Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

An Indicating Role of Antioxidant System Enzymes at the Stage of Active Structural Anomalies Formation in Karelian Birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti)

Author(s): Kseniya Mihajlovna Nikerova*, Natalia Alekseevna Galibina, Irina Nikolaevna Sofronova, Marina Nikolaevna Borodina, Yuliya Leonidovna Moshchenskaya, Tatiana Vladimirovna Tarelkina, Anna Vladimirovna Klimova and Ludmila Lyudvigovna Novitskaya

Volume 30, Issue 4, 2023

Published on: 24 March, 2023

Page: [325 - 334] Pages: 10

DOI: 10.2174/0929866530666230228113430

Price: $65

Abstract

Introduction: A complex study of the antioxidant system enzymes (AOS) is an important subject of biochemical research; changes in the activity of these enzymes can be used as a biochemical marker of various processes in plants. At the same time, practically little attention has been paid to describing the regularities of these enzymatic reactions in different wood formation processes, such as xylogenesis. This article discusses the outcomes of different behaviors of AOS enzymes, which are involved in both the redistribution of the ROS balance and phenolic compounds at the early stages of wood formation in young plants of silver birch (Betula pendula Roth) with straight-grained wood and Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet-Ahti) with non-figured and figured parts within the single trunk.

Background: Spectrophotometric determination of AOS enzymes’ activity can be used as a biochemical marker in the different wood formation processes, including xylogenesis. In this study, we studied structural anomalies of the woody plant trunk of Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet- Ahti).

Objective: This study aimed to study AOS enzymes’ activity in 12-year-old plants of silver birch (Betula pendula Roth) with straight-grained wood and Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hamet-Ahti) with non-figured and figured parts within the single trunk.

Methods: Plant tissues were ground in liquid nitrogen to a uniform mass and homogenized at 4°C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM DTT, 5 mM MgCl2, and 0.5 mM PMSF. After 20 min extraction, the homogenate was centrifuged at 10000 g for 20 min (MPW-351R, Poland). The sediment was washed in the buffer thrice. The pooled supernatant and sediment were dialyzed at 4°C for 18-20 h against a tenfold diluted homogenization buffer. The enzymes' activity was determined spectrophotometrically (Spectrophotometer SF-2000, OKB Spectr, Russia). Proteins in the extracts were quantified by the method of Bradford.

Results: We observed different behaviors of the studied enzymes involved in both the redistribution of the ROS balance and phenolic compounds with subsequent lignification even at the early stages of wood formation in young plants and even in different trunk parts within a tree, which was consistent with results obtained earlier on adult plants. High SOD activity in the phloem compared to the activity in the xylem was accompanied by higher CAT activity. The POD/SOD ratio was significantly higher in the figured trunk parts in Karelian birch compared to other variants in the xylem and higher in Karelian birch plants compared to plants of common birch in the phloem. The CAT/POD ratio was significantly higher in plants with no signs of anomalies. The high POD and PPO activity in the xylem of figured trunk parts and in the phloem of figured and non-figured trunk parts of B. pendula var. carelica can be associated with the high activity of apoplast invertase.

Conclusion: The study showed that at the stage of active formation of structural anomalies in the figured trunk parts in young plants of Karelian birch, hydrogen peroxide utilization occurred mainly due to increased POD activity. An increase in PPO activity in the trunk of figured plants could also be considered an indicator of the formation of structural anomalies. At the same time, in areas with developing abnormal wood, the POD/SOD ratio increased, and the CAT/POD ratio decreased, indicating a fine-tuning of the balance between superoxide radical and hydrogen peroxide, which, when changed, might regulate the rearrangement of xylogenesis towards proliferation in relation to differentiation.

Graphical Abstract

[1]
Dharanishanthi, V.; Dasgupta, M.G. Construction of co-expression network based on natural expression variation of xylogenesis-related transcripts in Eucalyptus tereticornis. Mol. Biol. Rep., 2016, 43(10), 1129-1146.
[http://dx.doi.org/10.1007/s11033-016-4046-3]
[2]
Baril’skaya, L.A. Structural analysis of figured wood of Karelian birch. Botanicheskii zhurn., 1978, 63, 805-811.
[3]
Ershova, M.A.; Nikerova, K.M.; Galibina, N.A.; Sofronova, I.N.; Borodina, M.N. Some minor characteristics of spectrophotometric determination of antioxidant system and phenolic metabolism enzymes’ activity in wood plant tissues (on the example of Pinus sylvestris L.). Protein Pept. Lett., 2022, 29(8), 711-720.
[http://dx.doi.org/10.2174/0929866529666220414104747]
[4]
Galibina, N.A.; Novitskaya, L.L.; Nikerova, K.M.; Moshchenskaya, Y.L.; Borodina, M.N.; Sofronova, I.N. Apoplastic invertase activity regulation in the cambial zone of Karelian birch. Russ. J. Dev. Biol., 2019, 50(1), 20-29.
[http://dx.doi.org/10.1134/S1062360419010028]
[5]
Galibina, N.A.; Novitskaya, L.L.; Nikerova, K.M.; Moshkina, E.V.; Moshchenskaya, Y.L.; Borodina, M.N.; Sofronova, I.N.; Nikolaeva, N.N. Labile nitrogen availability in soil influences the expression of wood pattern in Karelian birch. Bot. Z., 2019, 104(10), 1598-1609.
[http://dx.doi.org/10.1134/S0006813619100053]
[6]
Galibina, N.A.; Tarelkina, T.V.; Chirva, O.V.; Moshchenskaya, Y.L.; Nikerova, K.M.; Ivanova, D.S.; Semenova, L.I.; Serkova, A.A.; Novitskaya, L.L. Molecular genetic characteristics of different scenarios of xylogenesis on the example of two forms of silver birch differing in the ratio of structural elements in the xylem. Plants, 2021, 10(8), 1593.
[http://dx.doi.org/10.3390/plants10081593]
[7]
Korovin, V.V.; Novitskaya, L.L.; Kurnosov, G.A. Structural abnormalities of the stem in woody plants; Moscow state forest university: Moscow,, 2003.
[8]
Nikerova, K.M.; Galibina, N.A.; Moshchenskaya, Y.L.; Sofronova, I.N.; Borodina, M.N.; Moshkina, E.V.; Novitskaya, L.L. The effect of soil fertility on antioxidant enzymes activity in a subarctic woody species. Czech Polar Rep., 2021, 11(1), 41-66.
[http://dx.doi.org/10.5817/CPR2021-1-5]
[9]
Novitskaya, L.L.; Kushnir, F.V. The role of sucrose in regulation of trunk tissue development in Betula pendula Roth. J. Plant Growth Regul., 2006, 25(1), 18-29.
[http://dx.doi.org/10.1007/s00344-004-0419-2]
[10]
Novitskaya, L.; Nikolaeva, N.; Galibina, N.; Tarelkina, T.; Semenova, L. The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows. Silva Fenn., 2016, 50(3), 1461-1478.
[http://dx.doi.org/10.14214/sf.1461]
[11]
Novitskaya, L.L.; Tarelkina, T.V.; Galibina, N.A.; Moshchenskaya, Y.L.; Nikolaeva, N.N.; Nikerova, K.M.; Podgornaya, M.N.; Sofronova, I.N.; Semenova, L.I. The formation of structural abnormalities in Karelian birch wood is associated with auxin inactivation and disrupted basipetal auxin transport. J. Plant Growth Regul., 2020, 39(1), 378-394.
[http://dx.doi.org/10.1007/s00344-019-09989-8]
[12]
Baril’skaya, L.A. Comparative structural analysis of the wood of silver birch and Karelian birch. Dissertation, Forest Research Institute of Karelian Branch of the USSR Academy of Sciences, Petrozavodsk 1979.
[13]
Hintikka, T.J. Visa birch and their anatomy; The Suomalainen Literature Society Kirpaino oy; Helsinki, 1941.
[http://dx.doi.org/10.31885/2018.00018]
[14]
Lyubavskaya, A. Karelian birch; Mgul: Moscow, 2006.
[15]
Shchetinkin, S.V. Histogenesis of patterned birch wood (Betula pendula Roth var.carelica merkl. and Betula pendula Roth): autoref . Dis. Cand. Biol. Sciences, 1988.
[16]
Tarelkina, T.V.; Novitskaya, L.L.; Galibina, N.A.; Moshchenskaya, Y.L.; Nikerova, K.M.; Nikolaeva, N.N.; Sofronova, I.N.; Ivanova, D.S.; Semenova, L.I. Expression analysis of key auxin biosynthesis, transport, and metabolism genes of Betula pendula with special emphasis on figured wood formation in karelian birch. Plants, 2020, 9(11), 1406.
[http://dx.doi.org/10.3390/plants9111406]
[17]
Velling, P.; Viherä-aarnio, A.; Hagqvist, R.; Lehto, J. Valuable wood as a result of abnormal cambial activity-the case of Betula pendula var. carelica.Cell and molecular biology of wood formation; Savidge, R.A.; Barnett, J.R.; Napier, R., Eds.; , 2000, pp. 377-386.
[18]
Galibina, N.A.; Novitskaya, L.L.; Krasavina, M.S.; Moshchenskaya, Y.L. Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth. Russ. J. Plant Physiol., 2015, 62(3), 381-389.
[http://dx.doi.org/10.1134/S102144371503005X]
[19]
Galibina, N.A.; Novitskaya, L.L.; Krasavina, M.S.; Moshchenskaya, J.L. Invertase activity in trunk tissues of Karelian birch. Russ. J. Plant Physiol., 2015, 62(6), 753-760.
[http://dx.doi.org/10.1134/S1021443715060060]
[20]
Galibina, N.A.; Novitskaya, L.L.; Nikerova, K.M. Excess of exogenous nitrates inhibits formation of abnormal wood in the Karelian birch. Russ. J. Dev. Biol., 2016, 47(2), 69-76.
[http://dx.doi.org/10.1134/S106236041602003X]
[21]
Galibina, N.A.; Novitskaya, L.L.; Nikerova, K.M. Source-sink relations in the organs and tissues of silver birch during different scenarios of xylogenesis. Russ. J. Plant Physiol., 2019, 66(2), 308-315.
[http://dx.doi.org/10.1134/S1021443719020067]
[22]
Nikerova, K.M.; Galibina, N.A.; Moshchenskaya, Yu.L.; Novitskaya, L.L.; Podgornaya, M.N.; Sofronova, I.N. Contribution of catalase and peroxidase to xylogenesis of Karelian birch. Forest Sci., 2019, 2, 115-127.
[http://dx.doi.org/10.1134/S0024114819020086]
[23]
Nikerova, K.M.; Galibina, N.A.; Moshchenskaya, Yu.L.; Novitskaya, L.L.; Podgornaya, M.N.; Sofronova, I.N. Determination of superoxide dismutase and polyphenol oxidase activity in Betula pendula var. carelica (Betulaceae) wood with different degree of xylogenesis disturbance. Rastit. Resur., 2019, 55(2), 213-230.
[http://dx.doi.org/10.1134/S0033994619020134]
[24]
Nikerova, K.M.; Galibina, N.A.; Moshchenskaya, Y.L.; Tarelkina, T.V.; Borodina, M.N.; Sofronova, I.N.; Semenova, L.I.; Ivanova, D.S.; Novitskaya, L.L. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch. Trees , 2022, 36(2), 517-529.
[http://dx.doi.org/10.1007/s00468-021-02225-5]
[25]
Paiva, J.A.P.; Garcés, M.; Alves, A.; Garnier-Géré, P.; Rodrigues, J.C.; Lalanne, C.; Porcon, S.; Le Provost, G.; Da Silva Perez, D.; Brach, J.; Frigerio, J.M.; Claverol, S.; Barré, A.; Fevereiro, P.; Plomion, C. Molecular and phenotypic profiling from the base to the crown in maritime pine wood forming tissue. New Phytol., 2008, 178(2), 283-301.
[http://dx.doi.org/10.1111/j.1469-8137.2008.02379.x]
[26]
Novitskaya, L.L. Karelian birch: Mechanisms of growth and development of structural abnormalities; Publishing House Verso: Petrozavodsk, 2008.
[27]
Fawzi Mahomoodally, M.; Mollica, A.; Stefanucci, A.; Zakariyyah Aumeeruddy, M.; Poorneeka, R.; Zengin, G. Volatile components, pharmacological profile, and computational studies of essential oil from Aegle marmelos (Bael) leaves: A functional approach. Ind. Crops Prod., 2018, 126, 13-21.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.054]
[28]
Zengin, G.; Aumeeruddy-Elalfi, Z.; Mollica, A.; Yilmaz, M.A.; Mahomoodally, M.F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species-A source of innovative phytopharmaceuticals from nature. Phytomedicine, 2018, 38, 35-44.
[http://dx.doi.org/10.1016/j.phymed.2017.10.017]
[29]
Sinan, K.I.; Etienne, O.K.; Stefanucci, A.; Mollica, A.; Mahomoodally, M.F.; Jugreet, S.; Rocchetti, G.; Lucini, L.; Aktumsek, A.; Montesano, D.; Ak, G.; Zengin, G. Chemodiversity and biological activity of essential oils from three species from the Euphorbia genus. Flavour Fragrance J., 2021, 36(1), 148-158.
[http://dx.doi.org/10.1002/ffj.3624]
[30]
Nikerova, K.M.; Galibina, N.A.; Moshenskaya, Yu.L.; Novitskaya, L.L.; Podgornaya, M.N.; Sofronova, I.N. Catalase activity in the leaf apparatus in seedlings of different shaped birch (Batula pendula Roth); Nikerova, 2016, p. 11.
[http://dx.doi.org/10.17076/eb460]
[31]
Galibina, N.A.; Moshkina, E.V.; Nikerova, K.M.; Moshchenskaya, Yu.L.; Znamenskii, S.R. Peroxydase activity indicates veining of curly birch. Forest. Sci., 2016, 4, 294-304.
[32]
Nikerova, K.M.; Galibina, N.A. The influence of nitrate on the peroxidase activity in tissues of Betula pendula Roth var. pendula and B. pendula var. carelica (Mercklin). Sib. J. For. Sci., 2017, 1, 15-24.
[http://dx.doi.org/10.15372/SJFS20170102]
[33]
Dolgodvorova, S.Ya.; Chernyaeva, G.N. Extractive substances of birch tree; Krasnoyarsk, USSR, 1977, pp. 26-38.
[34]
Geles, I.S. Woody biomass and backbone environmentally friendly technologies over chemical-mechanical processing; KarNTS RAS. Petrozavodsk, 2001, 7(2), 61.
[35]
Tappi (t222 om-11) Acid-insoluble lignin in wood and pulp; Tappi press: Atlanta, 2011.
[36]
Miroshnichenko, O.S. Biogenesis, physiological role, and properties of catalase. Biopolim. Kletka, 1992, 8(6), 3-25.
[http://dx.doi.org/10.7124/bc.00033C]
[37]
König, J.; Baier, M.; Horling, F.; Kahmann, U.; Harris, G.; Schürmann, P.; Dietz, K.J. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. USA, 2002, 99(8), 5738-5743.
[http://dx.doi.org/10.1073/pnas.072644999]
[38]
Mittler, R.; Zilinskas, B.A. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol., 1991, 97(3), 962-968.
[http://dx.doi.org/10.1104/pp.97.3.962]
[39]
Vaughn, K.C.; Duke, S.O. Function of polyphenol oxidase in higher plants. Physiol. Plant., 1984, 60(1), 106-112.
[http://dx.doi.org/10.1111/j.1399-3054.1984.tb04258.x]
[40]
Jajic, I.; Sarna, T.; Strzalka, K. Senescence, stress and reactive oxygen species. Plants, 2015, 4(3), 393-411.
[http://dx.doi.org/10.3390/plants4030393]
[41]
Fotopoulos, V.; Gilbert, M.J.; Pittman, J.K.; Marvier, A.C.; Buchanan, A.J.; Sauer, N.; Hall, J.L.; Williams, L.E. The monosaccharide transporter gene, atstp4, and the cell-wall invertase, at β-fruct1, are induced in Arabidopsis during infection with the fungal biotroph erysiphe cichoracearum. Plant Physiol., 2003, 132(2), 821-829.
[http://dx.doi.org/10.1104/pp.103.021428]
[42]
Tsukagoshi, H.; Busch, W.; Benfey, P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 2010, 143(4), 606-616.
[http://dx.doi.org/10.1016/j.cell.2010.10.020]
[43]
Zeng, J.; Dong, Z.; Wu, H.; Tian, Z.; Zhao, Z. Redox regulation of plant stem cell fate. EMBO J., 2017, 36(19), 2844-2855.
[http://dx.doi.org/10.15252/embj.201695955]
[44]
Betsuyaku, S.; Takahashi, F.; Kinoshita, A.; Miwa, H.; Shinozaki, K.; Fukuda, H.; Sawa, S. Mitogen activated protein kinase regulated by the clavat a receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol., 2011, 52(1), 14-29.
[http://dx.doi.org/10.1093/pcp/pcq157]
[45]
Dodueva, I.E.; Gancheva, M.S.; Osipova, M.A.; Tvorogova, V.E.; Lutova, L.A. Lateral meristems of higher plants: Phytohormonal and genetic control. Russ. J. Plant Physiol., 2014, 61(5), 571-589.
[http://dx.doi.org/10.1134/S1021443714050069]
[46]
Dodueva, I.E.; Yurlova, E.V.; Osipova, M.A.; Lutova, L.A. CLE peptides are universal regulators of meristem development. Russ. J. Plant Physiol., 2012, 59(1), 14-27.
[http://dx.doi.org/10.1134/S1021443712010050]
[47]
Essmann, J.; Schmitz-Thom, I.; Schön, H.; Sonnewald, S.; Weis, E.; Scharte, J. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol., 2008, 147(3), 1288-1299.
[http://dx.doi.org/10.1104/pp.108.121418]
[48]
Etchells, J.P.; Turner, S.R. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 2010, 137(5), 767-774.
[http://dx.doi.org/10.1242/dev.044941]
[49]
Etchells, J.P.; Provost, C.M.; Turner, S.R. Plant vascular cell division is maintained by an interaction between pxy and ethylene signaling. PLoS Genet., 2012, 8(11)e1002997
[http://dx.doi.org/10.1371/journal.pgen.1002997]
[50]
Etchells, J.P.; Mishra, L.S.; Kumar, M.; Campbell, L.; Turner, S.R. Wood formation in trees is increased by manipulating pxy-regulated cell division. Curr. Biol., 2015, 25(8), 1050-1055.
[http://dx.doi.org/10.1016/j.cub.2015.02.023]
[51]
Hirakawa, Y.; Kondo, Y.; Fukuda, H. Tdif peptide signaling regulates vascular stem cell proliferation via the wox4 homeobox gene in Arabidopsis. Plant Cell, 2010, 22(8), 2618-2629.
[http://dx.doi.org/10.1105/tpc.110.076083]
[52]
Hirakawa, Y.; Kondo, Y.; Fukuda, H. Regulation of vascular development by cle peptide-receptor systems. J. Integr. Plant Biol., 2010, 52(1), 8-16.
[http://dx.doi.org/10.1111/j.1744-7909.2010.00904.x]
[53]
Katsir, L.; Davies, K.A.; Bergmann, D.C.; Laux, T. Peptide signaling in plant development. Curr. Biol., 2011, 21(9), R356-R364.
[http://dx.doi.org/10.1016/j.cub.2011.03.012]
[54]
Nieminen, K.; Blomster, T.; Helariutta, Y.; Mähönen, A.P. Vascular cambium development In: The arabidopsis book. American society of plant biologists nitrate modulates stem cell dynamics in arabidopsis shoot meristems through cytokinins. Arabidopsis Book, 2015, 13e0177
[http://dx.doi.org/10.1199/tab.0177]
[55]
Schrader, S.; Sauter, J.J. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. J. Plant Physiol., 2002, 159(8), 833-843.
[http://dx.doi.org/10.1078/0176-1617-00730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy