Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Peptidomic Analysis and Antimicrobial Activity of Serum Peptide from Hevea brasiliensis Clone BPM24

Author(s): Phattara-orn Havanapan, Supaporn Ieamkheng, Nuanwan Phungthanom, Walairat Bourchookarn, Apichai Bourchookarn and Chartchai Krittanai*

Volume 30, Issue 4, 2023

Published on: 11 April, 2023

Page: [335 - 350] Pages: 16

DOI: 10.2174/0929866530666230331083921

Price: $65

conference banner
Abstract

Background: Hevea brasiliensis is severely affected by the fungal disease caused by Phytophthora spp. Significant loss of rubber yield is widespread and extensive use of chemical fungicides has resulted in health and environmental problems.

Objective: This work aims to extract and identify the latex serum peptides from a disease tolerant clone of H. brasiliensis, and study the inhibitory efficacy against pathogenic bacteria and fungi.

Methods: Serum peptides were extracted from H. brasiliensis BPM24 using mixed lysis solution. Low molecular weight peptides were screened and fractionated by solid-phase extraction and then identified by tandem mass spectrometry. Total and fractionated serum peptides were assayed for bacterial and fungal inhibition using broth microdilution and poisoned food methods. An inhibitory control study in the greenhouse was also performed using susceptible clones for pre and postinfection with Phytophthora spp.

Results: Forty-three serum peptide sequences were successfully identified. Thirty-four peptides matched with the proteins associated with plant defense response signaling, host resistance, and adverse environmental factors. The inhibitory study of total serum peptides demonstrated antibacterial and anti-fungal properties. The greenhouse study exhibited disease inhibitory efficacy of 60% for the treatment of Phytophthora spp. in post-infected plants and 80% for pre-treated samples.

Conclusion: Latex serum peptides from disease tolerant H. brasiliensis revealed several proteins and peptides associated with plant defense and disease resistance. The peptides play a vital role for defense against bacteria and fungi pathogens, including Phytophthora spp. Enhanced disease protection can be obtained when the extracted peptides were applied to the susceptible plants before exposure to the fungi. These findings provided an insight and may pave the way for the development of biocontrol peptides from natural resources.

Graphical Abstract

[1]
Schrader, M. Origins, technological development, and applications of peptidomics. Methods Mol. Biol., 2018, 1719, 3-39.
[http://dx.doi.org/10.1007/978-1-4939-7537-2_1] [PMID: 29476501]
[2]
Schulz-Knappe, P.; Hans-Dieter, Z.; Heine, G.; Jürgens, M.; Schrader, M.; Schrader, M. Peptidomics: The comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen., 2012, 4(2), 207-217.
[http://dx.doi.org/10.2174/1386207013331246] [PMID: 11281836]
[3]
Csordas, A.; Wang, R.; Ríos, D.; Reisinger, F.; Foster, J.M.; Slotta, D.J.; Vizcaíno, J.A.; Hermjakob, H. From Peptidome to PRIDE: P ublic proteomics data migration at a large scale. Proteomics, 2013, 13(10-11), 1692-1695.
[http://dx.doi.org/10.1002/pmic.201200514] [PMID: 23533138]
[4]
Hajfathalian, M.; Ghelichi, S.; García-Moreno, P.J.; Moltke Sørensen, A-D.; Jacobsen, C. Peptides: Production, bioactivity, functionality, and applications. Crit. Rev. Food Sci. Nutr., 2018, 58(18), 3097-3129.
[PMID: 29020461]
[5]
Tavormina, P.; De Coninck, B.; Nikonorova, N.; De Smet, I.; Cammue, B.P.A. The plant peptidome: An expanding repertoire of structural features and biological functions. Plant Cell, 2015, 27(8), 2095-2118.
[http://dx.doi.org/10.1105/tpc.15.00440] [PMID: 26276833]
[6]
Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry, 2018, 154, 94-105.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.002] [PMID: 30031244]
[7]
Hemu, X.; Serra, A.; Darwis, D.A.; Cornvik, T.; Sze, S.K.; Tam, J.P. Peptidomic identification of cysteine-rich peptides from plants. Methods Mol. Biol., 2018, 1719, 379-393.
[http://dx.doi.org/10.1007/978-1-4939-7537-2_26] [PMID: 29476526]
[8]
Silva, F.A.; de Sousa Oliveira, M.; de Souza, J.M.; Martins, P.G.; Pestana-Calsa, M.C.; Junior, T.C. Plant proteomics and peptidomics in host-pathogen interactions: The weapons used by each side. Curr. Protein Pept. Sci., 2017, 18(4), 400-410.
[PMID: 27455975]
[9]
Habib, M.A.H.; Yuen, G.C.; Othman, F.; Zainudin, N.N.; Latiff, A.A.; Ismail, M.N. Proteomics analysis of latex from Hevea brasiliensis (clone RRIM 600). Biochem. Cell Biol., 2017, 95(2), 232-242.
[http://dx.doi.org/10.1139/bcb-2016-0144] [PMID: 28177774]
[10]
Havanapan, P.; Bourchookarn, A.; Ketterman, A.J.; Krittanai, C. Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J. Proteomics, 2016, 131, 82-92.
[http://dx.doi.org/10.1016/j.jprot.2015.10.014] [PMID: 26477389]
[11]
Dai, L.; Kang, G.; Nie, Z.; Li, Y.; Zeng, R. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC–MS/MS. J. Proteomics, 2016, 132, 167-175.
[http://dx.doi.org/10.1016/j.jprot.2015.11.012] [PMID: 26581641]
[12]
Hahn, M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol., 2014, 7(4), 133-141.
[http://dx.doi.org/10.1007/s12154-014-0113-1] [PMID: 25320647]
[13]
Chee, K.H. Variability of Phytophthora species from Hevea brasiliensis. Trans. Br. Mycol. Soc, 1969, 52(3), 425-436. IN9.
[http://dx.doi.org/10.1016/S0007-1536(69)80126-9]
[14]
Daruliza, K.M.; Lam, K.L.; Yang, K.L.; Priscilla, J.T.; Sunderasan, E.; Ong, M.T. Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(9), 1027-1033.
[PMID: 22013725]
[15]
Giordani, R.; Regli, P.; Buc, J. Antifungal effect of Hevea brasiliensis latex with various fungi. Its synergistic action with amphotericin B against Candida albicans. Mycoses, 2002, 45(11-12), 476-481.
[PMID: 12472724]
[16]
Kanokwiroon, K.; Teanpaisan, R.; Wititsuwannakul, D.; Hooper, A.B.; Wititsuwannakul, R. Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses, 2008, 51(4), 301-307.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01490.x] [PMID: 18924261]
[17]
Mendonça, R.J.; Maurício, V.B.; de Bortolli Teixeira, L.; Lachat, J.J.; Coutinho-Netto, J. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytother. Res., 2010, 24(5), 764-768.
[http://dx.doi.org/10.1002/ptr.3043] [PMID: 19943314]
[18]
Lam, K.L.; Yang, K.L.; Sunderasan, E.; Ong, M.T. Latex C-serum from Hevea brasiliensis induces non-apoptotic cell death in hepatocellular carcinoma cell line (HepG2). Cell Prolif., 2012, 45(6), 577-585.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00841.x] [PMID: 23046445]
[19]
Anthis, N.J.; Clore, G.M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci., 2013, 22(6), 851-858.
[http://dx.doi.org/10.1002/pro.2253] [PMID: 23526461]
[20]
Grover, R.K.; Moore, J.D. Toxicometric studies of fungicides against brown rot organisms, Sclerotinia fructicola and S. laxa. Phytopathology, 1962, 52, 876-880.
[21]
Khunjan, U.; Ekchaweng, K.; Panrat, T.; Tian, M.; Churngchow, N. Molecular cloning of HbPR-1 gene from rubber tree, expression of HbPR-1 gene in nicotiana benthamiana and its inhibition of Phytophthora palmivora. PLoS One, 2016, 11(6)e0157591
[http://dx.doi.org/10.1371/journal.pone.0157591] [PMID: 27337148]
[22]
Wititsuwannakul, D.; Chareonthiphakorn, N.; Pace, M.; Wititsuwannakul, R. Polyphenol oxidases from latex of Hevea brasiliensis: purification and characterization. Phytochemistry, 2002, 61(2), 115-121.
[http://dx.doi.org/10.1016/S0031-9422(02)00234-0] [PMID: 12169303]
[23]
Greene, R.F., Jr; Pace, C.N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, -chymotrypsin, and beta-lactoglobulin. J. Biol. Chem., 1974, 249(17), 5388-5393.
[http://dx.doi.org/10.1016/S0021-9258(20)79739-5] [PMID: 4416801]
[24]
Hervey, W.J., IV; Strader, M.B.; Hurst, G.B. Comparison of digestion protocols for microgram quantities of enriched protein samples. J. Proteome Res., 2007, 6(8), 3054-3061.
[http://dx.doi.org/10.1021/pr070159b] [PMID: 17616116]
[25]
Nitride, C.; Nørgaard, J.; Omar, J.; Emons, H.; Esteso, M.J.M.; O’Connor, G. An assessment of the impact of extraction and digestion protocols on multiplexed targeted protein quantification by mass spectrometry for egg and milk allergens. Anal. Bioanal. Chem., 2019, 411(16), 3463-3475.
[http://dx.doi.org/10.1007/s00216-019-01816-z] [PMID: 31139860]
[26]
Aristoteli, L.P.; Molloy, M.P.; Baker, M.S. Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J. Proteome Res., 2007, 6(2), 571-581.
[http://dx.doi.org/10.1021/pr0602996] [PMID: 17269714]
[27]
Zhang, H.; Hu, Z.; Lei, C.; Zheng, C.; Wang, J.; Shao, S.; Li, X.; Xia, X.; Cai, X.; Zhou, J.; Zhou, Y.; Yu, J.; Foyer, C.H.; Shi, K. A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca 2+ signaling in tomato. Plant Cell, 2018, 30(3), 652-667.
[http://dx.doi.org/10.1105/tpc.17.00537] [PMID: 29511053]
[28]
Zhang, Y.; Yang, S.; Song, Y.; Wang, J. Genome-wide characterization, expression and functional analysis of CLV3/ESR gene family in tomato. BMC Genomics, 2014, 15(1), 827.
[http://dx.doi.org/10.1186/1471-2164-15-827] [PMID: 25266499]
[29]
Das, D.; Jaiswal, M.; Khan, F.N.; Ahamad, S.; Kumar, S. PlantPepDB: A manually curated plant peptide database. Sci. Rep., 2020, 10(1), 2194.
[http://dx.doi.org/10.1038/s41598-020-59165-2] [PMID: 32042035]
[30]
Martin, G.B.; Bogdanove, A.J.; Sessa, G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol., 2003, 54(1), 23-61.
[http://dx.doi.org/10.1146/annurev.arplant.54.031902.135035] [PMID: 14502984]
[31]
Bittner-Eddy, P.D.; Crute, I.R.; Holub, E.B.; Beynon, J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J., 2000, 21(2), 177-188.
[http://dx.doi.org/10.1046/j.1365-313x.2000.00664.x] [PMID: 10743658]
[32]
Gangurde, S.S.; Nayak, S.N.; Joshi, P.; Purohit, S.; Sudini, H.K.; Chitikineni, A.; Hong, Y.; Guo, B.; Chen, X.; Pandey, M.K.; Varshney, R.K. Comparative transcriptome analysis identified candidate genes for late leaf spot resistance and cause of defoliation in groundnut. Int. J. Mol. Sci., 2021, 22(9), 4491.
[http://dx.doi.org/10.3390/ijms22094491] [PMID: 33925801]
[33]
Tang, D.; Wang, G.; Zhou, J.M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell, 2017, 29(4), 618-637.
[http://dx.doi.org/10.1105/tpc.16.00891] [PMID: 28302675]
[34]
Goff, K.E.; Ramonell, K.M. The role and regulation of receptor-like kinases in plant defense. Gene Regul. Syst. Bio., 2007, 1, 167-175.
[http://dx.doi.org/10.1177/117762500700100015] [PMID: 19936086]
[35]
Zeng, L.R.; Park, C.H.; Venu, R.C.; Gough, J.; Wang, G.L. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol. Plant, 2008, 1(5), 800-815.
[http://dx.doi.org/10.1093/mp/ssn044] [PMID: 19825583]
[36]
Galatis, B.; Apostolakos, P. A new callose function. Plant Signal. Behav., 2010, 5(11), 1359-1364.
[http://dx.doi.org/10.4161/psb.5.11.12959] [PMID: 21045558]
[37]
Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M.K.; Sklodowski, K.; Gasperini, D.; Coll, N.S.; Sánchez-Rodríguez, C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol., 2021, 19(1), 161.
[http://dx.doi.org/10.1186/s12915-021-01100-6] [PMID: 34404410]
[38]
Li, W.; Zhao, Y.; Liu, C.; Yao, G.; Wu, S.; Hou, C.; Zhang, M.; Wang, D. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Rep., 2012, 31(5), 905-916.
[http://dx.doi.org/10.1007/s00299-011-1211-y] [PMID: 22200865]
[39]
Iglesias, V.A.; Meins, F., Jr Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J., 2000, 21(2), 157-166.
[http://dx.doi.org/10.1046/j.1365-313x.2000.00658.x] [PMID: 10743656]
[40]
Yang, P.; Praz, C.; Li, B.; Singla, J.; Robert, C.A.M.; Kessel, B.; Scheuermann, D.; Lüthi, L.; Ouzunova, M.; Erb, M.; Krattinger, S.G.; Keller, B. Fungal resistance mediated by maize wall associated kinase Zm WAK RLK 1 correlates with reduced benzoxazinoid content. New Phytol., 2019, 221(2), 976-987.
[http://dx.doi.org/10.1111/nph.15419] [PMID: 30178602]
[41]
Decreux, A.; Messiaen, J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol., 2005, 46(2), 268-278.
[http://dx.doi.org/10.1093/pcp/pci026] [PMID: 15769808]
[42]
Wagner, T.A.; Kohorn, B.D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell, 2001, 13(2), 303-318.
[http://dx.doi.org/10.1105/tpc.13.2.303] [PMID: 11226187]
[43]
Rui, Y.; Dinneny, J.R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol., 2020, 225(4), 1428-1439.
[http://dx.doi.org/10.1111/nph.16166] [PMID: 31486535]
[44]
Zhang, Q.; Gong, M.; Xu, X.; Li, H.; Deng, W. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 2022, 11(17), 2761.
[http://dx.doi.org/10.3390/cells11172761] [PMID: 36078168]
[45]
Fu, J.; Wang, S. Insights into auxin signaling in plant-pathogen interactions. Front. Plant Sci., 2011, 2, 74.
[http://dx.doi.org/10.3389/fpls.2011.00074] [PMID: 22639609]
[46]
Du, H.; Liu, H.; Xiong, L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci., 2013, 4, 397.
[http://dx.doi.org/10.3389/fpls.2013.00397] [PMID: 24130566]
[47]
Bouzroud, S.; Gouiaa, S.; Hu, N.; Bernadac, A.; Mila, I.; Bendaou, N.; Smouni, A.; Bouzayen, M.; Zouine, M. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One, 2018, 13(2)e0193517
[http://dx.doi.org/10.1371/journal.pone.0193517] [PMID: 29489914]
[48]
Guo, Y.; Gan, S. Leaf senescence: Signals, execution, and regulation. Curr. Top. Dev. Biol., 2005, 71, 83-112.
[http://dx.doi.org/10.1016/S0070-2153(05)71003-6] [PMID: 16344103]
[49]
Thomas, H.; Morgan, W.G.; Thomas, A.M.; Ougham, H.J. Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis. Theor. Appl. Genet., 1999, 99(1-2), 92-99.
[http://dx.doi.org/10.1007/s001220051212]
[50]
Li, L.; Yu, X.; Thompson, A.; Guo, M.; Yoshida, S.; Asami, T.; Chory, J.; Yin, Y. Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J., 2009, 58(2), 275-286.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03778.x] [PMID: 19170933]
[51]
Shin, S.Y.; Chung, H.; Kim, S.Y.; Nam, K.H. BRI1-EMS-suppressor 1 gain-of-function mutant shows higher susceptibility to necrotrophic fungal infection. Biochem. Biophys. Res. Commun., 2016, 470(4), 864-869.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.128] [PMID: 26809089]
[52]
Yu, M.H.; Zhao, Z.Z.; He, J.X. Brassinosteroid signaling in plant–microbe interactions. Int. J. Mol. Sci., 2018, 19(12), 4091.
[http://dx.doi.org/10.3390/ijms19124091] [PMID: 30563020]
[53]
An, C.; Mou, Z. The function of the mediator complex in plant immunity. Plant Signal. Behav., 2013, 8(3)e23182
[http://dx.doi.org/10.4161/psb.23182] [PMID: 23299323]
[54]
Martinoia, E.; Klein, M.; Geisler, M.; Bovet, L.; Forestier, C.; Kolukisaoglu, Ü.; Müller-Röber, B.; Schulz, B. Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta, 2002, 214(3), 345-355.
[http://dx.doi.org/10.1007/s004250100661] [PMID: 11855639]
[55]
van den Brûle, S.; Smart, C. The plant PDR family of ABC transporters. Planta, 2002, 216(1), 95-106.
[http://dx.doi.org/10.1007/s00425-002-0889-z] [PMID: 12430018]
[56]
Jasiński, M.; Stukkens, Y.; Degand, H.; Purnelle, B.; Marchand-Brynaert, J.; Boutry, M. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell, 2001, 13(5), 1095-1107.
[http://dx.doi.org/10.2307/3871366] [PMID: 11340184]
[57]
Stukkens, Y.; Bultreys, A.; Grec, S.; Trombik, T.; Vanham, D.; Boutry, M. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol., 2005, 139(1), 341-352.
[http://dx.doi.org/10.1104/pp.105.062372] [PMID: 16126865]
[58]
He, Y.; Ahmad, D.; Zhang, X.; Zhang, Y.; Wu, L.; Jiang, P.; Ma, H. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.). BMC Plant Biol., 2018, 18(1), 67.
[http://dx.doi.org/10.1186/s12870-018-1286-5] [PMID: 29673318]
[59]
Coelho, A.C.; Pires, R.; Schütz, G.; Santa, C.; Manadas, B.; Pinto, P. Disclosing proteins in the leaves of cork oak plants associated with the immune response to Phytophthora cinnamomi inoculation in the roots: A long-term proteomics approach. PLoS One, 2021, 16(1)e0245148
[http://dx.doi.org/10.1371/journal.pone.0245148] [PMID: 33481834]
[60]
Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals, 2016, 9(3), 59.
[http://dx.doi.org/10.3390/ph9030059] [PMID: 27657092]
[61]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[62]
Krishnan, A.; Joseph, L.; Roy, C.B. An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Curr. Plant Biol., 2019, 17, 33-41.
[http://dx.doi.org/10.1016/j.cpb.2018.11.009]
[63]
Nowakowska, M. Wrzesińska, M.; Kamiński, P.; Szczechura, W.; Lichocka, M.; Tartanus, M.; Kozik, E.U.; Nowicki, M. Alternaria brassicicola – Brassicaceae pathosystem: insights into the infection process and resistance mechanisms under optimized artificial bio-assay. Eur. J. Plant Pathol., 2019, 153(1), 131-151.
[http://dx.doi.org/10.1007/s10658-018-1548-y]
[64]
Akram, W.; Anjum, T.; Ahmad, A.; Moeen, R. First report of Curvularia lunata causing leaf spots on Sorghum bicolor from Pakistan. Plant Dis., 2014, 98(7), 1007.
[http://dx.doi.org/10.1094/PDIS-12-13-1291-PDN] [PMID: 30708912]
[65]
Zhang, H.; Zheng, X.; Zhang, Z. The Magnaporthe grisea species complex and plant pathogenesis. Mol. Plant Pathol., 2016, 17(6), 796-804.
[http://dx.doi.org/10.1111/mpp.12342] [PMID: 26575082]
[66]
Lee, T.Y.; Mizubuti, E.; Fry, W.E. Genetics of metalaxyl resistance inphytophthora infestans. Fungal Genet. Biol., 1999, 26(2), 118-130.
[http://dx.doi.org/10.1006/fgbi.1998.1107] [PMID: 10328982]
[67]
Wang, W.; Liu, X.; Han, T.; Li, K.; Qu, Y.; Gao, Z. Differential potential of Phytophthora capsici resistance mechanisms to the fungicide metalaxyl in peppers. Microorganisms, 2020, 8(2), 278.
[http://dx.doi.org/10.3390/microorganisms8020278] [PMID: 32085491]
[68]
Judelson, H.S.; Roberts, S. Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology, 1999, 89(9), 754-760.
[http://dx.doi.org/10.1094/PHYTO.1999.89.9.754] [PMID: 18944703]
[69]
Wojtaszek, P. Oxidative burst: An early plant response to pathogen infection. Biochem. J., 1997, 322(Pt 3), 681-692.
[http://dx.doi.org/10.1042/bj3220681]
[70]
Keen, N.T. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet., 1990, 24(1), 447-463.
[http://dx.doi.org/10.1146/annurev.ge.24.120190.002311] [PMID: 2088175]
[71]
Thanseem, I.; Joseph, A.; Thulaseedharan, A. Induction and differential expression of -1,3-glucanase mRNAs in tolerant and susceptible Hevea clones in response to infection by Phytophthora meadii. Tree Physiol., 2005, 25(11), 1361-1368.
[http://dx.doi.org/10.1093/treephys/25.11.1361] [PMID: 16105803]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy