Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Advancements in Nanopore Technology for Virus Detection

Author(s): Yiheng Che, Zhenhua Li, Sijia Xie* and Chang Chen*

Volume 20, Issue 2, 2024

Published on: 18 May, 2023

Page: [157 - 173] Pages: 17

DOI: 10.2174/1573413719666230406093125

Price: $65

Abstract

Background: The spread of infectious diseases caused by viruses is always a global concern to public health. Developing affordable, accurate, fast and effective technologies for virus detection is crucial in reducing virus transmission. A nanopore is a sensor that can identify target molecules at a single molecule level, often used for genome sequencing and early disease detection. Nanopores are classified in two types: biological nanopores, ideal for detecting viral nucleic acid sequences, and solid-state nanopores primarily used to detect viral particles.

Methods: In this review, we first provide a brief overview of the properties and fundamental principles of these two types of the nanopore. Then, we focus on the application of nanopores in viral nucleic acid sequencing and the quantitative detection of viral nanoparticles. Additionally, we discuss new strategies combining nanopore sensors with other technologies, which greatly improve the sensing performance.

Results: A literature review on the application of nanopores in controlling viral epidemics is provided. The pros and cons of biological nanopores and solid-state nanopores are summarized, respectively, and the opportunities of integrating novel technologies with nanopore sensors to enhance the latter are addressed in this paper.

Conclusion: Owing to significant advancements in nanotechnology and integration with other technologies such as machine learning, nanopore sensors are becoming widely applied in virusesrelated analysis. In the long term, nanopore sensors are expected to play an important role in the field of virus detection and analysis.

Graphical Abstract

[1]
Arima, A.; Tsutsui, M.; Washio, T.; Baba, Y.; Kawai, T. Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection. Anal. Chem., 2021, 93(1), 215-227.
[http://dx.doi.org/10.1021/acs.analchem.0c04353] [PMID: 33251802]
[2]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[3]
Morales-Narváez, E.; Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron., 2020, 163, 112274.
[http://dx.doi.org/10.1016/j.bios.2020.112274] [PMID: 32421627]
[4]
Yüce, M.; Filiztekin, E.; Özkaya, K.G. COVID-19 diagnosis-a review of current methods. Biosens. Bioelectron., 2021, 172, 112752.
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[5]
Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol., 2016, 17(1), 239.
[http://dx.doi.org/10.1186/s13059-016-1103-0] [PMID: 27887629]
[6]
Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol., 2019, 20(1), 129.
[http://dx.doi.org/10.1186/s13059-019-1727-y] [PMID: 31234903]
[7]
Derrington, I.M.; Butler, T.Z.; Collins, M.D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J.H. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci., 2010, 107(37), 16060-16065.
[http://dx.doi.org/10.1073/pnas.1001831107] [PMID: 20798343]
[8]
Heerema, S.J.; Vicarelli, L.; Pud, S.; Schouten, R.N.; Zandbergen, H.W.; Dekker, C. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano, 2018, 12(3), 2623-2633.
[http://dx.doi.org/10.1021/acsnano.7b08635] [PMID: 29474060]
[9]
Brinkerhoff, H.; Kang, A.S.W.; Liu, J.; Aksimentiev, A.; Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science, 2021, 374(6574), 1509-1513.
[http://dx.doi.org/10.1126/science.abl4381] [PMID: 34735217]
[10]
Huang, G.; Voet, A.; Maglia, G.; Fra, C. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun., 2019, 10(1), 835.
[http://dx.doi.org/10.1038/s41467-019-08761-6] [PMID: 30783102]
[11]
Zhang, Y.; Zhao, J.; Si, W.; Kan, Y.; Xu, Z.; Sha, J.; Chen, Y. Electroosmotic facilitated protein capture and transport through solid‐state nanopores with diameter larger than length. Small Methods, 2020, 4(11), 1900893.
[http://dx.doi.org/10.1002/smtd.201900893]
[12]
Asandei, A.; Rossini, A.E.; Chinappi, M.; Park, Y.; Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir, 2017, 33(50), 14451-14459.
[http://dx.doi.org/10.1021/acs.langmuir.7b03163] [PMID: 29178796]
[13]
Wang, L.; Yao, F.; Kang, X. Nanopore single-molecule analysis of metal ion–chelator chemical reaction. Anal. Chem., 2017, 89(15), 7958-7965.
[http://dx.doi.org/10.1021/acs.analchem.7b01119] [PMID: 28675027]
[14]
Roozbahani, G.M.; Chen, X.; Zhang, Y.; Wang, L.; Guan, X. Nanopore detection of metal ions: Current status and future directions. Small Methods, 2020, 4(10), 2000266.
[http://dx.doi.org/10.1002/smtd.202000266] [PMID: 33365387]
[15]
Cai, S.; Sze, J.Y.Y.; Ivanov, A.P.; Edel, J.B. Small molecule electro-optical binding assay using nanopores. Nat. Commun., 2019, 10(1), 1797.
[http://dx.doi.org/10.1038/s41467-019-09476-4] [PMID: 30996223]
[16]
Kong, J.; Zhu, J.; Chen, K.; Keyser, U.F. Specific biosensing using DNA aptamers and nanopores. Adv. Funct. Mater., 2019, 29(3), 1807555.
[http://dx.doi.org/10.1002/adfm.201807555]
[17]
Willmott, G.R.; Fisk, M.G.; Eldridge, J. Magnetic microbead transport during resistive pulse sensing. Biomicrofluidics, 2013, 7(6), 064106.
[http://dx.doi.org/10.1063/1.4833075] [PMID: 24396540]
[18]
Tan, S.; Wang, L.; Liu, H.; Wu, H.; Liu, Q. Single nanoparticle translocation through chemically modified solid nanopore. Nanoscale Res. Lett., 2016, 11(1), 50.
[http://dx.doi.org/10.1186/s11671-016-1255-6] [PMID: 26831688]
[19]
Tsutsui, M.; Yoshida, T.; Yokota, K.; Yasaki, H.; Yasui, T.; Arima, A.; Tonomura, W.; Nagashima, K.; Yanagida, T.; Kaji, N.; Taniguchi, M.; Washio, T.; Baba, Y.; Kawai, T. Discriminating single-bacterial shape using low-aspect-ratio pores. Sci. Rep., 2017, 7(1), 17371.
[http://dx.doi.org/10.1038/s41598-017-17443-6] [PMID: 29234023]
[20]
Tsutsui, M.; Tanaka, M.; Marui, T.; Yokota, K.; Yoshida, T.; Arima, A.; Tonomura, W.; Taniguchi, M.; Washio, T.; Okochi, M.; Kawai, T. Identification of individual bacterial cells through the intermolecular interactions with peptide-functionalized solid-state pores. Anal. Chem., 2018, 90(3), 1511-1515.
[http://dx.doi.org/10.1021/acs.analchem.7b04950] [PMID: 29350898]
[21]
Arima, A.; Harlisa, I.H.; Yoshida, T.; Tsutsui, M.; Tanaka, M.; Yokota, K.; Tonomura, W.; Yasuda, J.; Taniguchi, M.; Washio, T.; Okochi, M.; Kawai, T. Identifying single viruses using biorecognition solid-state nanopores. J. Am. Chem. Soc., 2018, 140(48), 16834-16841.
[http://dx.doi.org/10.1021/jacs.8b10854] [PMID: 30475615]
[22]
Arima, A.; Tsutsui, M.; Harlisa, I.H.; Yoshida, T.; Tanaka, M.; Yokota, K.; Tonomura, W.; Taniguchi, M.; Okochi, M.; Washio, T.; Kawai, T. Selective detections of single-viruses using solid-state nanopores. Sci. Rep., 2018, 8(1), 16305.
[http://dx.doi.org/10.1038/s41598-018-34665-4] [PMID: 30390013]
[23]
Darvish, A.; Lee, J.S.; Peng, B.; Saharia, J. VenkatKalyana Sundaram, R.; Goyal, G.; Bandara, N.; Ahn, C.W.; Kim, J.; Dutta, P.; Chaiken, I.; Kim, M.J. Mechanical characterization of HIV‐1 with a solid‐state nanopore sensor. Electrophoresis, 2019, 40(5), 776-783.
[http://dx.doi.org/10.1002/elps.201800311] [PMID: 30151981]
[24]
Gross-Rother, J.; Blech, M.; Preis, E.; Bakowsky, U.; Garidel, P. Particle detection and characterization for biopharmaceutical applications: Current principles of established and alternative techniques. Pharmaceutics, 2020, 12(11), 1112.
[http://dx.doi.org/10.3390/pharmaceutics12111112] [PMID: 33228023]
[25]
Coulter, W. H. Means for counting particles suspended in a fluid. US2656508A 1953.
[26]
Neher, E.; Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, 260(5554), 799-802.
[http://dx.doi.org/10.1038/260799a0] [PMID: 1083489]
[27]
Hall, J.E. Access resistance of a small circular pore. J. Gen. Physiol., 1975, 66(4), 531-532.
[http://dx.doi.org/10.1085/jgp.66.4.531] [PMID: 1181379]
[28]
Chou, Y.C.; Masih Das, P.; Monos, D.S.; Drndić, M. Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano, 2020, 14(6), 6715-6728.
[http://dx.doi.org/10.1021/acsnano.9b09964] [PMID: 32275381]
[29]
DeBlois, R.W.; Bean, C.P.; Wesley, R.K.A. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J. Colloid Interface Sci., 1977, 61(2), 323-335.
[http://dx.doi.org/10.1016/0021-9797(77)90395-2]
[30]
Meyer, N.; Arroyo, N.; Baldelli, M.; Coquart, N.; Janot, J.M.; Perrier, V.; Chinappi, M.; Picaud, F.; Torrent, J.; Balme, S. Conical nanopores highlight the pro-aggregating effects of pyrimethanil fungicide on Aβ(1-42) peptides and dimeric splitting phenomena. Chemosphere, 2022, 291(Pt 1), 132733.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132733] [PMID: 34742766]
[31]
Giamblanco, N.; Coglitore, D.; Gubbiotti, A.; Ma, T.; Balanzat, E.; Janot, J.M.; Chinappi, M.; Balme, S. Amyloid growth, inhibition, and real-time enzymatic degradation revealed with single conical nanopore. Anal. Chem., 2018, 90(21), 12900-12908.
[http://dx.doi.org/10.1021/acs.analchem.8b03523] [PMID: 30189140]
[32]
Zhang, M.; Harms, Z.D.; Greibe, T.; Starr, C.A.; Zlotnick, A.; Jacobson, S.C. In-plane, in-series nanopores with circular cross sections for resistive-pulse sensing. ACS Nano, 2022, 16(5), 7352-7360.
[http://dx.doi.org/10.1021/acsnano.1c08680] [PMID: 35500295]
[33]
Pedone, D.; Langecker, M.; Abstreiter, G.; Rant, U. A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: Confined diffusion and narrow escape. Nano Lett., 2011, 11(4), 1561-1567.
[http://dx.doi.org/10.1021/nl104359c] [PMID: 21388205]
[34]
Zeng, S.; Chinappi, M.; Cecconi, F.; Odijk, T.; Zhang, Z. DNA compaction and dynamic observation in a nanopore gated sub-attoliter silicon nanocavity. Nanoscale, 2022, 14(33), 12038-12047.
[http://dx.doi.org/10.1039/D2NR02260E] [PMID: 35943364]
[35]
Arjmandi, N.; Van Roy, W.; Lagae, L. Measuring mass of nanoparticles and viruses in liquids with nanometer-scale pores. Anal. Chem., 2014, 86(10), 4637-4641.
[http://dx.doi.org/10.1021/ac500396t] [PMID: 24754524]
[36]
Arjmandi, N.; Van Roy, W.; Lagae, L.; Borghs, G. Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores. Anal. Chem., 2012, 84(20), 8490-8496.
[http://dx.doi.org/10.1021/ac300705z] [PMID: 22901005]
[37]
DeBlois, R.W.; Bean, C.P. Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum., 1970, 41(7), 909-916.
[http://dx.doi.org/10.1063/1.1684724]
[38]
Kowalczyk, S.W.; Grosberg, A.Y.; Rabin, Y.; Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology, 2011, 31, 5101.
[http://dx.doi.org/10.1088/0957-4484/22/31/315101]
[39]
Luo, L.; German, S.R.; Lan, W.J.; Holden, D.A.; Mega, T.L.; White, H.S. Resistive-pulse analysis of nanoparticles. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2014, 7(1), 513-535.
[http://dx.doi.org/10.1146/annurev-anchem-071213-020107] [PMID: 24896310]
[40]
Chinappi, M.; Yamaji, M.; Kawano, R.; Cecconi, F. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis. ACS Nano, 2020, 14(11), 15816-15828.
[http://dx.doi.org/10.1021/acsnano.0c06981] [PMID: 33170650]
[41]
Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale, 2016, 8(43), 18352-18359.
[http://dx.doi.org/10.1039/C6NR06936C] [PMID: 27762420]
[42]
Saharia, J.; Bandara, Y.M.N.D.Y.; Karawdeniya, B.I.; Hammond, C.; Alexandrakis, G.; Kim, M.J. Modulation of electrophoresis, electroosmosis and diffusion for electrical transport of proteins through a solid-state nanopore. RSC Advances, 2021, 11(39), 24398-24409.
[http://dx.doi.org/10.1039/D1RA03903B] [PMID: 34354824]
[43]
Di Muccio, G.; Morozzo della Rocca, B.; Chinappi, M. Geometrically induced selectivity and unidirectional electroosmosis in uncharged nanopores. ACS Nano, 2022, 16(6), 8716-8728.
[http://dx.doi.org/10.1021/acsnano.1c03017] [PMID: 35587777]
[44]
Freedman, K.J.; Otto, L.M.; Ivanov, A.P.; Barik, A.; Oh, S.H.; Edel, J.B. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun., 2016, 7(1), 10217.
[http://dx.doi.org/10.1038/ncomms10217] [PMID: 26732171]
[45]
Kececi, K.; Kaya, D.; Martin, C.R. Resistive‐pulse sensing of DNA with a polymeric nanopore sensor and characterization of DNA translocation. ChemNanoMat, 2022, 8(2), e202100424.
[http://dx.doi.org/10.1002/cnma.202100424]
[46]
Shi, W.; Friedman, A.K.; Baker, L.A. Nanopore sensing. Anal. Chem., 2017, 89(1), 157-188.
[http://dx.doi.org/10.1021/acs.analchem.6b04260] [PMID: 28105845]
[47]
Rosenstein, J.K.; Wanunu, M.; Merchant, C.A.; Drndic, M.; Shepard, K.L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods, 2012, 9(5), 487-492.
[http://dx.doi.org/10.1038/nmeth.1932] [PMID: 22426489]
[48]
Lin, Y.; Ying, Y.L.; Gao, R.; Long, Y.T. Single-molecule sensing with nanopore confinement: From chemical reactions to biological interactions. Chemistry, 2018, 24(50), 13064-13071.
[http://dx.doi.org/10.1002/chem.201800669] [PMID: 29577444]
[49]
Mereuta, L.; Asandei, A.; Dragomir, I.S.; Bucataru, I.C.; Park, J.; Seo, C.H.; Park, Y.; Luchian, T. Author Correction: Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci. Rep., 2020, 10(1), 16141.
[http://dx.doi.org/10.1038/s41598-020-73154-5] [PMID: 32999355]
[50]
Cressiot, B.; Ouldali, H.; Pastoriza-Gallego, M.; Bacri, L.; Van der Goot, F.G.; Pelta, J. Aerolysin, a powerful protein sensor for fundamental studies and development of upcoming applications. ACS Sens., 2019, 4(3), 530-548.
[http://dx.doi.org/10.1021/acssensors.8b01636] [PMID: 30747518]
[51]
Wang, Y.; Guan, X.; Zhang, S.; Liu, Y.; Wang, S.; Fan, P.; Du, X.; Yan, S.; Zhang, P.; Chen, H.Y.; Li, W.; Zhang, D.; Huang, S. Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using Mycobacterium smegmatis porin A. Nat. Commun., 2021, 12(1), 3368.
[http://dx.doi.org/10.1038/s41467-021-23764-y] [PMID: 34099723]
[52]
Yan, S.; Wang, L.; Du, X.; Zhang, S.; Wang, S.; Cao, J.; Zhang, J.; Jia, W.; Wang, Y.; Zhang, P.; Chen, H.Y.; Huang, S. Rapid and multiplex preparation of engineered Mycobacterium smegmatis porin A (MspA) nanopores for single molecule sensing and sequencing. Chem. Sci., 2021, 12(27), 9339-9346.
[http://dx.doi.org/10.1039/D1SC01399H] [PMID: 34349904]
[53]
Geng, J.; Wang, S.; Fang, H.; Guo, P. Channel size conversion of Phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids. ACS Nano, 2013, 7(4), 3315-3323.
[http://dx.doi.org/10.1021/nn400020z] [PMID: 23488809]
[54]
Van der Verren, S.E.; Van Gerven, N.; Jonckheere, W.; Hambley, R.; Singh, P.; Kilgour, J.; Jordan, M.; Wallace, E.J.; Jayasinghe, L.; Remaut, H. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat. Biotechnol., 2020, 38(12), 1415-1420.
[http://dx.doi.org/10.1038/s41587-020-0570-8] [PMID: 32632300]
[55]
Fahie, M.A.; Candido, J.; Andree, G.; Chen, M. Tuning protein discrimination through altering the sampling interface formed between the analyte and the OmpG nanopore. ACS Sens., 2021, 6(3), 1286-1294.
[http://dx.doi.org/10.1021/acssensors.0c02580] [PMID: 33599487]
[56]
Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science, 1996, 274(5294), 1859-1865.
[http://dx.doi.org/10.1126/science.274.5294.1859] [PMID: 8943190]
[57]
Faller, M.; Niederweis, M.; Schulz, G.E. The structure of a mycobacterial outer-membrane channel. Science, 2004, 303(5661), 1189-1192.
[http://dx.doi.org/10.1126/science.1094114] [PMID: 14976314]
[58]
Simpson, A.A.; Tao, Y.; Leiman, P.G.; Badasso, M.O.; He, Y.; Jardine, P.J.; Olson, N.H.; Morais, M.C.; Grimes, S.; Anderson, D.L.; Baker, T.S.; Rossmann, M.G. Structure of the bacteriophage φ29 DNA packaging motor. Nature, 2000, 408(6813), 745-750.
[http://dx.doi.org/10.1038/35047129] [PMID: 11130079]
[59]
Iacovache, I.; De Carlo, S.; Cirauqui, N.; Dal Peraro, M.; van der Goot, F.G.; Zuber, B. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat. Commun., 2016, 7(1), 12062.
[http://dx.doi.org/10.1038/ncomms12062] [PMID: 27405240]
[60]
Tanaka, K.; Caaveiro, J.M.M.; Morante, K.; González-Mañas, J.M.; Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun., 2015, 6(1), 6337.
[http://dx.doi.org/10.1038/ncomms7337] [PMID: 25716479]
[61]
Soskine, M.; Biesemans, A.; De Maeyer, M.; Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc., 2013, 135(36), 13456-13463.
[http://dx.doi.org/10.1021/ja4053398] [PMID: 23919630]
[62]
Mutter, M.; Vuilleumier, S. A chemical approach to protein design?template-assembled Synthetic Proteins (TASP). Angew. Chem. Int. Ed. Engl., 1989, 28(5), 535-554.
[http://dx.doi.org/10.1002/anie.198905353]
[63]
Shimizu, K.; Mijiddorj, B.; Usami, M.; Mizoguchi, I.; Yoshida, S.; Akayama, S.; Hamada, Y.; Ohyama, A.; Usui, K.; Kawamura, I.; Kawano, R. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nat. Nanotechnol., 2022, 17(1), 67-75.
[http://dx.doi.org/10.1038/s41565-021-01008-w] [PMID: 34811552]
[64]
Lepoitevin, M.; Ma, T.; Bechelany, M.; Janot, J.M.; Balme, S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv. Colloid Interface Sci., 2017, 250, 195-213.
[http://dx.doi.org/10.1016/j.cis.2017.09.001] [PMID: 28942265]
[65]
Wei, R.; Pedone, D.; Zürner, A.; Döblinger, M.; Rant, U. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small, 2010, 6(13), 1406-1414.
[http://dx.doi.org/10.1002/smll.201000253] [PMID: 20564484]
[66]
Ying, C.; Houghtaling, J.; Eggenberger, O.M.; Guha, A.; Nirmalraj, P.; Awasthi, S.; Tian, J.; Mayer, M. Formation of single nanopores with diameters of 20–50 nm in silicon nitride membranes using laser-assisted controlled breakdown. ACS Nano, 2018, 12(11), 11458-11470.
[http://dx.doi.org/10.1021/acsnano.8b06489] [PMID: 30335956]
[67]
Larkin, J.; Henley, R.Y.; Jadhav, V.; Korlach, J.; Wanunu, M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol., 2017, 12(12), 1169-1175.
[http://dx.doi.org/10.1038/nnano.2017.176] [PMID: 28892102]
[68]
Wang, Y.; Chen, Q.; Deng, T.; Liu, Z. Self-aligned nanopore formed on a SiO2 pyramidal membrane by a multipulse dielectric breakdown method. J. Phys. Chem. C, 2018, 122(21), 11516-11523.
[http://dx.doi.org/10.1021/acs.jpcc.8b01472]
[69]
Feng, J.; Liu, K.; Bulushev, R.D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol., 2015, 10(12), 1070-1076.
[http://dx.doi.org/10.1038/nnano.2015.219] [PMID: 26389660]
[70]
Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467(7312), 190-193.
[http://dx.doi.org/10.1038/nature09379] [PMID: 20720538]
[71]
Zhang, Z.Y.; Cui, H.L.; Huang, D.P.; Wang, D.Q. Single nucleotide discrimination with sub-two nanometer monolayer graphene pore. Sens. Actuators B Chem., 2021, 349, 130792.
[http://dx.doi.org/10.1016/j.snb.2021.130792]
[72]
Gierak, J.; Madouri, A.; Biance, A.L.; Bourhis, E.; Patriarche, G.; Ulysse, C.; Lucot, D.; Lafosse, X.; Auvray, L.; Bruchhaus, L.; Jede, R. Sub-5nm FIB direct patterning of nanodevices. Microelectron. Eng., 2007, 84(5-8), 779-783.
[http://dx.doi.org/10.1016/j.mee.2007.01.059]
[73]
Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M.J.; Golovchenko, J.A. Ion-beam sculpting at nanometre length scales. Nature, 2001, 412(6843), 166-169.
[http://dx.doi.org/10.1038/35084037] [PMID: 11449268]
[74]
Storm, A.J.; Chen, J.H.; Ling, X.S.; Zandbergen, H.W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater., 2003, 2(8), 537-540.
[http://dx.doi.org/10.1038/nmat941] [PMID: 12858166]
[75]
Wu, M.Y.; Krapf, D.; Zandbergen, M.; Zandbergen, H.; Batson, P.E. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett., 2005, 87(11), 113106.
[http://dx.doi.org/10.1063/1.2043247]
[76]
Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater., 2020, 5(12), 931-951.
[http://dx.doi.org/10.1038/s41578-020-0229-6]
[77]
Waugh, M.; Briggs, K.; Gunn, D.; Gibeault, M.; King, S.; Ingram, Q.; Jimenez, A.M.; Berryman, S.; Lomovtsev, D.; Andrzejewski, L.; Tabard-Cossa, V. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc., 2020, 15(1), 122-143.
[http://dx.doi.org/10.1038/s41596-019-0255-2] [PMID: 31836867]
[78]
Kwok, H.; Briggs, K.; Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One, 2014, 9(3), e92880.
[http://dx.doi.org/10.1371/journal.pone.0092880] [PMID: 24658537]
[79]
Yanagi, I.; Akahori, R.; Takeda, K. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Sci. Rep., 2019, 9(1), 13143.
[http://dx.doi.org/10.1038/s41598-019-49622-y] [PMID: 31511597]
[80]
Sha, J.; Si, W.; Xu, W.; Zou, Y.; Chen, Y. Glass capillary nanopore for single molecule detection. Sci. China Technol. Sci., 2015, 58(5), 803-812.
[http://dx.doi.org/10.1007/s11431-015-5779-2]
[81]
Piper, J.D.; Clarke, R.W.; Korchev, Y.E.; Ying, L.; Klenerman, D. A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc., 2006, 128(51), 16462-16463.
[http://dx.doi.org/10.1021/ja0650899] [PMID: 17177370]
[82]
Göpfrich, K.; Kulkarni, C.V.; Pambos, O.J.; Keyser, U.F. Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir, 2013, 29(1), 355-364.
[http://dx.doi.org/10.1021/la3041506] [PMID: 23214950]
[83]
Holub, M.; Adobes-Vidal, M.; Frutiger, A.; Gschwend, P.M.; Pratsinis, S.E.; Momotenko, D. Single-nanoparticle thermometry with a nanopipette. ACS Nano, 2020, 14(6), 7358-7369.
[http://dx.doi.org/10.1021/acsnano.0c02798] [PMID: 32426962]
[84]
Zeng, S.; Wen, C.; Solomon, P.; Zhang, S.L.; Zhang, Z. Rectification of protein translocation in truncated pyramidal nanopores. Nat. Nanotechnol., 2019, 14(11), 1056-1062.
[http://dx.doi.org/10.1038/s41565-019-0549-0] [PMID: 31591525]
[85]
Gilboa, T.; Zrehen, A.; Girsault, A.; Meller, A. Optically-monitored nanopore fabrication using a focused laser beam. Sci. Rep., 2018, 8(1), 9765.
[http://dx.doi.org/10.1038/s41598-018-28136-z] [PMID: 29950607]
[86]
Rahman, M.; Sampad, M.J.N.; Hawkins, A.; Schmidt, H. Recent advances in integrated solid-state nanopore sensors. Lab Chip, 2021, 21(16), 3030-3052.
[http://dx.doi.org/10.1039/D1LC00294E] [PMID: 34137407]
[87]
Sicard, F.; Yazaydin, A.O. Biohybrid membrane formation by directed insertion of aquaporin into a solid-state nanopore. ACS Appl. Mater. Interfaces, 2022, 14(42), 48029-48036.
[http://dx.doi.org/10.1021/acsami.2c14250] [PMID: 36244033]
[88]
Yusko, E.C.; Bruhn, B.R.; Eggenberger, O.M.; Houghtaling, J.; Rollings, R.C.; Walsh, N.C.; Nandivada, S.; Pindrus, M.; Hall, A.R.; Sept, D.; Li, J.; Kalonia, D.S.; Mayer, M. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol., 2017, 12(4), 360-367.
[http://dx.doi.org/10.1038/nnano.2016.267] [PMID: 27992411]
[89]
Hall, A.R.; Scott, A.; Rotem, D.; Mehta, K.K.; Bayley, H.; Dekker, C. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol., 2010, 5(12), 874-877.
[http://dx.doi.org/10.1038/nnano.2010.237] [PMID: 21113160]
[90]
Venkatesan, B.M.; Polans, J.; Comer, J.; Sridhar, S.; Wendell, D.; Aksimentiev, A.; Bashir, R. Lipid bilayer coated Al2O3 nanopore sensors: Towards a hybrid biological solid-state nanopore. Biomed. Microdevices, 2011, 13(4), 671-682.
[http://dx.doi.org/10.1007/s10544-011-9537-3] [PMID: 21487665]
[91]
Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun., 2018, 9(1), 1733.
[http://dx.doi.org/10.1038/s41467-018-04118-7] [PMID: 29712902]
[92]
Xie, W.; Tian, H.; Fang, S.; Zhou, D.; Liang, L.; He, S.; Wang, D. Direct optical observation of DNA clogging motions near controlled dielectric breakdown silicon nitride nanopores. Sens. Actuators B Chem., 2021, 349, 130796.
[http://dx.doi.org/10.1016/j.snb.2021.130796]
[93]
Fried, J.P.; Wu, Y.; Tilley, R.D.; Gooding, J.J. Optical nanopore sensors for quantitative analysis. Nano Lett., 2022, 22(3), 869-880.
[http://dx.doi.org/10.1021/acs.nanolett.1c03976] [PMID: 35089719]
[94]
Lindsay, S. The promises and challenges of solid-state sequencing. Nat. Nanotechnol., 2016, 11(2), 109-111.
[http://dx.doi.org/10.1038/nnano.2016.9] [PMID: 26839253]
[95]
Kaiser, G. Eukaryotic Microorganisms and Viruses. In: Microbiology;LibreTexts; , 2022; p. 10.2.1.
[96]
Gelderblom, H.R. Structure and Classification of Viruses. In: Medical Microbiology; Baron, S., Ed.; article University of Texas Medical Branch at Galveston: Galveston, TX,; , 1996.
[97]
Baron, S. Medical Microbiology, 4th ed; University of Texas Medical Branch at Galveston: Galveston, TX, 1996.
[98]
Yang, L.; Yamamoto, T. Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front. Microbiol., 2016, 7, 1500.
[http://dx.doi.org/10.3389/fmicb.2016.01500] [PMID: 27713738]
[99]
Uram, J.D.; Ke, K.; Hunt, A.J.; Mayer, M. Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small, 2006, 2(8-9), 967-972.
[http://dx.doi.org/10.1002/smll.200600006] [PMID: 17193151]
[100]
Nazari, M.; Li, X.; Alibakhshi, M.A.; Yang, H.; Souza, K.; Gillespie, C.; Gummuluru, S.; Hong, M.K.; Reinhard, B.M.; Korolev, K.S.; Ziegler, L.D.; Zhao, Q.; Wanunu, M.; Erramilli, S. Femtosecond photonic viral inactivation probed using solid-state nanopores. Nano Futures, 2018, 2(4), 045005.
[http://dx.doi.org/10.1088/2399-1984/aadf9d]
[101]
Smith, C.; Halse, T.A.; Shea, J.; Modestil, H.; Fowler, R.C.; Musser, K.A.; Escuyer, V.; Lapierre, P. Assessing nanopore sequencing for clinical diagnostics: A comparison of Next-Generation Sequencing (NGS) methods for mycobacterium tuberculosis. J. Clin. Microbiol., 2020, 59(1), e00583-e20.
[http://dx.doi.org/10.1128/JCM.00583-20] [PMID: 33055186]
[102]
Shendure, J.; Balasubramanian, S.; Church, G.M.; Gilbert, W.; Rogers, J.; Schloss, J.A.; Waterston, R.H. DNA sequencing at 40: Past, present and future. Nature, 2017, 550(7676), 345-353.
[http://dx.doi.org/10.1038/nature24286] [PMID: 29019985]
[103]
Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol., 2021, 39(11), 1348-1365.
[http://dx.doi.org/10.1038/s41587-021-01108-x] [PMID: 34750572]
[104]
de Jesus, J.G.; Giovanetti, M.; Rodrigues Faria, N.; Alcantara, C.J. Acute vector-borne viral infection: Zika and MinION surveillance. Microbiology. Spectrum., 2019, 7(4), 24.
[105]
Keller, M.W.; Rambo-Martin, B.L.; Wilson, M.M.; Ridenour, C.A.; Shepard, S.S.; Stark, T.J.; Neuhaus, E.B.; Dugan, V.G.; Wentworth, D.E.; Barnes, J.R. Direct RNA sequencing of the coding complete influenza A virus genome. Sci. Rep., 2018, 8(1), 14408.
[http://dx.doi.org/10.1038/s41598-018-32615-8] [PMID: 30258076]
[106]
Imai, K.; Tamura, K.; Tanigaki, T.; Takizawa, M.; Nakayama, E.; Taniguchi, T.; Okamoto, M.; Nishiyama, Y.; Tarumoto, N.; Mitsutake, K.; Murakami, T.; Maesaki, S.; Maeda, T. Whole genome sequencing of influenza A and B viruses with the MinION Sequencer in the clinical setting: A pilot study. Front. Microbiol., 2018, 9, 2748.
[http://dx.doi.org/10.3389/fmicb.2018.02748] [PMID: 30483243]
[107]
Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; Ouédraogo, N.; Afrough, B.; Bah, A.; Baum, J.H.J.; Becker-Ziaja, B.; Boettcher, J.P.; Cabeza-Cabrerizo, M.; Camino-Sánchez, A.; Carter, L.L.; Doerrbecker, J.; Enkirch, T.; Dorival, I.G.G.; Hetzelt, N.; Hinzmann, J.; Holm, T.; Kafetzopoulou, L.E.; Koropogui, M.; Kosgey, A.; Kuisma, E.; Logue, C.H.; Mazzarelli, A.; Meisel, S.; Mertens, M.; Michel, J.; Ngabo, D.; Nitzsche, K.; Pallash, E.; Patrono, L.V.; Portmann, J.; Repits, J.G.; Rickett, N.Y.; Sachse, A.; Singethan, K.; Vitoriano, I.; Yemanaberhan, R.L.; Zekeng, E.G.; Trina, R.; Bello, A.; Sall, A.A.; Faye, O.; Faye, O.; Magassouba, N.; Williams, C.V.; Amburgey, V.; Winona, L.; Davis, E.; Gerlach, J.; Washington, F.; Monteil, V.; Jourdain, M.; Bererd, M.; Camara, A.; Somlare, H.; Camara, A.; Gerard, M.; Bado, G.; Baillet, B.; Delaune, D.; Nebie, K.Y.; Diarra, A.; Savane, Y.; Pallawo, R.B.; Gutierrez, G.J.; Milhano, N.; Roger, I.; Williams, C.J.; Yattara, F.; Lewandowski, K.; Taylor, J.; Rachwal, P.; Turner, D.; Pollakis, G.; Hiscox, J.A.; Matthews, D.A.; O’Shea, M.K.; Johnston, A.M.; Wilson, D.; Hutley, E.; Smit, E.; Di Caro, A.; Woelfel, R.; Stoecker, K.; Fleischmann, E.; Gabriel, M.; Weller, S.A.; Koivogui, L.; Diallo, B.; Keita, S.; Rambaut, A.; Formenty, P.; Gunther, S.; Carroll, M.W. Real-time, portable genome sequencing for Ebola surveillance. Nature, 2016, 530(7589), 228-232.
[http://dx.doi.org/10.1038/nature16996] [PMID: 26840485]
[108]
Hoenen, T. Sequencing of Ebola Virus genomes using nanopore technology. Bio Protoc., 2016, 6(21), e1998.
[http://dx.doi.org/10.21769/BioProtoc.1998] [PMID: 28180136]
[109]
Mbala-Kingebeni, P.; Villabona-Arenas, C.J.; Vidal, N.; Likofata, J.; Nsio-Mbeta, J.; Makiala-Mandanda, S.; Mukadi, D.; Mukadi, P.; Kumakamba, C.; Djokolo, B.; Ayouba, A.; Delaporte, E.; Peeters, M.; Muyembe Tamfum, J.J.; Ahuka-Mundeke, S. Rapid confirmation of the zaire ebola virus in the outbreak of the equateur province in the Democratic Republic of Congo: Implications for public health interventions. Clin. Infect. Dis., 2019, 68(2), 330-333.
[http://dx.doi.org/10.1093/cid/ciy527] [PMID: 29961823]
[110]
Wawina-Bokalanga, T.; Vanmechelen, B.; Martí-Carreras, J.; Vergote, V.; Vermeire, K.; Muyembe-Tamfum, J.J.; Ahuka-Mundeke, S.; Maes, P. Complete genome sequence of a new ebola virus strain isolated during the 2017 likati outbreak in the Democratic Republic of the Congo. Microbiol. Resour. Announc., 2019, 8(20), e00360-e19.
[http://dx.doi.org/10.1128/MRA.00360-19] [PMID: 31097506]
[111]
Greninger, A.L.; Naccache, S.N.; Federman, S.; Yu, G.; Mbala, P.; Bres, V.; Stryke, D.; Bouquet, J.; Somasekar, S.; Linnen, J.M.; Dodd, R.; Mulembakani, P.; Schneider, B.S.; Muyembe-Tamfum, J.J.; Stramer, S.L.; Chiu, C.Y. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med., 2015, 7(1), 99.
[http://dx.doi.org/10.1186/s13073-015-0220-9] [PMID: 26416663]
[112]
Wang, M.; Fu, A.; Hu, B.; Tong, Y.; Liu, R.; Liu, Z.; Gu, J.; Xiang, B.; Liu, J.; Jiang, W.; Shen, G.; Zhao, W.; Men, D.; Deng, Z.; Yu, L.; Wei, W.; Li, Y.; Liu, T. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small, 2020, 16(32), 2002169.
[http://dx.doi.org/10.1002/smll.202002169] [PMID: 32578378]
[113]
Bull, R.A.; Adikari, T.N.; Ferguson, J.M.; Hammond, J.M.; Stevanovski, I.; Beukers, A.G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H.; Kim, K.W.; Luciani, F.; Stelzer-Braid, S.; Eden, J.S.; Rawlinson, W.D.; van Hal, S.J.; Deveson, I.W. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat. Commun., 2020, 11(1), 6272.
[http://dx.doi.org/10.1038/s41467-020-20075-6] [PMID: 33298935]
[114]
Li, J.; Wang, H.; Mao, L.; Yu, H.; Yu, X.; Sun, Z.; Qian, X.; Cheng, S.; Chen, S.; Chen, J.; Pan, J.; Shi, J.; Wang, X. Rapid genomic characterization of SARS-CoV-2 viruses from clinical specimens using nanopore sequencing. Sci. Rep., 2020, 10(1), 17492.
[http://dx.doi.org/10.1038/s41598-020-74656-y] [PMID: 33060796]
[115]
Alcolea-Medina, A.; Charalampous, T.; Snell, L.B.; Aydin, A.; Alder, C.; Maloney, G.; Bryan, L.; Nebbia, G.; Douthwaite, S.; Neil, S.; Cliff, P.; O’Grady, J.; Batra, R.; Wilks, M.; O’Hara, G.; Edgeworth, J. Novel, rapid metagenomic method to detect emerging viral pathogens applied to human monkeypox infections SSRN, 2022, 4132526.
[http://dx.doi.org/10.2139/ssrn.4132526]
[116]
Callaway, E. Flu virus finally sequenced in its native form. Nature, 2018, 556(7702), 420-420.
[http://dx.doi.org/10.1038/d41586-018-04908-5] [PMID: 29691505]
[117]
Kugelman, J.R.; Wiley, M.R.; Mate, S.; Ladner, J.T.; Beitzel, B.; Fakoli, L.; Taweh, F.; Prieto, K.; Diclaro, J.W.; Minogue, T.; Schoepp, R.J.; Schaecher, K.E.; Pettitt, J.; Bateman, S.; Fair, J.; Kuhn, J.H.; Hensley, L.; Park, D.J.; Sabeti, P.C.; Sanchez-Lockhart, M.; Bolay, F.K.; Palacios, G. Monitoring of ebola virus makona evolution through establishment of advanced genomic capability in Liberia. Emerg. Infect. Dis., 2015, 21(7), 1135-1143.
[118]
Freedman, K.J.; Bastian, A.R.; Chaiken, I.; Kim, M.J. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics. Small, 2013, 9(5), 750-759.
[http://dx.doi.org/10.1002/smll.201201423] [PMID: 23074081]
[119]
Feuer, B.I.; Uzgiris, E.E.; Deblois, R.W.; Cluxton, D.H.; Lenard, J. Length of glycoprotein spikes of vesicular stomatitis virus and sindbis virus, measured in situ using quasi elastic light scattering and a resistive-pulse technique. Virology, 1978, 90(1), 156-161.
[http://dx.doi.org/10.1016/0042-6822(78)90344-6] [PMID: 213892]
[120]
Varga, Z.; Madai, M.; Kemenesi, G.; Beke-Somfai, T.; Jakab, F. Single-particle detection of native SARS-CoV-2 virions by microfluidic resistive pulse sensing. Colloids Surf. B Biointerfaces, 2022, 218, 112716.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112716] [PMID: 35907357]
[121]
Peinetti, A.S.; Lake, R.J.; Cong, W.; Cooper, L.; Wu, Y.; Ma, Y.; Pawel, G.T.; Toimil-Molares, M.E.; Trautmann, C.; Rong, L.; Mariñas, B.; Azzaroni, O.; Lu, Y. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Sci. Adv., 2021, 7(39), eabh2848.
[http://dx.doi.org/10.1126/sciadv.abh2848] [PMID: 34550739]
[122]
Zhou, K.; Li, L.; Tan, Z.; Zlotnick, A.; Jacobson, S.C. Characterization of hepatitis B virus capsids by resistive-pulse sensing. J. Am. Chem. Soc., 2011, 133(6), 1618-1621.
[http://dx.doi.org/10.1021/ja108228x] [PMID: 21265511]
[123]
Miyagawa, T.; Hongo, S.; Nakamura, N.; Horiguchi, Y.; Miyahara, Y.; Shibata, H. A Novel Diagnostic System for Infectious Diseases Using Solid-State Nanopore Devices. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 18-21 July 2018. Honolulu, HI USA, 2018.
[http://dx.doi.org/10.1109/EMBC.2018.8512856]
[124]
Arima, A.; Tsutsui, M.; Yoshida, T.; Tatematsu, K.; Yamazaki, T.; Yokota, K.; Kuroda, S.; Washio, T.; Baba, Y.; Kawai, T. Digital pathology platform for respiratory tract infection diagnosis via multiplex single-particle detections. ACS Sens., 2020, 5(11), 3398-3403.
[http://dx.doi.org/10.1021/acssensors.0c01564] [PMID: 32933253]
[125]
Karawdeniya, B.I.; Bandara, Y.M.N.D.Y.; Khan, A.I.; Chen, W.T.; Vu, H.A.; Morshed, A.; Suh, J.; Dutta, P.; Kim, M.J. Adeno-associated virus characterization for cargo discrimination through nanopore responsiveness. Nanoscale, 2020, 12(46), 23721-23731.
[http://dx.doi.org/10.1039/D0NR05605G] [PMID: 33231239]
[126]
Taniguchi, M.; Minami, S.; Ono, C.; Hamajima, R.; Morimura, A.; Hamaguchi, S.; Akeda, Y.; Kanai, Y.; Kobayashi, T.; Kamitani, W.; Terada, Y.; Suzuki, K.; Hatori, N.; Yamagishi, Y.; Washizu, N.; Takei, H.; Sakamoto, O.; Naono, N.; Tatematsu, K.; Washio, T.; Matsuura, Y.; Tomono, K. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nat. Commun., 2021, 12(1), 3726.
[http://dx.doi.org/10.1038/s41467-021-24001-2] [PMID: 34140500]
[127]
Karmi, A.; Sakala, G.P.; Rotem, D.; Reches, M.; Porath, D. Durable, stable, and functional nanopores decorated by self-assembled dipeptides. ACS Appl. Mater. Interfaces, 2020, 12(12), 14563-14568.
[http://dx.doi.org/10.1021/acsami.0c00062] [PMID: 32129065]
[128]
Wanunu, M.; Meller, A. Chemically modified solid-state nanopores. Nano Lett., 2007, 7(6), 1580-1585.
[http://dx.doi.org/10.1021/nl070462b] [PMID: 17503868]
[129]
Fujinami Tanimoto, I.M.; Cressiot, B.; Jarroux, N.; Roman, J.; Patriarche, G.; Le Pioufle, B.; Pelta, J.; Bacri, L. Selective target protein detection using a decorated nanopore into a microfluidic device. Biosens. Bioelectron., 2021, 183, 113195.
[http://dx.doi.org/10.1016/j.bios.2021.113195] [PMID: 33857755]
[130]
Fang, X.; Tan, W. Aptamers generated from cell-SELEX for molecular medicine: A chemical biology approach. Acc. Chem. Res., 2010, 43(1), 48-57.
[http://dx.doi.org/10.1021/ar900101s] [PMID: 19751057]
[131]
Rotem, D.; Jayasinghe, L.; Salichou, M.; Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc., 2012, 134(5), 2781-2787.
[http://dx.doi.org/10.1021/ja2105653] [PMID: 22229655]
[132]
Sethi, K.; Dailey, G.P.; Zahid, O.K.; Taylor, E.W.; Ruzicka, J.A.; Hall, A.R. Direct detection of conserved viral sequences and other nucleic acid motifs with solid-state nanopores. ACS Nano, 2021, 15(5), 8474-8483.
[http://dx.doi.org/10.1021/acsnano.0c10887] [PMID: 33914524]
[133]
Wen, C.; Dematties, D.; Zhang, S-L. A guide to signal processing algorithms for nanopore sensors. ACS Sens., 2021, 6(10), 3536-3555.
[http://dx.doi.org/10.1021/acssensors.1c01618]
[134]
Taniguchi, M. Combination of single-molecule electrical measurements and machine learning for the identification of single biomolecules. ACS Omega, 2020, 5(2), 959-964.
[http://dx.doi.org/10.1021/acsomega.9b03660] [PMID: 31984250]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy