Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Hollow Fiber Carbon Molecular Sieve Membranes for Gas Separation: A Mini Review

Author(s): Jing Nie* and Haibo Li

Volume 20, Issue 2, 2024

Published on: 18 May, 2023

Page: [174 - 187] Pages: 14

DOI: 10.2174/1573413719666230406101332

Price: $65

Abstract

Owing to the advantages of rapid adsorption and desorption characteristics, excellent gas separation performance, as well as good thermal and chemical resistance, carbon molecular sieve (CMS) membranes have been developed as a promising gas separation tool. Over the past 30 years, hollow fiber carbon molecular sieve (HFCMS) membranes have become the preferred choice for industrial applications due to their high surface area-to-volume ratio and the ability to assemble lightweight membrane modules. The gas transport mechanism behind the HFCMS is dominated by molecular sieving function. They can be prepared by pyrolysis of the polymeric hollow fiber precursors. Post-treatments can tailor the ultramicropores structure to improve the separation performance. This paper aims to review the recent progress in the preparation of HFCMS membranes from aspects of precursor selection, pyrolysis conditions and post-treatment. Moreover, a brief perspective in terms of future investigation of HFCMS membrane is also proposed.

Graphical Abstract

[1]
Bilgen, S. Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev., 2014, 38, 890-902.
[http://dx.doi.org/10.1016/j.rser.2014.07.004]
[2]
Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manage., 2015, 89, 205-213.
[http://dx.doi.org/10.1016/j.enconman.2014.09.057]
[3]
Kan, S.Y.; Chen, B.; Wu, X.F.; Chen, Z.M.; Chen, G.Q. Natural gas overview for world economy: From primary supply to final demand via global supply chains. Energy Policy, 2019, 124, 215-225.
[http://dx.doi.org/10.1016/j.enpol.2018.10.002]
[4]
Ockwig, N.W.; Nenoff, T.M. Membranes for hydrogen separation. Chem. Rev., 2007, 107(10), 4078-4110.
[http://dx.doi.org/10.1021/cr0501792] [PMID: 17927157]
[5]
Torres, D.; Pérez-Rodríguez, S.; Cesari, L.; Castel, C.; Favre, E.; Fierro, V.; Celzard, A. Review on the preparation of carbon membranes derived from phenolic resins for gas separation: From petrochemical precursors to bioresources. Carbon, 2021, 183, 12-33.
[http://dx.doi.org/10.1016/j.carbon.2021.06.087]
[6]
Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.W.; Fei, W.; Wang, Y. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chem. Eng., 2020, 1(1), 16-32.
[http://dx.doi.org/10.1016/j.gce.2020.09.005]
[7]
Alcántara-Avila, J.R.; Gómez-Castro, F.I.; Segovia-Hernández, G.J.; Sotowa, K.I.; Horikawa, T. Energy minimization in cryogenic distillation columns through intermediate side heat exchangers. Comput.-. Aided Chem. Eng., 2014, 33, 1501-1506.
[http://dx.doi.org/10.1016/B978-0-444-63455-9.50085-4]
[8]
Sircar, S. Pressure Swing Adsorption. Ind. Eng. Chem. Res., 2002, 41(6), 1389-1392.
[http://dx.doi.org/10.1021/ie0109758]
[9]
Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci., 1995, 107(1-2), 1-21.
[http://dx.doi.org/10.1016/0376-7388(95)00102-I]
[10]
Fu, S.; Sanders, E.S.; Kulkarni, S.S.; Koros, W.J. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. J. Membr. Sci., 2015, 487, 60-73.
[http://dx.doi.org/10.1016/j.memsci.2015.03.079]
[11]
Yave, W.; Car, A.; Peinemann, K.V.; Shaikh, M.Q.; Rätzke, K.; Faupel, F. Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J. Membr. Sci., 2009, 339(1-2), 177-183.
[http://dx.doi.org/10.1016/j.memsci.2009.04.049]
[12]
Wiegand, J.R.; Smith, Z.P.; Liu, Q.; Patterson, C.T.; Freeman, B.D.; Guo, R. Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(33), 13309-13320.
[http://dx.doi.org/10.1039/C4TA02303J]
[13]
Ruiz-Trevino, F.A.; Paul, D.R. Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive. J. Appl. Polym. Sci., 1998, 68(3), 403-415.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19980418)68:3<403:AID-APP8>3.0.CO;2-N]
[14]
Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2), 375-380.
[http://dx.doi.org/10.1021/ma9814548]
[15]
Tin, P.S.; Chung, T.S.; Kawi, S.; Guiver, M.D. Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous Mesoporous Mater., 2004, 73(3), 151-160.
[http://dx.doi.org/10.1016/j.micromeso.2004.05.005]
[16]
Ismail, A.; David, L. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci., 2001, 193(1), 1-18.
[http://dx.doi.org/10.1016/S0376-7388(01)00510-5]
[17]
Tsuru, T.; Igi, R.; Kanezashi, M.; Yoshioka, T.; Fujisaki, S. iwamoto, Y. Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures. AIChE J., 2011, 57(3), 618-629.
[http://dx.doi.org/10.1002/aic.12298]
[18]
Duke, M.C.; da Costa, J.C.D.; Do, D.D.; Gray, P.G.; Lu, G.Q. Hydrothermally robust molecular sieve silica for wet gas separation. Adv. Funct. Mater., 2006, 16(9), 1215-1220.
[http://dx.doi.org/10.1002/adfm.200500456]
[19]
Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Recent developments in zeolite membranes for gas separation. J. Membr. Sci., 2016, 499, 65-79.
[http://dx.doi.org/10.1016/j.memsci.2015.10.049]
[20]
Lee, P.S.; Kim, D.; Nam, S.E.; Bhave, R.R. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations. Microporous Mesoporous Mater., 2016, 224, 332-338.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.054]
[21]
Liao, K.S.; Fu, Y.J.; Hu, C.C.; Chen, J.T.; Lin, D.W.; Lee, K.R.; Tung, K.L.; Jean, Y.C.; Lai, J.Y. Microstructure of carbon molecular sieve membranes and their application to separation of aqueous bioethanol. Carbon, 2012, 50(11), 4220-4227.
[http://dx.doi.org/10.1016/j.carbon.2012.05.003]
[22]
Ngamou, P.H.T.; Ivanova, M.E.; Guillon, O.; Meulenberg, W.A. High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(12), 7082-7091.
[http://dx.doi.org/10.1039/C8TA09504C]
[23]
Steel, K.M.; Koros, W.J. Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon, 2003, 41(2), 253-266.
[http://dx.doi.org/10.1016/S0008-6223(02)00309-3]
[24]
Ning, X.; Koros, W.J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon, 2014, 66, 511-522.
[http://dx.doi.org/10.1016/j.carbon.2013.09.028]
[25]
Pierson, H.O. Handbook of carbon, graphite, diamond, and fullerenes: processing, properties and applications, William; Andrew, 2012.
[26]
Jenkins, G.M.; Kawamura, K. Polymeric carbons: carbon fiber, glass and char, 1st ed; Cambridge University Press: London, 1976.
[27]
Kusuki, Y.; Shimazaki, H.; Tanihara, N.; Nakanishi, S.; Yoshinaga, T. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J. Membr. Sci., 1997, 134(2), 245-253.
[http://dx.doi.org/10.1016/S0376-7388(97)00118-X]
[28]
Okamoto, K.; Kawamura, S.; Yoshino, M.; Kita, H.; Hirayama, Y.; Tanihara, N.; Kusuki, Y. Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind. Eng. Chem. Res., 1999, 38(11), 4424-4432.
[http://dx.doi.org/10.1021/ie990209p]
[29]
Jones, C.W.; Koros, W.J. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 1994, 32(8), 1419-1425.
[http://dx.doi.org/10.1016/0008-6223(94)90135-X]
[30]
Jones, C.W.; Koros, W.J. Carbon molecular sieve gas separation membranes-II. Regeneration following organic exposure. Carbon, 1994, 32(8), 1427-1432.
[http://dx.doi.org/10.1016/0008-6223(94)90136-8]
[31]
Geiszler, V.C.; Koros, W.J. Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind. Eng. Chem. Res., 1996, 35(9), 2999-3003.
[http://dx.doi.org/10.1021/ie950746j]
[32]
Inagaki, M.; Ohta, N.; Hishiyama, Y. Aromatic polyimides as carbon precursors. Carbon, 2013, 61, 1-21.
[http://dx.doi.org/10.1016/j.carbon.2013.05.035]
[33]
Favvas, E.P.; Heliopoulos, N.S.; Papageorgiou, S.K.; Mitropoulos, A.C.; Kapantaidakis, G.C.; Kanellopoulos, N.K. Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time. Separ. Purif. Tech., 2015, 142, 176-181.
[http://dx.doi.org/10.1016/j.seppur.2014.12.048]
[34]
Favvas, E.P.; Kapantaidakis, G.C.; Nolan, J.W.; Mitropoulos, A.C.; Kanellopoulos, N.K. Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid® 5218 precursor. J. Mater. Process. Technol., 2007, 186(1-3), 102-110.
[http://dx.doi.org/10.1016/j.jmatprotec.2006.12.024]
[35]
Saufi, S.M.; Ismail, A.F. Fabrication of carbon membranes for gas separation––a review. Carbon, 2004, 42(2), 241-259.
[http://dx.doi.org/10.1016/j.carbon.2003.10.022]
[36]
Kim, Y.; Park, H.; Lee, Y. Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. J. Membr. Sci., 2005, 255(1-2), 265-273.
[http://dx.doi.org/10.1016/j.memsci.2005.02.002]
[37]
Qiu, W.; Leisen, J.E.; Liu, Z.; Quan, W.; Koros, W.J. Key features of polyimide-derived carbon molecular sieves. Angew. Chem. Int. Ed., 2021, 60(41), 22322-22331.
[http://dx.doi.org/10.1002/anie.202106740] [PMID: 34347936]
[38]
Koresh, J.; Soffer, A. Study of molecular sieve carbons. Part 1.—Pore structure, gradual pore opening and mechanism of molecular sieving. Journal of the Chemical Society, Faraday Transactions 1. Phys. Chem. Condensed Phas., 1980, 76, 2457-2471.
[39]
Soffer, A.; Gilron, J.; Saguee, S.; Hed-Ofek, R.; Cohen, H. Process for the production of hollow carbon fibers membranes. U.S. Patent 592559, 1999.
[40]
Soffer, A.; Saguee, S.; Golub, D.; Cohen, H.; Azariah, M. Selective clogging of failed fibers. U.S. Patent 5575963, 1996.
[41]
Soffer, A.; Azariah, M.; Amar, A.; Cohen, H.; Golub, D.; Saguee, S.; Tobias, H. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition. U.S. Patent 5695818, 1997.
[42]
Rodrigues, S.C.; Andrade, M.; Moffat, J.; Magalhães, F.D.; Mendes, A. Carbon membranes with extremely high separation factors and stability. Energy Technol., 2019, 7(4), 1801089.
[http://dx.doi.org/10.1002/ente.201801089]
[43]
He, X.; Arvid Lie, J.; Sheridan, E.; Hägg, M.B. CO2 capture by hollow fibre carbon membranes: Experiments and process simulations. Energy Procedia, 2009, 1(1), 261-268.
[http://dx.doi.org/10.1016/j.egypro.2009.01.037]
[44]
He, X.; Hägg, M.B. Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Ind. Eng. Chem. Res., 2011, 50(13), 8065-8072.
[http://dx.doi.org/10.1021/ie2003279]
[45]
He, X.; Hägg, M.B. Structural, kinetic and performance characterization of hollow fiber carbon membranes. J. Membr. Sci., 2012, 390-391, 23-31.
[http://dx.doi.org/10.1016/j.memsci.2011.10.052]
[46]
He, X.; Hägg, M.B. Hollow fiber carbon membranes: Investigations for CO2 capture. J. Membr. Sci., 2011, 378(1-2), 1-9.
[http://dx.doi.org/10.1016/j.memsci.2010.10.070]
[47]
He, X.; Hägg, M.B. Hollow fiber carbon membranes: From material to application. Chem. Eng. J., 2013, 215-216, 440-448.
[http://dx.doi.org/10.1016/j.cej.2012.10.051]
[48]
Lei, L.; Pan, F.; Lindbråthen, A.; Zhang, X.; Hillestad, M.; Nie, Y.; Bai, L.; He, X.; Guiver, M.D. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun., 2021, 12(1), 268.
[http://dx.doi.org/10.1038/s41467-020-20628-9] [PMID: 33431865]
[49]
Lei, L.; Lindbråthen, A.; Hillestad, M.; He, X. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process. J. Membr. Sci., 2021, 627, 119241.
[http://dx.doi.org/10.1016/j.memsci.2021.119241]
[50]
Yoshimune, M.; Fujiwara, I.; Suda, H.; Haraya, K. Novel carbon molecular sieve membranes derived from poly (phenylene oxide) and its derivatives for gas separation. Chem. Lett., 2005, 34(7), 958-959.
[http://dx.doi.org/10.1246/cl.2005.958]
[51]
Hamad, F.; Chowdhury, G.; Matsuura, T. Sulfonated polyphenylene oxide–polyethersulfone thin-film composite membranes Effect of counterions on the gas transport properties. J. Membr. Sci., 2001, 191(1-2), 71-83.
[http://dx.doi.org/10.1016/S0376-7388(01)00451-3]
[52]
Zhou, W.; Yoshino, M.; Kita, H.; Okamoto, K. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind. Eng. Chem. Res., 2001, 40(22), 4801-4807.
[http://dx.doi.org/10.1021/ie010402v]
[53]
Yoshimune, M.; Haraya, K. Olefin gas dehydration using carbon hollow fiber membranes derived from sulfonated poly (phenyl oxide). J. Jpn. Petrol. Inst., 2011, 54(2), 119-123.
[http://dx.doi.org/10.1627/jpi.54.119]
[54]
Yoshimune, M.; Haraya, K. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia, 2013, 37, 1109-1116.
[http://dx.doi.org/10.1016/j.egypro.2013.05.208]
[55]
Yoshimune, M.; Haraya, K. Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separ. Purif. Tech., 2010, 75(2), 193-197.
[http://dx.doi.org/10.1016/j.seppur.2010.07.017]
[56]
Seong, J.G.; Lewis, J.C.; Matteson, J.A.; Craddock, E.; Martinez, U.; Thakkar, H.; Benavidez, A.D.; Berchtold, K.A.; Singh, R.P. Polybenzimidazole-derived carbon molecular sieve hollow fiber membranes with tailored oxygen selective transport. Carbon, 2022, 192, 71-83.
[http://dx.doi.org/10.1016/j.carbon.2022.02.033]
[57]
Iyer, G.M.; Zhang, C. Precise hydrogen sieving by carbon molecular sieve membranes derived from solution-processable aromatic polyamides. ACS Mater. Lett., 2023, 5(1), 243-248.
[http://dx.doi.org/10.1021/acsmaterialslett.2c01029]
[58]
Salleh, W.N.W.; Ismail, A.F. Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J., 2012, 58(10), 3167-3175.
[http://dx.doi.org/10.1002/aic.13711]
[59]
Linkov, V.M.; Sanderson, R.D.; Jacobs, E.P. Carbon membranes from precursors containing low-carbon residual polymers. Polym. Int., 1994, 35(3), 239-242.
[http://dx.doi.org/10.1002/pi.1994.210350304]
[60]
Barbosa-Coutinho, E.; Salim, V.M.M.; Piacsek Borges, C. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 2003, 41(9), 1707-1714.
[http://dx.doi.org/10.1016/S0008-6223(03)00129-5]
[61]
Schindler, E.; Maier, F. Manufacture of porous carbon membranes. U. S. patent, 4919860A, 1990.
[62]
Geiszler, V.C. Polyimide precursors for carbon molecular sieve membranes; The University of Texas at Austin, 1997.
[63]
Dickens, B. Thermally degrading polyethylene studied by means of factor-jump thermogravimetry. J. Polym. Sci. Polym. Chem. Ed., 1982, 20(4), 1065-1087.
[http://dx.doi.org/10.1002/pol.1982.170200415]
[64]
Dickens, B. Thermal degradation study of isotactic polypropylene using factor-jump thermogravimetry. J. Polym. Sci. Polym. Chem. Ed., 1982, 20(5), 1169-1183.
[http://dx.doi.org/10.1002/pol.1982.170200502]
[65]
Kiyono, M.; Williams, P.J.; Koros, W.J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J. Membr. Sci., 2010, 359(1-2), 2-10.
[http://dx.doi.org/10.1016/j.memsci.2009.10.019]
[66]
Kiyono, M.; Williams, P.J.; Koros, W.J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon, 2010, 48(15), 4432-4441.
[http://dx.doi.org/10.1016/j.carbon.2010.08.002]
[67]
Kiyono, M.; Williams, P.J.; Koros, W.J. Generalization of effect of oxygen exposure on formation and performance of carbon molecular sieve membranes. Carbon, 2010, 48(15), 4442-4449.
[http://dx.doi.org/10.1016/j.carbon.2010.08.003]
[68]
Saufi, S.M.; Ismail, A.F. Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J. Sci. Technol., 2002, 24, 843-854.
[69]
Yoshino, M.; Nakamura, S.; Kita, H.; Okamoto, K.; Tanihara, N.; Kusuki, Y. Olefin/paraffin separation performance of carbonized membranes derived from an asymmetric hollow fiber membrane of 6FDA/BPDA–DDBT copolyimide. J. Membr. Sci., 2003, 215(1-2), 169-183.
[http://dx.doi.org/10.1016/S0376-7388(02)00611-7]
[70]
Lei, L.; Lindbråthen, A.; Zhang, X.; Favvas, E.P.; Sandru, M.; Hillestad, M.; He, X. Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. J. Membr. Sci., 2020, 614, 118529.
[http://dx.doi.org/10.1016/j.memsci.2020.118529]
[71]
Karousos, D.S.; Lei, L.; Lindbråthen, A.; Sapalidis, A.A.; Kouvelos, E.P.; He, X.; Favvas, E.P. Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2. Separ. Purif. Tech., 2020, 253, 117473.
[http://dx.doi.org/10.1016/j.seppur.2020.117473]
[72]
Salleh, W.N.W.; Ismail, A.F. Carbon hollow fiber membranes derived from PEI/PVP for gas separation. Separ. Purif. Tech., 2011, 80(3), 541-548.
[http://dx.doi.org/10.1016/j.seppur.2011.06.009]
[73]
Soffer, A.; Rosen, D.; Saguee, S.; Koresh, J. Carbon membranes and process for producing them. U.K. patent, GB2207666B, 1992.
[74]
Salleh, W.N.W.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review. Separ. Purif. Rev., 2011, 40(4), 261-311.
[http://dx.doi.org/10.1080/15422119.2011.555648]
[75]
Vu, D.Q.; Koros, W.J.; Miller, S.J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res., 2002, 41(3), 367-380.
[http://dx.doi.org/10.1021/ie010119w]
[76]
David, L.I.B.; Ismail, A.F. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J. Membr. Sci., 2003, 213(1-2), 285-291.
[http://dx.doi.org/10.1016/S0376-7388(02)00513-6]
[77]
Koresh, J.E.; Sofer, A. Molecular sieve carbon permselective membrane. Part I. Presentation of a new device for gas mixture separation. Sep. Sci. Technol., 1983, 18(8), 723-734.
[http://dx.doi.org/10.1080/01496398308068576]
[78]
Qiu, W.; Vaughn, J.; Liu, G.; Xu, L.; Brayden, M.; Martinez, M.; Fitzgibbons, T.; Wenz, G.; Koros, W.J. Hyperaging tuning of a carbon molecular sieve hollow fiber membrane with extraordinary gas separation performance and stability. Angew. Chem. Int. Ed., 2019, 58(34), 11700-11703.
[http://dx.doi.org/10.1002/anie.201904913] [PMID: 31185135]
[79]
Hayashi, J.; Mizuta, H.; Yamamoto, M.; Kusakabe, K.; Morooka, S. Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon. J. Membr. Sci., 1997, 124(2), 243-251.
[http://dx.doi.org/10.1016/S0376-7388(96)00250-5]
[80]
Yoshimune, M.; Haraya, K. Simple control of the pore structures and gas separation performances of carbon hollow fiber membranes by chemical vapor deposition of propylene. Separ. Purif. Tech., 2019, 223, 162-167.
[http://dx.doi.org/10.1016/j.seppur.2019.04.065]
[81]
He, X.; Chu, Y.; Lindbråthen, A.; Hillestad, M.; Hägg, M.B. Carbon molecular sieve membranes for biogas upgrading: Techno-economic feasibility analysis. J. Clean. Prod., 2018, 194, 584-593.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.172]
[82]
Kawabuchi, Y.; Kishino, M.; Kawano, S.; Whitehurst, D.D.; Mochida, I. Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size. Langmuir, 1996, 12(17), 4281-4285.
[http://dx.doi.org/10.1021/la960292a]
[83]
Nie, J.; Yoshizawa, N.; Tanaka, K. Effect of chemical vapor deposition of toluene on gas separation performance of carbon molecular sieve membranes. J. Porous Mater., 2022, 29(2), 393-404.
[http://dx.doi.org/10.1007/s10934-021-01188-9]
[84]
Vu, D.Q.; Koros, W.J.; Miller, S.J. Effect of condensable impurities in CO2 and CH4 gas feeds on carbon molecular sieve hollow-fiber membranes. Ind. Eng. Chem. Res., 2003, 42(5), 1064-1075.
[http://dx.doi.org/10.1021/ie020698k]
[85]
Cao, Y.; Zhang, K.; Sanyal, O.; Koros, W.J. Carbon molecular sieve membrane preparation by economical coating and pyrolysis of porous polymer hollow fibers. Angew. Chem. Int. Ed., 2019, 58(35), 12149-12153.
[http://dx.doi.org/10.1002/anie.201906653] [PMID: 31237732]
[86]
Bhuwania, N.; Labreche, Y.; Achoundong, C.S.K.; Baltazar, J.; Burgess, S.K.; Karwa, S.; Xu, L.; Henderson, C.L.; Williams, P.J.; Koros, W.J. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 2014, 76, 417-434.
[http://dx.doi.org/10.1016/j.carbon.2014.05.008]
[87]
Joglekar, M.; Itta, A.K.; Kumar, R.; Wenz, G.B.; Mayne, J.; Williams, P.J.; Koros, W.J. Carbon molecular sieve membranes for CO2/N2 separations: Evaluating subambient temperature performance. J. Membr. Sci., 2019, 569, 1-6.
[http://dx.doi.org/10.1016/j.memsci.2018.10.003]
[88]
Zhang, C.; Wenz, G.B.; Williams, P.J.; Mayne, J.M.; Liu, G.; Koros, W.J. Purification of aggressive supercritical natural gas using carbon molecular sieve hollow fiber membranes. Ind. Eng. Chem. Res., 2017, 56(37), 10482-10490.
[http://dx.doi.org/10.1021/acs.iecr.7b03018]
[89]
Wenz, G.B.; Koros, W.J. Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach. AIChE J., 2017, 63(2), 751-760.
[http://dx.doi.org/10.1002/aic.15405]
[90]
Kamath, M.G.; Fu, S.; Itta, A.K.; Qiu, W.; Liu, G.; Swaidan, R.; Koros, W.J. 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena. J. Membr. Sci., 2018, 546, 197-205.
[http://dx.doi.org/10.1016/j.memsci.2017.10.020]
[91]
Sanyal, O.; Hicks, S.T.; Bhuwania, N.; Hays, S.; Kamath, M.G.; Karwa, S.; Swaidan, R.; Koros, W.J. Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. J. Membr. Sci., 2018, 551, 113-122.
[http://dx.doi.org/10.1016/j.memsci.2018.01.021]
[92]
Xu, L.; Rungta, M.; Brayden, M.K.; Martinez, M.V.; Stears, B.A.; Barbay, G.A.; Koros, W.J. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci., 2012, 423-424, 314-323.
[http://dx.doi.org/10.1016/j.memsci.2012.08.028]
[93]
Xu, L.; Rungta, M.; Koros, W.J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci., 2011, 380(1-2), 138-147.
[http://dx.doi.org/10.1016/j.memsci.2011.06.037]
[94]
Zhang, C.; Zhang, K.; Cao, Y.; Koros, W.J. Composite carbon molecular sieve hollow fiber membranes: Resisting support densification via silica particle stabilization. Ind. Eng. Chem. Res., 2018, 57(47), 16051-16058.
[http://dx.doi.org/10.1021/acs.iecr.8b02386]
[95]
Zhang, C.; Koros, W.J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater., 2017, 29(33), 1701631.
[http://dx.doi.org/10.1002/adma.201701631] [PMID: 28671716]
[96]
Barsema, J.; van der Vegt, N.F.; Koops, G.H.; Wessling, M. Carbon molecular sieve membranes prepared from porous fiber precursor. J. Membr. Sci., 2002, 205(1-2), 239-246.
[http://dx.doi.org/10.1016/S0376-7388(02)00117-5]
[97]
Favvas, E.P.; Romanos, G.E.; Papageorgiou, S.K.; Katsaros, F.K.; Mitropoulos, A.C.; Kanellopoulos, N.K. A methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes. J. Membr. Sci., 2011, 375(1-2), 113-123.
[http://dx.doi.org/10.1016/j.memsci.2011.03.028]
[98]
Favvas, E.P.; Kouvelos, E.P.; Romanos, G.E.; Pilatos, G.I.; Mitropoulos, A.C.; Kanellopoulos, N.K. Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J. Porous Mater., 2008, 15(6), 625-633.
[http://dx.doi.org/10.1007/s10934-007-9142-2]
[99]
Favvas, E.P. Carbon dioxide permeation study through carbon hollow fiber membranes at pressures up to 55bar. Sep. Sci. Technol., 2014, 134, 158-162.
[100]
Favvas, E.P.; Romanos, G.E.; Katsaros, F.K.; Stefanopoulos, K.L.; Papageorgiou, S.K.; Mitropoulos, A.C.; Kanellopoulos, N.K. Gas permeance properties of asymmetric carbon hollow fiber membranes at high feed pressures. J. Nat. Gas Sci. Eng., 2016, 31, 842-851.
[http://dx.doi.org/10.1016/j.jngse.2016.03.089]
[101]
Favvas, E.P.; Stefanopoulos, K.L.; Papageorgiou, S.K.; Mitropoulos, A.C. In situ small angle X-ray scattering and benzene adsorption on polymer-based carbon hollow fiber membranes. Adsorption, 2012, 19(2–4), 225-233.
[102]
Linkov, V.M.; Sanderson, R.D.; Jacobs, E.P. Highly asymmetrical carbon membranes. J. Membr. Sci., 1994, 95(1), 93-99.
[http://dx.doi.org/10.1016/0376-7388(94)85032-1]
[103]
Yang, M.C.; Yu, D.G. Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. J. Appl. Polym. Sci., 1996, 59(11), 1725-1731.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960314)59:11<1725:AID-APP8>3.0.CO;2-Q]
[104]
Ogawa, M.; Nakano, Y. Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid. J. Membr. Sci., 1999, 162(1-2), 189-198.
[http://dx.doi.org/10.1016/S0376-7388(99)00140-4]
[105]
Jiang, L.Y.; Chung, T.S.; Rajagopalan, R. Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers. Carbon, 2007, 45(1), 166-172.
[http://dx.doi.org/10.1016/j.carbon.2006.07.008]
[106]
Li, Y.; Chung, T.S. Exploratory development of dual-layer carbon–zeolite nanocomposite hollow fiber membranes with high performance for oxygen enrichment and natural gas separation. Microporous Mesoporous Mater., 2008, 113(1-3), 315-324.
[http://dx.doi.org/10.1016/j.micromeso.2007.11.038]
[107]
Salleh, W.N.W.; Ismail, A.F. Effect of stabilization condition on PEI/PVP-based carbon hollow fiber membranes properties. Sep. Sci. Technol., 2013, 48(7), 1030-1039.
[http://dx.doi.org/10.1080/01496395.2012.727938]
[108]
Salleh, W.N.W.; Ismail, A.F. Effects of carbonization heating rate on CO2 separation of derived carbon membranes. Sep. Sci. Technol., 2012, 88, 174-183.
[109]
Haider, S.; Lindbråthen, A.; Hägg, M.B. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy & Environment, 2016, 1(3), 222-234.
[http://dx.doi.org/10.1016/j.gee.2016.10.003]
[110]
Haider, S.; Lindbråthen, A.; Lie, J.A.; Hägg, M.B. Regenerated cellulose based carbon membranes for CO2 separation: Durability and aging under miscellaneous environments. J. Ind. Eng. Chem., 2019, 70, 363-371.
[http://dx.doi.org/10.1016/j.jiec.2018.10.037]
[111]
Haider, S.; Lindbråthen, A.; Lie, J.A.; Hägg, M.B. Carbon membranes for oxygen enriched air – Part I: Synthesis, performance and preventive regeneration. Separ. Purif. Tech., 2018, 204, 290-297.
[http://dx.doi.org/10.1016/j.seppur.2018.05.014]
[112]
Haider, S.; Lindbråthen, A.; Lie, J.A.; Andersen, I.C.T.; Hägg, M.B. CO2 separation with carbon membranes in high pressure and elevated temperature applications. Separ. Purif. Tech., 2018, 190, 177-189.
[http://dx.doi.org/10.1016/j.seppur.2017.08.038]
[113]
Lei, L.; Lindbråthen, A.; Hillestad, M.; Sandru, M.; Favvas, E.P.; He, X. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation. Ind. Eng. Chem. Res., 2019, 58(29), 13330-13339.
[http://dx.doi.org/10.1021/acs.iecr.9b02480]
[114]
Li, J.; Qi, J.; Liu, C.; Zhou, L.; Song, H.; Yu, C.; Shen, J.; Sun, X.; Wang, L. Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(12), 4144-4149.
[http://dx.doi.org/10.1039/C3TA14884J]
[115]
Araújo, T.; Andrade, M.; Bernardo, G.; Mendes, A. Stable cellulose-based carbon molecular sieve membranes with very high selectivities. J. Membr. Sci., 2022, 641, 119852.
[http://dx.doi.org/10.1016/j.memsci.2021.119852]
[116]
Xu, L.; Rungta, M.; Hessler, J.; Qiu, W.; Brayden, M.; Martinez, M.; Barbay, G.; Koros, W.J. Physical aging in carbon molecular sieve membranes. Carbon, 2014, 80, 155-166.
[http://dx.doi.org/10.1016/j.carbon.2014.08.051]
[117]
Andrade, M.; Rodrigues, S.C.; Mendes, A. High performing CMS adsorbent for O2/N2 separation. Microporous Mesoporous Mater., 2020, 296, 109989.
[http://dx.doi.org/10.1016/j.micromeso.2019.109989]
[118]
Kim, S.J.; Kim, J.F.; Cho, Y.H.; Nam, S.E.; Park, H.; Park, Y.I. Aging-resistant carbon molecular sieve membrane derived from pre-crosslinked Matrimid® for propylene/propane separation. J. Membr. Sci., 2021, 636, 119555.
[http://dx.doi.org/10.1016/j.memsci.2021.119555]
[119]
Liu, Z.; Qiu, W.; Koros, W.J. New insights into physical aging‐induced structure evolution in carbon molecular sieve membranes. Angew. Chem. Int. Ed., 2022, 61(45), e202210831.
[http://dx.doi.org/10.1002/anie.202210831] [PMID: 36095046]
[120]
Qiu, W.; Xu, L.; Liu, Z.; Liu, Y.; Arab, P.; Brayden, M.; Martinez, M.; Liu, J.; Roy, A.; Koros, W.J. Surprising olefin/paraffin separation performance recovery of highly aged carbon molecular sieve hollow fiber membranes by a super-hyperaging treatment. J. Membr. Sci., 2021, 620, 118701.
[http://dx.doi.org/10.1016/j.memsci.2020.118701]
[121]
Sheng, L.; Ren, J.; Zhao, D.; Li, H.; Hua, K.; Deng, M. The evolution of the structure, mechanical, and gas separation properties of P84 hollow fiber membranes from the polymer to the carbon stage. Separ. Purif. Tech., 2021, 256, 117741.
[http://dx.doi.org/10.1016/j.seppur.2020.117741]
[122]
Liu, L.; Liu, D.; Zhang, C. High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. J. Membr. Sci., 2022, 642, 119978.
[http://dx.doi.org/10.1016/j.memsci.2021.119978]
[123]
Wu, R.; Yue, W.; Li, Y.; Huang, A. Ultra-thin and high hydrogen permeable carbon molecular sieve membrane prepared by using polydopamine as carbon precursor. Mater. Lett., 2021, 295, 129863.
[http://dx.doi.org/10.1016/j.matlet.2021.129863]
[124]
Park, J.; Kim, S.J.; Lee, I.; Shin, J.W.; Park, Y.I.; Kim, K.; Park, Y.K. Techno-economics and sensitivity analysis of hybrid process combining carbon molecular sieve membrane and distillation column for propylene/propane separation. Chem. Eng. Res. Des., 2021, 172, 204-214.
[http://dx.doi.org/10.1016/j.cherd.2021.06.009]
[125]
Arab, P.; Liu, Z.; Nasser, M.; Qiu, W.; Martinez, M.; Flick, D.; Roy, A.; Liu, J.; Koros, W.J. Subtle penetrant size effects on separation of carbon molecular sieve membranes derived from 6FDA:BPDA-DAM polyimide. Carbon, 2021, 184, 214-222.
[http://dx.doi.org/10.1016/j.carbon.2021.08.005]
[126]
Cao, Y.; Zhang, K.; Zhang, C.; Koros, W.J. Carbon molecular sieve hollow fiber membranes derived from dip-coated precursor hollow fibers comprising nanoparticles. J. Membr. Sci., 2022, 649, 120279.
[http://dx.doi.org/10.1016/j.memsci.2022.120279]
[127]
Yang, R.; Chen, M.Y.; Li, P. Carbon molecular sieve hollow fiber composite membrane derived from PMDA-ODA polyimide for gas separation. High Perform. Polym., 2022, 34(4), 444-454.
[http://dx.doi.org/10.1177/09540083211032384]
[128]
Brunetti, A.; Lei, L.; Avruscio, E.; Karousos, D.S.; Lindbråthen, A.; Kouvelos, E.P.; He, X.; Favvas, E.P.; Barbieri, G. Long-term performance of highly selective carbon hollow fiber membranes for biogas upgrading in the presence of H2S and water vapor. Chem. Eng. J., 2022, 448, 137615.
[http://dx.doi.org/10.1016/j.cej.2022.137615]
[129]
Nie, J.; Okada, F.; Kita, H.; Tanaka, K.; Mihara, T.; Kondo, D.; Yamashita, Y.; Yahagi, N. Fabrication of carbon molecular sieve membranes supported on a novel porous carbon fiber. Energy Fuels, 2022, 36(13), 7147-7157.
[http://dx.doi.org/10.1021/acs.energyfuels.2c00907]
[130]
Haraya, K.; Suda, H.; Yanagishita, H.; Matsuda, S. Asymmetric capillary membrane of a carbon molecular sieve. J. Chem. Soc. Chem. Commun., 1995, 17(17), 1781-1782.
[http://dx.doi.org/10.1039/c39950001781]
[131]
Petersen, J.; Matsuda, M.; Haraya, K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. J. Membr. Sci., 1997, 131(1-2), 85-94.
[http://dx.doi.org/10.1016/S0376-7388(97)00041-0]
[132]
Tanihara, N.; Shimazaki, H.; Hirayama, Y.; Nakanishi, S.; Yoshinaga, T.; Kusuki, Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. J. Membr. Sci., 1999, 160(2), 179-186.
[http://dx.doi.org/10.1016/S0376-7388(99)00082-4]
[133]
Richter, H.; Voss, H.; Kaltenborn, N.; Kämnitz, S.; Wollbrink, A.; Feldhoff, A.; Caro, J.; Roitsch, S.; Voigt, I. High-fux carbon molecular sieve membranes for gas separation. Angew. Chem. Int. Ed., 2017, 56(27), 7760-7763.
[http://dx.doi.org/10.1002/anie.201701851] [PMID: 28504418]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy