Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Recent Advances in the Green Reduction of Graphene Oxide and its Potential Applications

Author(s): Jay Soni, Pankaj Teli and Shikha Agarwal*

Volume 20, Issue 2, 2024

Published on: 20 April, 2023

Page: [146 - 156] Pages: 11

DOI: 10.2174/1573413719666230329104621

Price: $65

conference banner
Abstract

Graphene has drawn significant attention due to its commercial usage in various fields. Several methods have been developed for the synthesis of graphene sheets but most of them involve only lab-scale production and are expensive too. So, the production of high-grade graphene on a large scale by cost-efficient and eco-friendly methods is still a challenge for the scientific community. The reduction of graphene oxide to produce high-quality graphene is considered the most eco-efficient and auspicious approach. Various pathways for the reduction of graphene oxide involving chemical reduction, thermal annealing, microwave and photoreduction, solvothermal, electrochemical, and green reduction have been explored. Several of these methods use harmful and toxic reagents that cause adverse effects on human health and the environment. The reduction of graphene oxide by plant extracts is simple, easily accessible, environment-friendly, sustainable, renewable, and economical. This review highlights different approaches for the synthesis of reduced graphene oxide with the main focus on green reduction using plant extracts. Moreover, several applications of reduced graphene oxide in various fields have also been elaborated. The main aim of this review is to provide deep insights for current and future researchers related to the greener methods for the synthesis of reduced graphene oxide along with its potential applications.

Graphical Abstract

[1]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[2]
Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature, 2007, 446(7131), 60-63.
[http://dx.doi.org/10.1038/nature05545] [PMID: 17330039]
[3]
Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[4]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[5]
Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. Trends Analyt. Chem., 2010, 29(9), 954-965.
[http://dx.doi.org/10.1016/j.trac.2010.05.011]
[6]
Pumera, M. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec., 2009, 9(4), 211-223.
[http://dx.doi.org/10.1002/tcr.200900008] [PMID: 19739147]
[7]
Chen, L.; Weng, M.; Zhou, P.; Huang, F.; Liu, C.; Fan, S.; Zhang, W. Graphene-based actuator with integrated-sensing function. Adv. Funct. Mater., 2019, 29(5), 1806057.
[http://dx.doi.org/10.1002/adfm.201806057]
[8]
Ma, Q.; Lui, C.H.; Song, J.C.W.; Lin, Y.; Kong, J.F.; Cao, Y.; Dinh, T.H.; Nair, N.L.; Fang, W.; Watanabe, K.; Taniguchi, T.; Xu, S.Y.; Kong, J.; Palacios, T.; Gedik, N.; Gabor, N.M.; Jarillo-Herrero, P. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol., 2019, 14(2), 145-150.
[http://dx.doi.org/10.1038/s41565-018-0323-8] [PMID: 30559484]
[9]
Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small, 2013, 9(8), 1160-1172.
[http://dx.doi.org/10.1002/smll.201202896] [PMID: 23494883]
[10]
Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater., 2013, 23(29), 3693-3700.
[http://dx.doi.org/10.1002/adfm.201202601]
[11]
Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D nanostructures for water purification: Graphene and beyond. Nanoscale, 2016, 8(33), 15115-15131.
[http://dx.doi.org/10.1039/C6NR04508A] [PMID: 27506268]
[12]
Yang, Y.; Asiri, A.M.; Tang, Z.; Du, D.; Lin, Y. Graphene based materials for biomedical applications. Mater. Today, 2013, 16(10), 365-373.
[http://dx.doi.org/10.1016/j.mattod.2013.09.004]
[13]
Bitounis, D.; Ali-Boucetta, H.; Hong, B.H.; Min, D.H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater., 2013, 25(16), 2258-2268.
[http://dx.doi.org/10.1002/adma.201203700] [PMID: 23494834]
[14]
Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics, 2012, 2(3), 283-294.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[15]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[16]
Kostarelos, K.; Novoselov, K.S. Graphene devices for life. Nat. Nanotechnol., 2014, 9(10), 744-745.
[http://dx.doi.org/10.1038/nnano.2014.224] [PMID: 25286265]
[17]
Zhu, Y.; Ji, H.; Cheng, H.M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev., 2018, 5(1), 90-101.
[http://dx.doi.org/10.1093/nsr/nwx055]
[18]
Jaidev, L.R.; Kumar, S.; Chatterjee, K. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids Surf. B Biointerfaces, 2017, 159, 293-302.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.083] [PMID: 28802737]
[19]
Padmavathy, N.; Jaidev, L.R.; Bose, S.; Chatterjee, K. Oligomer-grafted graphene in a soft nanocomposite augments mechanical properties and biological activity. Mater. Des., 2017, 126, 238-249.
[http://dx.doi.org/10.1016/j.matdes.2017.03.087]
[20]
Ghosh, T.K.; Gope, S.; Rana, D.; Roy, I.; Sarkar, G.; Sadhukhan, S.; Bhattacharya, A.; Pramanik, K.; Chattopadhyay, S.; Chakraborty, M.; Chattopadhyay, D. Physical and electrical characterization of reduced graphene oxide synthesized adopting green route. Bull. Mater. Sci., 2016, 39(2), 543-550.
[http://dx.doi.org/10.1007/s12034-016-1156-4]
[21]
Serrano-Luján, L.; Víctor-Román, S.; Toledo, C.; Sanahuja-Parejo, O.; Mansour, A.E.; Abad, J.; Amassian, A.; Benito, A.M.; Maser, W.K.; Urbina, A. Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Applied Sciences, 2019, 1(2), 179.
[http://dx.doi.org/10.1007/s42452-019-0193-1]
[22]
Cossutta, M.; McKechnie, J.; Pickering, S.J. A comparative LCA of different graphene production routes. Green Chem., 2017, 19(24), 5874-5884.
[http://dx.doi.org/10.1039/C7GC02444D]
[23]
Staudenmaier, L. Method for the preparation of the graphite acid. Eur. J. Inorg. Chem., 1898, 31, 1481-1487.
[24]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[25]
Dimiev, A.M.; Tour, J.M. Mechanism of graphene oxide formation. ACS Nano, 2014, 8(3), 3060-3068.
[http://dx.doi.org/10.1021/nn500606a] [PMID: 24568241]
[26]
Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G.G. The origin of fluorescence from graphene oxide. Sci. Rep., 2012, 2(1), 792.
[http://dx.doi.org/10.1038/srep00792] [PMID: 23145316]
[27]
Donarelli, M.; Ottaviano, L. 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors, 2018, 18(11), 3638.
[http://dx.doi.org/10.3390/s18113638] [PMID: 30373161]
[28]
Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect, 2020, 5(33), 10200-10219.
[http://dx.doi.org/10.1002/slct.202002501]
[29]
Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep., 2015, 5(1), 10160.
[http://dx.doi.org/10.1038/srep10160] [PMID: 25976732]
[30]
Karikalan, N.; Karthik, R.; Chen, S.M.; Karuppiah, C.; Elangovan, A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep., 2017, 7(1), 2494.
[http://dx.doi.org/10.1038/s41598-017-02479-5] [PMID: 28559593]
[31]
Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys., 2018, 204, 1-7.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.020]
[32]
Kurian, M. Recent progress in the chemical reduction of graphene oxide by green reductants-A mini review. Carbon Trends, 2021, 5, 100120.
[http://dx.doi.org/10.1016/j.cartre.2021.100120]
[33]
Ismail, Z. Green reduction of graphene oxide by plant extracts: A short review. Ceram. Int., 2019, 45(18), 23857-23868.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.114]
[34]
Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 2011, 49(9), 3019-3023.
[http://dx.doi.org/10.1016/j.carbon.2011.02.071]
[35]
Yang, Z.; Zheng, Q.; Qiu, H.; Li, J.; Yang, J. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. N. Carbon Mater., 2015, 30(1), 41-47.
[http://dx.doi.org/10.1016/S1872-5805(15)60174-3]
[36]
De Silva, K.K.H.; Huang, H.H.; Yoshimura, M. Progress of reduction of graphene oxide by ascorbic acid. Appl. Surf. Sci., 2018, 447, 338-346.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.243]
[37]
Zhang, C.; Lv, W.; Zhang, W.; Zheng, X.; Wu, M.B.; Wei, W.; Tao, Y.; Li, Z.; Yang, Q.H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater., 2014, 4(7), 1301565-1301572.
[http://dx.doi.org/10.1002/aenm.201301565]
[38]
Qiu, L.; Zhang, H.; Wang, W.; Chen, Y.; Wang, R. Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Appl. Surf. Sci., 2014, 319, 339-343.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.133]
[39]
Wang, J.; Salihi, E.C.; Šiller, L. Green reduction of graphene oxide using alanine. Mater. Sci. Eng. C, 2017, 72, 1-6.
[http://dx.doi.org/10.1016/j.msec.2016.11.017] [PMID: 28024564]
[40]
Akhavan, O.; Kalaee, M.; Alavi, Z.S.; Ghiasi, S.M.A.; Esfandiar, A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon, 2012, 50(8), 3015-3025.
[http://dx.doi.org/10.1016/j.carbon.2012.02.087]
[41]
Abdullah, M.F.; Zakaria, R.; Zein, S.H.S. Green tea polyphenol–reduced graphene oxide: Derivatisation, reduction efficiency, reduction mechanism and cytotoxicity. RSC Advances, 2014, 4(65), 34510-34518.
[http://dx.doi.org/10.1039/C4RA04292A]
[42]
Dreyer, D.R.; Murali, S.; Zhu, Y.; Ruoff, R.S.; Bielawski, C.W. Reduction of graphite oxide using alcohols. J. Mater. Chem., 2011, 21(10), 3443-3447.
[http://dx.doi.org/10.1039/C0JM02704A]
[43]
Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem., 2011, 21(29), 10907-10914.
[http://dx.doi.org/10.1039/c1jm10151j]
[44]
Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 2008, 8(1), 323-327.
[http://dx.doi.org/10.1021/nl072838r] [PMID: 18069877]
[45]
Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3), 463-470.
[http://dx.doi.org/10.1021/nn700375n] [PMID: 19206571]
[46]
Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 2009, 131(43), 15939-15944.
[http://dx.doi.org/10.1021/ja907098f] [PMID: 19817436]
[47]
Wu, Z.S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 2009, 47(2), 493-499.
[http://dx.doi.org/10.1016/j.carbon.2008.10.031]
[48]
Wu, Z.S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2), 411-417.
[http://dx.doi.org/10.1021/nn900020u] [PMID: 19236079]
[49]
Schniepp, H.C.; Li, J.L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B, 2006, 110(17), 8535-8539.
[http://dx.doi.org/10.1021/jp060936f] [PMID: 16640401]
[50]
Yang, J.; Jo, M.R.; Kang, M.; Huh, Y.S.; Jung, H.; Kang, Y.M. Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors. Carbon, 2014, 73, 106-113.
[http://dx.doi.org/10.1016/j.carbon.2014.02.045]
[51]
Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353(6306), 1413-1416.
[http://dx.doi.org/10.1126/science.aah3398] [PMID: 27708034]
[52]
Sreedhar, D.; Devireddy, S.; Veeredhi, V.R. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Mater. Today Proc., 2018, 5(2), 3403-3410.
[http://dx.doi.org/10.1016/j.matpr.2017.11.585]
[53]
Zhu, Y.; Murali, S.; Stoller, M.D.; Velamakanni, A.; Piner, R.D.; Ruoff, R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 2010, 48(7), 2118-2122.
[http://dx.doi.org/10.1016/j.carbon.2010.02.001]
[54]
Tu, Y.; Ichii, T.; Utsunomiya, T.; Sugimura, H. Vacuum-ultraviolet photoreduction of graphene oxide: Electrical conductivity of entirely reduced single sheets and reduced micro line patterns. Appl. Phys. Lett., 2015, 106(13), 133105-133112.
[http://dx.doi.org/10.1063/1.4916813]
[55]
Mohandoss, M.; Gupta, S.S.; Nelleri, A.; Pradeep, T.; Maliyekkal, S.M. Solar mediated reduction of graphene oxide. RSC Advances, 2017, 7(2), 957-963.
[http://dx.doi.org/10.1039/C6RA24696F]
[56]
Rao, C.N.R.; Subrahmanyam, K.S.; Ramakrishna Matte, H.S.S.; Abdulhakeem, B.; Govindaraj, A.; Das, B.; Kumar, P.; Ghosh, A.; Late, D.J. A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater., 2010, 11(5), 054502.
[http://dx.doi.org/10.1088/1468-6996/11/5/054502] [PMID: 27877359]
[57]
Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry, 2009, 15(25), 6116-6120.
[http://dx.doi.org/10.1002/chem.200900596] [PMID: 19444826]
[58]
Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C, 2009, 113(32), 14071-14075.
[http://dx.doi.org/10.1021/jp906348x]
[59]
Feng, X.; Chen, W.; Yan, L. Electrochemical reduction of bulk graphene oxide materials. RSC Advances, 2016, 6(83), 80106-80113.
[http://dx.doi.org/10.1039/C6RA17469H]
[60]
Basirun, W.J.; Sookhakian, M.; Baradaran, S.; Mahmoudian, M.R.; Ebadi, M. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution. Nanoscale Res. Lett., 2013, 8(1), 397.
[http://dx.doi.org/10.1186/1556-276X-8-397] [PMID: 24059434]
[61]
Ray, S. Applications of graphene and graphene-oxide based nanomaterials; William Andrew, 2015.
[62]
Demazeau, G. Solvothermal processes: A route to the stabilization of new materials. J. Mater. Chem., 1999, 9(1), 15-18.
[http://dx.doi.org/10.1039/a805536j]
[63]
Dubin, S.; Gilje, S.; Wang, K.; Tung, V.C.; Cha, K.; Hall, A.S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R.B. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 2010, 4(7), 3845-3852.
[http://dx.doi.org/10.1021/nn100511a] [PMID: 20586422]
[64]
Mei, X.; Meng, X.; Wu, F. Hydrothermal method for the production of reduced graphene oxide. Physica E, 2015, 68, 81-86.
[http://dx.doi.org/10.1016/j.physe.2014.12.011]
[65]
Mungse, H.P.; Sharma, O.P.; Sugimura, H.; Khatri, O.P. Hydrothermal deoxygenation of graphene oxide in sub and supercritical water. RSC Advances, 2014, 4(43), 22589-22595.
[http://dx.doi.org/10.1039/c4ra01085j]
[66]
Perumal, D.; Albert, E.L.; Abdullah, C.A.C. Green reduction of graphene oxide involving extracts of plants from different taxonomy groups. J. Compos. Sci., 2022, 6(2), 58.
[http://dx.doi.org/10.3390/jcs6020058]
[67]
Rahman, O.S.A.; Chellasamy, V.; Ponpandian, N.; Amirthapandian, S.; Panigrahi, B.K.; Thangadurai, P. A facile green synthesis of reduced graphene oxide by using pollen grains of Peltophorum pterocarpum and study of its electrochemical behavior. RSC Advances, 2014, 4(100), 56910-56917.
[http://dx.doi.org/10.1039/C4RA06203E]
[68]
Suresh, D. Udayabhanu; Nagabhushana, H.; Sharma, S.C. Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett., 2015, 142, 4-6.
[http://dx.doi.org/10.1016/j.matlet.2014.11.073]
[69]
Suresh, D.; Nethravathi, P.C. Udayabhanu; Nagabhushana, H.; Sharma, S.C. Spinach assisted green reduction of graphene oxide and its antioxidant and dye absorption properties. Ceram. Int., 2015, 41(3), 4810-4813.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.036]
[70]
Maddinedi, S.B.; Mandal, B.K.; Vankayala, R.; Kalluru, P.; Pamanji, S.R. Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 117-124.
[http://dx.doi.org/10.1016/j.saa.2015.02.037] [PMID: 25770934]
[71]
Tavakoli, F.; Salavati-Niasari, M. badiei, A.; Mohandes, F. Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull., 2015, 63, 51-57.
[http://dx.doi.org/10.1016/j.materresbull.2014.11.045]
[72]
Ramanathan, S.; Elanthamilan, E.; Obadiah, A.; Durairaj, A.; Merlin, J.P.; Ramasundaram, S.; Vasanthkumar, S. Aloe vera (L.) Burm.f. extract reduced graphene oxide for supercapacitor application. J. Mater. Sci. Mater. Electron., 2017, 28(22), 16648-16657.
[http://dx.doi.org/10.1007/s10854-017-7576-0]
[73]
Weng, X.; Wu, J.; Ma, L.; Owens, G.; Chen, Z. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J., 2019, 359, 976-981.
[http://dx.doi.org/10.1016/j.cej.2018.11.089]
[74]
Hou, D.; Liu, Q.; Wang, X.; Quan, Y.; Qiao, Z.; Yu, L.; Ding, S. Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. J. Mater., 2018, 4, 256-265.
[75]
Noorunnisa Khanam, P.; Hasan, A. Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract: Anti-bacterial properties. Int. J. Biol. Macromol., 2019, 126, 151-158.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.213] [PMID: 30584937]
[76]
Gan, L.; Li, B.; Chen, Y.; Yu, B.; Chen, Z. Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 2019, 219, 148-154.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.181] [PMID: 30537587]
[77]
Suresh, D. Udayabhanu; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Cinnamon supported facile green reduction of graphene oxide, its dye elimination and antioxidant activities. Mater. Lett., 2015, 151, 93-95.
[http://dx.doi.org/10.1016/j.matlet.2015.03.035]
[78]
Liao, R.; Tang, Z.; Lei, Y.; Guo, B. Polyphenol-reduced graphene oxide: Mechanism and derivatization. J. Phys. Chem. C, 2011, 115(42), 20740-20746.
[http://dx.doi.org/10.1021/jp2068683]
[79]
Singh, A.; Ahmed, B.; Singh, A.; Ojha, A.K. Photodegradation of phenanthrene catalyzed by rGO sheets and disk like structures synthesized using sugar cane juice as a reducing agent. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 603-610.
[http://dx.doi.org/10.1016/j.saa.2018.06.086] [PMID: 29980062]
[80]
Xing, F.Y.; Guan, L.L.; Li, Y.L.; Jia, C.J. Biosynthesis of reduced graphene oxide nanosheets and their in vitro cytotoxicity against cardiac cell lines of Catla catla. Environ. Toxicol. Pharmacol., 2016, 48, 110-115.
[http://dx.doi.org/10.1016/j.etap.2016.09.022] [PMID: 27770659]
[81]
Lee, G.; Kim, B.S. Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog., 2014, 30(2), 463-469.
[http://dx.doi.org/10.1002/btpr.1862] [PMID: 24375994]
[82]
Mahiuddin, M.; Ochiai, B. Lemon juice assisted green synthesis of reduced graphene oxide and its application for adsorption of methylene blue. Technologies, 2021, 9(4), 96.
[http://dx.doi.org/10.3390/technologies9040096]
[83]
Madhuri, D.R.; Kavyashree, K.; Lamani, A.R.; Jayanna, H.S.; Nagaraju, G.; Mundinamani, S. Reduction of graphene oxide by Phyllanthus emblica as a reducing agent- A green approach for supercapacitor application. Mater. Today Proc., 2021, 49(3), 865-869.
[84]
Chandu, B.; Mosali, V.S.S.; Mullamuri, B.; Bollikolla, H.B. A facile green reduction of graphene oxide using Annona squamosa leaf extract. Carbon Lett., 2017, 21, 74-80.
[http://dx.doi.org/10.5714/CL.2017.21.074]
[85]
Ye, W.; Li, X.; Luo, J.; Wang, X.; Sun, R. Lignin as a green reductant and morphology directing agent in the fabrication of 3D graphene-based composites for high-performance supercapacitors. Ind. Crops Prod., 2017, 109, 410-419.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.047]
[86]
Anasdass, J.R.; Kannaiyan, P.; Raghavachary, R.; Gopinath, S.C.B.; Chen, Y.; Mishra, Y.K. Palladium nanoparticle-decorated reduced graphene oxide sheets synthesized using Ficus carica fruit extract: A catalyst for Suzuki cross-coupling reactions. PLoS One, 2018, 13(2), e0193281.
[http://dx.doi.org/10.1371/journal.pone.0193281] [PMID: 29466453]
[87]
Hou, D.; Liu, Q.; Cheng, H.; Li, K. Graphene synthesis via chemical reduction of graphene oxide using lemon extract. J. Nanosci. Nanotechnol., 2017, 17(9), 6518-6523.
[http://dx.doi.org/10.1166/jnn.2017.14426]
[88]
Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V.K. The novel and efficient reduction of graphene oxide using Ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J. Chem., 2018, 42(24), 19945-19952.
[http://dx.doi.org/10.1039/C8NJ04086A]
[89]
Li, C.; Zhuang, Z.; Jin, X.; Chen, Z. A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl. Surf. Sci., 2017, 422, 469-474.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.032]
[90]
Hou, D.; Liu, Q.; Cheng, H.; Zhang, H.; Wang, S. Green reduction of graphene oxide via Lycium barbarum extract. J. Solid State Chem., 2017, 246, 351-356.
[http://dx.doi.org/10.1016/j.jssc.2016.12.008]
[91]
Akhavan, O.; Ghaderi, E.; Abouei, E.; Hatamie, S.; Ghasemi, E. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon, 2014, 66, 395-406.
[http://dx.doi.org/10.1016/j.carbon.2013.09.015]
[92]
Feng, B.; Xie, J.; Dong, C.; Zhang, S.; Cao, G.; Zhao, X. From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4(34), 17902-17907.
[http://dx.doi.org/10.1039/c4ra01985g]
[93]
Chu, H.J.; Lee, C.Y.; Tai, N.H. Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 2014, 80, 725-733.
[http://dx.doi.org/10.1016/j.carbon.2014.09.019]
[94]
Upadhyay, R.K.; Soin, N.; Bhattacharya, G.; Saha, S.; Barman, A.; Roy, S.S. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett., 2015, 160, 355-358.
[http://dx.doi.org/10.1016/j.matlet.2015.07.144]
[95]
Khan, M.; Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Res. Lett., 2015, 10(1), 281.
[http://dx.doi.org/10.1186/s11671-015-0987-z] [PMID: 26138452]
[96]
Han, W.; Niu, W.Y.; Sun, B.; Shi, G.C.; Cui, X.Q. Biofabrication of polyphenols stabilized reduced graphene oxide and its anti-tuberculosis activity. J. Photochem. Photobiol. B, 2016, 165, 305-309.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.032] [PMID: 27838484]
[97]
Chamoli, P.; Sharma, R.; Das, M.K.; Kar, K.K. Mangifera indica, Ficus religiosa and Polyalthia longifolia leaf extract-assisted green synthesis of graphene for transparent highly conductive film. RSC Advances, 2016, 6(98), 96355-96366.
[http://dx.doi.org/10.1039/C6RA19111H]
[98]
Jiang, X.; Li, Z.; Yao, J.; Shao, Z.; Chen, X. One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy. Mater. Sci. Eng. C, 2016, 68, 798-804.
[http://dx.doi.org/10.1016/j.msec.2016.07.034] [PMID: 27524082]
[99]
Chettri, P.; Vendamani, V.S.; Tripathi, A.; Pathak, A.P.; Tiwari, A. Self assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris. Appl. Surf. Sci., 2016, 362, 221-229.
[http://dx.doi.org/10.1016/j.apsusc.2015.11.231]
[100]
Elif, Ö.; Belma, Ö.; İlkay, Ş. Production of biologically safe and mechanically improved reduced graphene oxide/hydroxyapatite composites. Mater. Res. Express, 2017, 4(1), 015601.
[http://dx.doi.org/10.1088/2053-1591/aa5464]
[101]
Zaid, R.M.; Chong, F.C.; Teo, E.Y.L.; Ng, E.P.; Chong, K.F. Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode. Arab. J. Chem., 2015, 8(4), 560-569.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.036]
[102]
Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 2012, 50(3), 914-921.
[http://dx.doi.org/10.1016/j.carbon.2011.09.053]
[103]
Haghighi, B.; Tabrizi, M.A. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Advances, 2013, 3(32), 13365-13371.
[http://dx.doi.org/10.1039/c3ra40856f]
[104]
Srivastava, S.K.; Ogino, C.; Kondo, A. Green synthesis of thiolated graphene nanosheets by alliin (garlic) and its effect on the deposition of gold nanoparticles. RSC Advances, 2014, 4(12), 5986-5989.
[http://dx.doi.org/10.1039/c3ra45353g]
[105]
Firdhouse, M.J.; Lalitha, P. Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.). Solms. Int. Nano Lett., 2014, 4(4), 103-108.
[http://dx.doi.org/10.1007/s40089-014-0125-4]
[106]
Rai, S.; Bhujel, R.; Biswas, J.; Swain, B.P. Biocompatible synthesis of rGO from ginger extract as a green reducing agent and its supercapacitor application. Bull. Mater. Sci., 2021, 44(1), 40-47.
[http://dx.doi.org/10.1007/s12034-020-02318-w]
[107]
Li, W.; Yang, Y.J. The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J. Solid State Electrochem., 2014, 18(6), 1621-1626.
[http://dx.doi.org/10.1007/s10008-014-2391-5]
[108]
Lingaraju, K.; Raja Naika, H.; Nagaraju, G.; Nagabhushana, H. Biocompatible synthesis of reduced graphene oxide from Euphorbia heterophylla (L.) and their in vitro cytotoxicity against human cancer cell lines. Biotechnol. Rep., 2019, 24, e00376.
[http://dx.doi.org/10.1016/j.btre.2019.e00376] [PMID: 31641620]
[109]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Dayem, A.A.; Kwon, D.N.; Kim, J.H. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Nanoscale Res. Lett., 2013, 8(1), 393.
[http://dx.doi.org/10.1186/1556-276X-8-393] [PMID: 24059222]
[110]
Gurunathan, S.; Han, J.W.; Park, J.H.; Eppakayala, V.; Kim, J.H. Ginkgo biloba: A natural reducing agent for the synthesis of cytocompatible graphene. Int. J. Nanomedicine, 2014, 9, 363-377.
[http://dx.doi.org/10.2147/IJN.S53538] [PMID: 24453487]
[111]
Shubha, P.; Namratha, K.; Aparna, H.S.; Ashok, N.R.; Mustak, M.S.; Chatterjee, J.; Byrappa, K. Facile green reduction of graphene oxide using Ocimum sanctum hydroalcoholic extract and evaluation of its cellular toxicity. Mater. Chem. Phys., 2017, 198, 66-72.
[http://dx.doi.org/10.1016/j.matchemphys.2017.05.062]
[112]
Qi, J.; Zhang, S.; Xie, C.; Liu, Q.; Yang, S. Fabrication of Erythrina senegalensis leaf extract mediated reduced graphene oxide for cardiac repair applications in the nursing care. Inorg. Nano-Metal Chem., 2021, 51(1), 143-149.
[http://dx.doi.org/10.1080/24701556.2020.1769663]
[113]
Zhu, X.; Xu, X.; Liu, F.; Jin, J.; Liu, L.; Zhi, Y.; Chen, Z.; Zhou, Z.; Yu, J. Green synthesis of graphene nanosheets and their in vitro cytotoxicity against human prostate cancer (DU 145) cell lines. Nanomater. Nanotechnol., 2017.
[http://dx.doi.org/10.1177/1847980417702794]
[114]
Lin, S.; Ruan, J.; Wang, S. Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. J. Photochem. Photobiol. B, 2019, 191, 13-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.015] [PMID: 30557788]
[115]
Wang, C.; Wang, X.; Chen, Y.; Fang, Z. In vitro photothermal therapy using plant extract polyphenols functionalized graphene sheets for treatment of lung cancer. J. Photochem. Photobiol. B, 2020, 204, 111587.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111587] [PMID: 32062387]
[116]
Punniyakotti, P.; Aruliah, R.; Angaiah, S. Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech, 2021, 11(4), 157.
[http://dx.doi.org/10.1007/s13205-021-02689-9] [PMID: 33758735]
[117]
Jin, X.; Li, N.; Weng, X.; Li, C.; Chen, Z. Green reduction of graphene oxide using Eucalyptus leaf extract and its application to remove dye. Chemosphere, 2018, 208, 417-424.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.199] [PMID: 29885508]
[118]
Bhattacharya, G.; Sas, S.; Wadhwa, S.; Mathur, A.; McLaughlin, J.; Roy, S.S. Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Advances, 2017, 7(43), 26680-26688.
[http://dx.doi.org/10.1039/C7RA02828H]
[119]
Wijaya, R.; Andersan, G.; Permatasari Santoso, S.; Irawaty, W. Green reduction of graphene oxide using kaffir lime peel extract (Citrus hystrix) and its application as adsorbent for methylene blue. Sci. Rep., 2020, 10(1), 667.
[http://dx.doi.org/10.1038/s41598-020-57433-9] [PMID: 31959780]
[120]
Parthipan, P.; Al-Dosary, M.A.; Al-Ghamdi, A.A.; Subramania, A. Eco-friendly synthesis of reduced graphene oxide as sustainable photocatalyst for removal of hazardous organic dyes. J. King Saud Univ. Sci., 2021, 33(4), 101438.
[http://dx.doi.org/10.1016/j.jksus.2021.101438]
[121]
Parthipan, P.; Cheng, L.; Rajasekar, A.; Govarthanan, M.; Subramania, A. Biologically reduced graphene oxide as a green and easily available photocatalyst for degradation of organic dyes. Environ. Res., 2021, 196, 110983.
[http://dx.doi.org/10.1016/j.envres.2021.110983] [PMID: 33705769]
[122]
Ghosh, S.; Das, P.; Baskey, M. Plant extract assisted synthesis of reduced graphene oxide sheet and the photocatalytic performances on cationic and anionic dyes to decontaminate wastewater. Adv. Nat. Sci. Nanosci. Nanotechnol., 2021, 12, 015008.
[http://dx.doi.org/10.1088/2043-6254/abde41]
[123]
Atarod, M.; Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Advances, 2015, 5(111), 91532-91543.
[http://dx.doi.org/10.1039/C5RA17269A]
[124]
Elemike, E.E.; Onwudiwe, D.C.; Wei, L.; Lou, C.; Zhao, Z. Synthesis of nanostructured ZnO, AgZnO and the composites with reduced graphene oxide (rGO-AgZnO) using leaf extract of Stigmaphyllon ovatum. J. Environ. Chem. Eng., 2019, 7(3), 103190.
[http://dx.doi.org/10.1016/j.jece.2019.103190]
[125]
Fahiminia, M.; Shamabadi, N.S.; Nasrollahzadeh, M.; Sajadi, S.M. Phytosynthesis of Cu/rGO using Euphorbia cheiradenia Boiss extract and study of its ability in the reduction of organic dyes and 4‐nitrophenol in aqueous medium. IET Nanobiotechnol., 2019, 13(2), 202-213.
[http://dx.doi.org/10.1049/iet-nbt.2018.5175] [PMID: 31051452]
[126]
Veisi, H.; Tamoradi, T.; Karmakar, B.; Mohammadi, P.; Hemmati, S. In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Mater. Sci. Eng. C, 2019, 104, 109919.
[http://dx.doi.org/10.1016/j.msec.2019.109919] [PMID: 31499980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy