electronic core/shell structures. In addition, the influence of post-hydrogenation on the created GP was also examined.

Results: It was found a high permittivity of 3.69×104 at 1 kHz, which was reduced to 3.29×104 by the hydrogenation of the sample. This is attributed to the densification of the itinerant electrons by the effect of the catalytic power of the doping W5+ ions to dissociate the adsorbed H2.

Conclusion: The present values of GP are much higher than the permittivity of the pure TiO2 and the Bi-doped TiO2 ceramic, which was attributed to the construction of core/shell electronics structures. As a result, the doping process has been studied in detail in relation to scientific expectations.

« Previous
Graphical Abstract

[1]
Tuichai W, Danwittayakul S, Srepusharawoot P, Thongbai P, Maensiri S. Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A = Al, Ga and In). Ceram Int 2017; 43: S265-9.
[http://dx.doi.org/10.1016/j.ceramint.2017.05.255]
[2]
Fan J, Leng S, Cao Z, et al. Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics. Ceram Int 2019; 45(1): 1001-10.
[http://dx.doi.org/10.1016/j.ceramint.2018.09.279]
[3]
Yang C, Wei X, Hao J. Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2. Ceram Int 2018; 44(11): 12395-400.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.028]
[4]
Balhamri A, Deraoui A, Bahou Y, Rattal M, et al. Surface and optical properties of zinc oxide doped with flour synthesized by magnetron sputtering: applications in transparent conductive oxides (TCO). Int J Thin Fil Sci Tec 2015; 4(3): 205-10.
[http://dx.doi.org/10.12785/ijtfst/040308]
[5]
Thongyong N, Tuichai W, Chanlek N, Thongbai P. Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Ceram Int 2017; 43(17): 15466-71.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.093]
[6]
Tuichai W, Srepusharawoot P, Swatsitang E, Danwittayakul S, Thongbai P. Giant dielectric permittivity and electronic structure in (Al+Sb)co-doped TiO2 ceramics. Microelectron Eng 2015; 146: 32-7.
[http://dx.doi.org/10.1016/j.mee.2015.02.052]
[7]
Lin YH, Li M, Nan CW, Li J, Wu J, He J. Grain and grain boundary effects in high-permittivity dielectric NiO-based ceramics. Appl Phys Lett 2006; 89(3): 032907. [3 pages]
[http://dx.doi.org/10.1063/1.2227636]
[8]
Yoshitake M, Kazumi K. Synthesis and phase transformation of TiO2 nanocrystals in aqueous solution. J Ceram Soc Jpn 2009; 117(3): 373-6.
[9]
Gupta SM, Tripathi M. A review of TiO2 nanoparticles. Chin Sci Bull 2011; 56(16): 1639-57.
[http://dx.doi.org/10.1007/s11434-011-4476-1]
[10]
Hu W, Liu Y, Withers RL, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 2013; 12(9): 821-6.
[http://dx.doi.org/10.1038/nmat3691] [PMID: 23812129]
[11]
Elfimov IS, Yunoki S, Sawatzky GA. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys Rev Lett 2002; 89(21): 216403.
[http://dx.doi.org/10.1103/PhysRevLett.89.216403] [PMID: 12443438]
[12]
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976; 32(5): 751-67.
[http://dx.doi.org/10.1107/S0567739476001551]
[13]
Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C, Honggang F. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem 2004; 177(10): 3375-82.
[http://dx.doi.org/10.1016/j.jssc.2004.05.064]
[14]
Kittel C. Introduction to solid state physics. (7th ed.). 1996; p. 614.
[15]
Pozzo M, Alfe D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)- doped Mg(0001) surfaces. Int J Hydrogen Energy 2009; 34(4): 1922-30.
[16]
White JA, Bird DM, Payne MC. Dissociation of H2 on W(100). Phys Rev B 1996; 53(3): 1667-74.
[17]
Fu B, Qiu M, Cui J, Li M, Hou Q. The trapping and dissociation process of hydrogen in tungsten vacancy: A molecular dynamics study. J Nucl Mater 2018; 508: 278-85.
[http://dx.doi.org/10.1016/j.jnucmat.2018.05.065]
[18]
Reddy PAK, Srinivas B, Kala P, Kumari VD, Subrahmanyam M. Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater Res Bull 2011; 46(11): 1766-71.
[http://dx.doi.org/10.1016/j.materresbull.2011.08.006]
[19]
Lance Ryan A. Optical Analysis of Titania: Band Gaps of Brookite, Rutile and Anatase: Oregon State University 2018; Undergraduate thesis.
[20]
Dakhel AA. The crucial role of hydrogenation in the creation of ferromagnetic properties in W-doped TiO2 nano-composite. J Australian Ceramic Society 2020; 56(4): 1291-300.
[http://dx.doi.org/10.1007/s41779-020-00478-w]
[21]
Singh J, Sharma S, Sharma S, Singh RC. Effect of tungsten doping on structural and optical properties of rutile TiO2 and band gap narrowing. Optik (Stuttg) 2019; 182: 538-47.
[http://dx.doi.org/10.1016/j.ijleo.2019.01.070]
[22]
Nematollahia R, Ghotbia C, Khorasheha F, Larimi A. Ni Bi co-doped TiO2 as highly visible light response nanophotocatalyst for CO2 photo-reduction in a batch photoreactor. J CO2 Utiliz 2020; 41: 101289.
[23]
Pankove JI. Optical processes in semiconductors. Dover, NY 1975; p. 36.
[24]
Anyaegbunam FNC, Augustine C. A study of optical gap associated Urbach energy tail of chemically deposited metal oxides binary films. Dig J Nanomater Biostruct 2018; 13: 847-56.
[25]
Henriksson KOE, Vortler K, Dreissigacker S, Nordlund K, Keinonen J. Sticking of atomic hydrogen on the tungsten (001) surface. Surf Sci 2006; 600(16): 3167-74.
[http://dx.doi.org/10.1016/j.susc.2006.06.001]
[26]
Li P, Dong Y, Ding Y, Zhang H, Yang M, Cheng H. Effect of hydrogen spillover on the surface of tungsten oxide on hydrogenation of cyclohexene and N-propylcarbazole. Int J Hydrogen Energy 2021; 46(5): 3945-53.
[http://dx.doi.org/10.1016/j.ijhydene.2020.10.230]
[27]
Bonkerud J, Zimmermann C, Weiser PM, Vines L, Monakhov EV. On the permittivity of titanium dioxide. Sci Rep 2021; 11(1): 12443.
[http://dx.doi.org/10.1038/s41598-021-92021-5] [PMID: 34127766]
[28]
Dakhel AA. Effect of coalesce doping of Li and Bi on structural, optical and dielectric properties of TCO anatase TiO2 nanoparticles. Eur Phys J Appl Phys 2022; 97: 44.
[http://dx.doi.org/10.1051/epjap/2022220043]
[29]
Jana PK, Sarkar S, Chaudhuri BK. Low loss giant dielectric and electrical transport behavior of KxTiyNi1−x−yO system. Appl Phys Lett 2006; 88(18): 182901.
[http://dx.doi.org/10.1063/1.2190908]
[30]
Yang WZ, Fu MS, Liu XQ, Zhu HY, Chen XM. Giant dielectric response and mixed-valent structure in the layered-ordered double-perovskite ceramics. Ceram Int 2011; 37(7): 2747-53.
[http://dx.doi.org/10.1016/j.ceramint.2011.04.029]
[31]
Paul Joseph D, Saravanan M, Muthuraaman B, et al. Spray deposition and characterization of nanostructured Li doped NiO thin films for application in dye-sensitized solar cells. Nanotechnology 2008; 19(48): 485707.
[http://dx.doi.org/10.1088/0957-4484/19/48/485707] [PMID: 21836314]
[32]
Elliott SR. A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 1987; 36(2): 135-217.
[http://dx.doi.org/10.1080/00018738700101971]
[33]
Pilet JC, Le Traon A. Un nouveau formalisme pour la permittivite dielectrique dans le cas d’une distribution gaussienne des temps de relaxation. Adv Mol Relax Interact Processes 1979; 14(3): 235-42.
[http://dx.doi.org/10.1016/0378-4487(79)80007-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy