Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Deuterium Solvent Kinetic Isotope Effect on Enzymatic Methyl Transfer Catalyzed by Catechol O-methyltransferase

Author(s): Zhao Zipeng, Li Fangya and Zhang Jianyu*

Volume 30, Issue 4, 2023

Published on: 28 March, 2023

Page: [351 - 359] Pages: 9

DOI: 10.2174/0929866530666230228100703

Price: $65

Abstract

Introduction: Catechol o-methyltransferase plays a key role in the metabolism of catecholamine neurotransmitters. At present, its catalytic mechanism, overall structure, and kinetic characteristics have been basically clarified, but few people have paid attention to the function of solvents on enzymatic methyl transfer reactions. The influence of solvents on enzymatic reactions has always been a fuzzy hot topic. In addition, as a well-studied typical methyltransferase, COMT is a good test bed for exploring the source of the solvent isotope effect, which is a powerful tool in enzymatic mechanism research.

Methods: We have measured the kinetic parameters of methyl transfer catalyzed by COMT in both normal water (H2O) and heavy water (D2O) by high-performance liquid chromatography (HPLC) in the range of pL 6 ~ 11.

Results: The kinetic characteristics of COMT in H2O and D2O were significantly different under different pH/pD conditions. Significant solvent kinetic isotope effects (SKIE) were obtained, especially inverse solvent kinetic isotope effects (SKIE < 1) were observed in this methyl transfer reaction for the first time.

Conclusion: Traditional factors which could interpret the solvent isotope effect were ruled out. It’s suggested that the solvent might affect the overall conformation as well as the flexibility of protein through non-covalent forces, thus altering the catalytic activity of COMT and leading to the solvent isotope effect.

« Previous
Graphical Abstract

[1]
Lee, S.; Kang, J.; Kim, J. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci. Rep., 2019, 9(1), 8059.
[http://dx.doi.org/10.1038/s41598-019-44592-7] [PMID: 31147608]
[2]
Hobel, C.J.; Parvez, H.; Parvez, S.; Lirette, M.; Papiernik, E. Enzymes for epinephrine synthesis and metabolism in the myometrium, endometrium, red blood cells, and plasma of pregnant human subjects. Am. J. Obstet. Gynecol., 1981, 141(8), 1009-1018.
[http://dx.doi.org/10.1016/S0002-9378(16)32692-8] [PMID: 7315912]
[3]
Antypa, N.; Drago, A.; Serretti, A. The role of COMT gene variants in depression: Bridging neuropsychological, behavioral and clinical phenotypes. Neurosci. Biobehav. Rev., 2013, 37(8), 1597-1610.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.006] [PMID: 23792050]
[4]
Williams, H.J.; Owen, M.J.; O’Donovan, M.C. Is COMT a susceptibility gene for schizophrenia? Schizophr. Bull., 2007, 33(3), 635-641.
[http://dx.doi.org/10.1093/schbul/sbm019] [PMID: 17412710]
[5]
Rivest, J.; Barclay, C.L.; Suchowersky, O. COMT inhibitors in Parkinson’s disease. Can. J. Neurol. Sci., 1999, 26(S2), S34-S38.
[http://dx.doi.org/10.1017/S031716710000007X] [PMID: 10451758]
[6]
Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. Crystal structures of human 108V and 108M catechol O-methyltransferase. J. Mol. Biol., 2008, 380(1), 120-130.
[http://dx.doi.org/10.1016/j.jmb.2008.04.040] [PMID: 18486144]
[7]
Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; Egan, M.F.; Kleinman, J.E.; Weinberger, D.R. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet., 2004, 75(5), 807-821.
[http://dx.doi.org/10.1086/425589] [PMID: 15457404]
[8]
Izquierdo, M.C.; Stein, R.L. Mechanistic studies of thermolysin. J. Am. Chem. Soc., 1990, 112(16), 6054-6062.
[http://dx.doi.org/10.1021/ja00172a023]
[9]
Born, T.L.; Zheng, R.; Blanchard, J.S. Hydrolysis of N-succinyl-L,L-diaminopimelic acid by the Haemophilus influenzae dapE-encoded desuccinylase: metal activation, solvent isotope effects, and kinetic mechanism. Biochemistry, 1998, 37(29), 10478-10487.
[http://dx.doi.org/10.1021/bi9806807] [PMID: 9671518]
[10]
Wandinger, A.; Creighton, D.J. Solvent isotope effects on the rates of alkylation of thiolamine models of papain. FEBS Lett., 1980, 116(1), 116-121.
[http://dx.doi.org/10.1016/0014-5793(80)80541-2] [PMID: 7409133]
[11]
Schneck, J.L.; Villa, J.P.; McDevitt, P.; McQueney, M.S.; Thrall, S.H.; Meek, T.D. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Biochemistry, 2008, 47(33), 8697-8710.
[http://dx.doi.org/10.1021/bi8007627] [PMID: 18656960]
[12]
Polgár, L. Deuterium isotope effects on papain acylation. Evidence for lack of general base catalysis and for enzyme--leaving-group interaction. Eur. J. Biochem., 1979, 98(2), 369-374.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb13196.x] [PMID: 488108]
[13]
Knuckley, B.; Bhatia, M.; Thompson, P.R. Protein arginine deiminase 4: Evidence for a reverse protonation mechanism. Biochemistry, 2007, 46(22), 6578-6587.
[http://dx.doi.org/10.1021/bi700095s] [PMID: 17497940]
[14]
Dreyton, C.J.; Knuckley, B.; Jones, J.E.; Lewallen, D.M.; Thompson, P.R. Mechanistic studies of protein arginine deiminase 2: Evidence for a substrate-assisted mechanism. Biochemistry, 2014, 53(27), 4426-4433.
[http://dx.doi.org/10.1021/bi500554b] [PMID: 24989433]
[15]
Moynihan, M.M.; Murkin, A.S. Cysteine is the general base that serves in catalysis by isocitrate lyase and in mechanism-based inhibition by 3-nitropropionate. Biochemistry, 2014, 53(1), 178-187.
[http://dx.doi.org/10.1021/bi401432t] [PMID: 24354272]
[16]
Welsh, K.M.; Creighton, D.J.; Klinman, J.P. Transition-state structure in the yeast alcohol dehydrogenase reaction: The magnitude of solvent and. alpha.-secondary hydrogen isotope effects. Biochemistry, 1980, 19(10), 2005-2016.
[http://dx.doi.org/10.1021/bi00551a001] [PMID: 6990968]
[17]
Sekhar, V.C.; Plapp, B.V. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase. Biochemistry, 1990, 29(18), 4289-4295.
[http://dx.doi.org/10.1021/bi00470a005] [PMID: 2161681]
[18]
Northrop, D.B. Follow the protons: A low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc. Chem. Res., 2001, 34(10), 790-797.
[http://dx.doi.org/10.1021/ar000184m] [PMID: 11601963]
[19]
Fitzpatrick, P.F. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. Biochim Biophys Acta Proteins Proteom, 2015, 1854(11), 1746-1755.
[http://dx.doi.org/10.1016/j.bbapap.2014.10.020]
[20]
Robbins, J.M.; Ellis, H.R. Steady-state kinetic isotope effects support a complex role of Arg226 in the proposed desulfonation mechanism of alkanesulfonate monooxygenase. Biochemistry, 2014, 53(1), 161-168.
[http://dx.doi.org/10.1021/bi401234e] [PMID: 24321058]
[21]
Fernandez, P.L.; Murkin, A.S. Inverse solvent isotope effects in enzyme-catalyzed reactions. Molecules, 2020, 25(8), 1933.
[http://dx.doi.org/10.3390/molecules25081933] [PMID: 32326332]
[22]
Huang, T.M.; Hung, H.C.; Chang, T.C.; Chang, G.G. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles. Biochem. J., 1998, 330(Pt 1), 267-275.
[http://dx.doi.org/10.1042/bj3300267]
[23]
Cotton, N.J.H.; Stoddard, B.; Parson, W.W. Oxidative inhibition of human soluble catechol-O-methyltransferase. J. Biol. Chem., 2004, 279(22), 23710-23718.
[http://dx.doi.org/10.1074/jbc.M401086200] [PMID: 15031283]
[24]
Dawling, S.; Roodi, N.; Mernaugh, R.L.; Wang, X.; Parl, F.F. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res., 2001, 61(18), 6716-6722.
[PMID: 11559542]
[25]
Zhang, J.; Klinman, J.P. Enzymatic methyl transfer: role of an active site residue in generating active site compaction that correlates with catalytic efficiency. J. Am. Chem. Soc., 2011, 133(43), 17134-17137.
[http://dx.doi.org/10.1021/ja207467d] [PMID: 21958159]
[26]
Lumry, R.; Smith, E.L.; Glantz, R.R. Kinetics of Carboxypeptidase Action. I. Effect of Various Extrinsic Factors on Kinetic Parameters. J. Am. Chem. Soc., 1951, 73(9), 4330-4340.
[http://dx.doi.org/10.1021/ja01153a090]
[27]
Harris, C.M.; Pollegioni, L.; Ghisla, S. pH and kinetic isotope effects in D -amino acid oxidase catalysis. Eur. J. Biochem., 2001, 268(21), 5504-5520.
[http://dx.doi.org/10.1046/j.1432-1033.2001.02462.x] [PMID: 11683874]
[28]
Liu, F.; Zhang, J. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study. J. Biochem., 2020, 168(4), 417-425.
[http://dx.doi.org/10.1093/jb/mvaa063] [PMID: 32492152]
[29]
Zhang, J.; Kulik, H.J.; Martinez, T.J.; Klinman, J.P. Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction. Proc. Natl. Acad. Sci. , 2015, 112(26), 7954-7959.
[http://dx.doi.org/10.1073/pnas.1506792112] [PMID: 26080432]
[30]
Hermans, J., Jr; Scheraga, H.A. The thermally induced configurational change of ribonuclease in H2O and D2O. Biochim. Biophys. Acta, 1959, 36(2), 534-535.
[http://dx.doi.org/10.1016/0006-3002(59)90197-0] [PMID: 14401269]
[31]
Sasisanker, P.; Oleinikova, A.; Weingärtner, H.; Ravindra, R.; Winter, R. Solvation properties and stability of ribonuclease A in normal and deuterated water studied by dielectric relaxation and differential scanning/pressure perturbation calorimetry. Phys. Chem. Chem. Phys., 2004, 6(8), 1899-1905.
[http://dx.doi.org/10.1039/B314070A]
[32]
Harrington, W.F.; Von Hippel, P.H. The structure of collagen and gelatin. Adv. Protein Chem., 1962, 16, 1-138.
[http://dx.doi.org/10.1016/S0065-3233(08)60028-5] [PMID: 13952907]
[33]
Maybury, R.H.; Katz, J.J. Protein denaturation in heavy water. Nature, 1956, 177(4509), 629-630.
[http://dx.doi.org/10.1038/177629a0]
[34]
Sheu, S.Y.; Schlag, E.W.; Selzle, H.L.; Yang, D.Y. Molecular dynamics of hydrogen bonds in protein-D2O: The solvent isotope effect. J. Phys. Chem. A, 2008, 112(5), 797-802.
[http://dx.doi.org/10.1021/jp0771668] [PMID: 18193847]
[35]
Scheiner, S. Čuma, M. Relative stability of hydrogen and deuterium bonds. J. Am. Chem. Soc., 1996, 118(6), 1511-1521.
[http://dx.doi.org/10.1021/ja9530376]
[36]
De Marco, L.; Carpenter, W.; Liu, H.; Biswas, R.; Bowman, J.M.; Tokmakoff, A. Differences in the vibrational dynamics of H 2 O and D 2 O: Observation of symmetric and antisymmetric stretching vibrations in heavy water. J. Phys. Chem. Lett., 2016, 7(10), 1769-1774.
[http://dx.doi.org/10.1021/acs.jpclett.6b00668] [PMID: 27115316]
[37]
Cioni, P.; Strambini, G.B. Effect of heavy water on protein flexibility. Biophys. J., 2002, 82(6), 3246-3253.
[http://dx.doi.org/10.1016/S0006-3495(02)75666-X] [PMID: 12023248]
[38]
Oakenfull, D.G.; Fenwick, D.E. Hydrophobic interaction in deuterium oxide. Aust. J. Chem., 1975, 28(4), 715-720.
[http://dx.doi.org/10.1071/CH9750715]
[39]
Ben-Naim, A.; Wilf, J.; Yaacobi, M. Hydrophobic interaction in light and heavy water. J. Phys. Chem., 1973, 77(1), 95-102.
[http://dx.doi.org/10.1021/j100620a021]
[40]
Chakrabarti, G.; Kim, S.; Gupta, M.L., Jr; Barton, J.S.; Himes, R.H. Stabilization of tubulin by deuterium oxide. Biochemistry, 1999, 38(10), 3067-3072.
[http://dx.doi.org/10.1021/bi982461r] [PMID: 10074359]
[41]
Schowen, R.L. The use of solvent isotope effects in the pursuit of enzyme mechanisms. J. Labelled Comp. Radiopharm., 2007, 50(11-12), 1052-1062.
[http://dx.doi.org/10.1002/jlcr.1436]
[42]
Zhang, D.; Kovach, I.M. Deuterium solvent isotope effect and proton-inventory studies of factor Xa-catalyzed reactions. Biochemistry, 2006, 45(47), 14175-14182.
[http://dx.doi.org/10.1021/bi061218m] [PMID: 17115712]
[43]
Frankel, B.A.; Kruger, R.G.; Robinson, D.E.; Kelleher, N.L.; McCafferty, D.G. Staphylococcus aureus sortase transpeptidase SrtA: insight into the kinetic mechanism and evidence for a reverse protonation catalytic mechanism. Biochemistry, 2005, 44(33), 11188-11200.
[http://dx.doi.org/10.1021/bi050141j] [PMID: 16101303]
[44]
Gadda, G.; Fitzpatrick, P.F. Solvent isotope and viscosity effects on the steady-state kinetics of the flavoprotein nitroalkane oxidase. FEBS Lett., 2013, 587(17), 2785-2789.
[http://dx.doi.org/10.1016/j.febslet.2013.04.021] [PMID: 23660407]
[45]
Castro, C.; Smidansky, E.; Maksimchuk, K.R.; Arnold, J.J.; Korneeva, V.S.; Götte, M.; Konigsberg, W.; Cameron, C.E. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc. Natl. Acad. Sci. , 2007, 104(11), 4267-4272.
[http://dx.doi.org/10.1073/pnas.0608952104] [PMID: 17360513]
[46]
Gray, C.H.; Coward, J.K.; Schowen, K.B.; Schowen, R.L. alpha.-Deuterium and carbon-13 isotope effects for a simple, intermolecular sulfur-to-oxygen methyl-transfer reaction. Transition-state structures and isotope effects in transmethylation and transalkylation. J. Am. Chem. Soc., 1979, 101(15), 4351-4358.
[http://dx.doi.org/10.1021/ja00509a051]
[47]
Vidgren, J.; Svensson, L.A.; Liljas, A. Crystal structure of catechol O-methyltransferase. Nature, 1994, 368(6469), 354-358.
[http://dx.doi.org/10.1038/368354a0] [PMID: 8127373]
[48]
Ishimitsu, T.; Hirose, S.; Sakurai, H. Microscopic acid dissociation constants of 3,4-dihydroxyphenethylamine (dopamine). Chem. Pharm. Bull. , 1978, 26(1), 74-78.
[http://dx.doi.org/10.1248/cpb.26.74]
[49]
Darwent, B.d. Bond dissociation energies in simple molecules, 1st ed; National Bureau of Standards: Washington, 1970.
[http://dx.doi.org/10.6028/NBS.NSRDS.31]
[50]
Fliszár, S. Atomic Charges, Bond Properties, and Molecular Energies, 1st ed; Wiley & Sons: New York, 2008.
[http://dx.doi.org/10.1002/9780470405918]
[51]
Itzhaki, L.S.; Evans, P.A. Solvent isotope effects on the refolding kinetics of hen egg-white lysozyme. Protein Sci., 1996, 5(1), 140-146.
[http://dx.doi.org/10.1002/pro.5560050117] [PMID: 8771206]
[52]
Raber, M.L.; Freeman, M.F.; Townsend, C.A. Dissection of the stepwise mechanism to beta-lactam formation and elucidation of a rate-determining conformational change in beta-lactam synthetase. J. Biol. Chem., 2009, 284(1), 207-217.
[http://dx.doi.org/10.1074/jbc.M805390200] [PMID: 18955494]
[53]
Cohen-Gonsaud, M.; Ducasse-Cabanot, S.; Quemard, A.; Labesse, G. Ligand-induced fit in mycobacterial MabA: The sequence-specific C-terminus locks the conformational change. Proteins, 2005, 60(3), 392-400.
[http://dx.doi.org/10.1002/prot.20494] [PMID: 15977159]
[54]
Pollard-Knight, D.; Cornish-Bowden, A. Solvent isotope effects on the glucokinase reaction. Negative co-operativity and a large inverse isotope effect in 2H2O. Eur. J. Biochem., 1984, 141(1), 157-163.
[http://dx.doi.org/10.1111/j.1432-1033.1984.tb08170.x] [PMID: 6327304]
[55]
Parker, M.J.; Dempsey, C.E.; Lorch, M.; Clarke, A.R. Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry, 1997, 36(43), 13396-13405.
[http://dx.doi.org/10.1021/bi971294c] [PMID: 9341233]
[56]
Iavarone, A.T.; Parks, J.H. Conformational change in unsolvated Trp-cage protein probed by fluorescence. J. Am. Chem. Soc., 2005, 127(24), 8606-8607.
[http://dx.doi.org/10.1021/ja051788u] [PMID: 15954761]
[57]
Efimov, A.V.; Brazhnikov, E.V. Relationship between intramolecular hydrogen bonding and solvent accessibility of side-chain donors and acceptors in proteins. FEBS Lett., 2003, 554(3), 389-393.
[http://dx.doi.org/10.1016/S0014-5793(03)01189-X] [PMID: 14623099]
[58]
Sarkhel, S.; Desiraju, G.R.N. -.H.O, O-.H.O, and C-H.O hydrogen bonds in protein–ligand complexes: Strong and weak interactions in molecular recognition. Proteins, 2004, 54(2), 247-259.
[http://dx.doi.org/10.1002/prot.10567] [PMID: 14696187]
[59]
Sheu, S.Y.; Yang, D.Y.; Selzle, H.L.; Schlag, E.W. Efficiency of charge transport in a polypeptide chain: The hydrated system. J. Phys. Chem. A, 2002, 106(41), 9390-9396.
[http://dx.doi.org/10.1021/jp020799w]
[60]
Sheu, S.Y.; Yang, D.Y.; Selzle, H.L.; Schlag, E.W. Energetics of hydrogen bonds in peptides. Proc. Natl. Acad. Sci. , 2003, 100(22), 12683-12687.
[http://dx.doi.org/10.1073/pnas.2133366100] [PMID: 14559970]
[61]
Guzzi, R.; Arcangeli, C.; Bizzarri, A.R. A molecular dynamics simulation study of the solvent isotope effect on copper plastocyanin. Biophys. Chem., 1999, 82(1), 9-22.
[http://dx.doi.org/10.1016/S0301-4622(99)00097-6] [PMID: 17030337]
[62]
Avbelj, F.; Luo, P.; Baldwin, R.L. Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities. Proc. Natl. Acad. Sci. , 2000, 97(20), 10786-10791.
[http://dx.doi.org/10.1073/pnas.200343197] [PMID: 10984522]
[63]
Fersht, A.R.; Shi, J.P.; Knill-Jones, J.; Lowe, D.M.; Wilkinson, A.J.; Blow, D.M.; Brick, P.; Carter, P.; Waye, M.M.Y.; Winter, G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature, 1985, 314(6008), 235-238.
[http://dx.doi.org/10.1038/314235a0] [PMID: 3845322]
[64]
Davis, A.M.; Teague, S.J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed., 1999, 38(6), 736-749.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990315)38:6<736:AID-ANIE736>3.0.CO;2-R] [PMID: 29711793]
[65]
Tarek, M.; Tobias, D.J. Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys. Rev. Lett., 2002, 88(13)138101
[http://dx.doi.org/10.1103/PhysRevLett.88.138101] [PMID: 11955127]
[66]
Zhang, J.; Balsbaugh, J.L.; Gao, S.; Ahn, N.G.; Klinman, J.P. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O -methyltransferase reaction. Proc. Natl. Acad. Sci. , 2020, 117(20), 10797-10805.
[http://dx.doi.org/10.1073/pnas.1917219117] [PMID: 32371482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy