Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

circ_0006089 Facilitates Gastric Cancer Progression via Decoying miR- 515-5p and Up-regulating CXCL6

Author(s): Qiuxia Guo, Xiangwu Ding, Fei Lv, Aixiang Wang and Jing Wang*

Volume 30, Issue 4, 2023

Published on: 07 April, 2023

Page: [314 - 324] Pages: 11

DOI: 10.2174/0929866530666230308145835

Price: $65

Abstract

Background: Gastric cancer (GC) is the most common cancer globally. Recent research has suggested that circular RNAs (circRNAs) play crucial roles in GC tumorigenesis and progression. The present study is performed to clarify the possible mechanism of circRNA has_circ_0006089 (circ_0006089) in GC.

Methods: The differentially expressed circRNAs were screened out by analyzing the dataset GSE83- 521. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect circ_0006089, miR-515-5p and CXCL6 expression levels in GC tissues and cell lines. CCK-8, BrdU and Transwell assays were adopted to examine the biological function of circ_0006089 in GC cells. The interaction between miR-515-5p and circ_0006089, as well as between CXCL6 and miR-515-5p, was confirmed through bioinformatics, RNA immunoprecipitation (RIP) assay, dual-luciferase reporter gene assay and RNA pull-down assay.

Results: Circ_0006089 was significantly upregulated in GC tissues and cells, and miR-515-5p was remarkably downregulated. After knocking down circ_0006089 or overexpressing miR-515-5p, the growth, migration and invasion of GC cells were markedly reduced. In terms of mechanism, miR-515- 5p was verified to be the target of circ_0006089, and CXCL6 was validated as miR-515-5p’s downstream target gene. Inhibiting miR-515-5p reversed the inhibitory effect knocking down circ_0006089 had on GC cell proliferation, migration and invasion.

Conclusion: Circ_0006089 facilitates the malignant biological behaviors of GC cells via the miR-515- 5p/CXCL6 axis. Circ_0006089 can probably act as one of the important biomarkers and therapeutic targets in GC treatment strategies.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203.
[http://dx.doi.org/10.1007/s10555-020-09925-3] [PMID: 32894370]
[3]
Shi, C.; Li, J.; Wu, L. The effect of data diversity on the performance of deep learning models for predicting early gastric cancer under endoscopy. J. Digit. Health., 2022, 1(1), 19-24.
[http://dx.doi.org/10.55976/jdh.1202214319-24]
[4]
Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2)e30733
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[5]
Wilusz, J.E.; Sharp, P.A. Molecular biology. A circuitous route to noncoding RNA. Science, 2013, 340(6131), 440-441.
[http://dx.doi.org/10.1126/science.1238522] [PMID: 23620042]
[6]
Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[7]
Zhang, Y.; Liu, H.; Li, W.; Yu, J.; Li, J.; Shen, Z.; Ye, G.; Qi, X.; Li, G. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging , 2017, 9(6), 1585-1594.
[http://dx.doi.org/10.18632/aging.101254] [PMID: 28657541]
[8]
Huang, G.; Liang, M.; Liu, H.; Huang, J.; Li, P.; Wang, C.; Zhang, Y.; Lin, Y.; Jiang, X. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis., 2020, 11(12), 1065.
[http://dx.doi.org/10.1038/s41419-020-03276-1] [PMID: 33311442]
[9]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[10]
Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; Xu, Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer, 2019, 18(1), 20.
[http://dx.doi.org/10.1186/s12943-018-0935-5] [PMID: 30717751]
[11]
Sun, Y.; Ma, J.; Lin, J.; Sun, D.; Song, P.; Shi, L.; Li, H.; Wang, R.; Wang, Z.; Liu, S. Circular RNA circ_ASAP2 regulates drug sensitivity and functional behaviors of cisplatin-resistant gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs, 2021, 32(9), 950-961.
[http://dx.doi.org/10.1097/CAD.0000000000001087] [PMID: 34016832]
[12]
Zhou, Y.; Zhang, Q.; Liao, B.; Qiu, X.; Hu, S.; Xu, Q. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR‐361 3p/TGFB1. Cancer Sci., 2022, 113(6), 2044-2055.
[http://dx.doi.org/10.1111/cas.15351] [PMID: 35347818]
[13]
Lin, G.R.; Chen, W.R.; Zheng, P.H.; Chen, W.S.; Cai, G.Y. Circular RNA circ_0006089 promotes the progression of gastric cancer by regulating the mir 143 3p/PTBP3 axis and PI3K/AKT signaling pathway. J. Dig. Dis., 2022, 23(7), 376-387.
[http://dx.doi.org/10.1111/1751-2980.13116] [PMID: 35844201]
[14]
Wang, X.; Song, Z.; Meng, Q.; Xia, S.; Wang, C.; Huang, X. Circular RNA circ_0006089 regulates the IGF1R expression by targeting miR-143-3p to promote gastric cancer proliferation, migration and invasion. Cell Cycle, 2022, 11, 1-14.
[http://dx.doi.org/10.1080/15384101.2022.2075197] [PMID: 35545863]
[15]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[16]
Mishra, S.; Yadav, T.; Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol., 2016, 98, 12-23.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.003] [PMID: 26481951]
[17]
Wang, C.; Huang, Y.; Zhang, J.; Fang, Y. MiRNA-339-5p suppresses the malignant development of gastric cancer via targeting ALKBH1. Exp. Mol. Pathol., 2020, 115104449
[http://dx.doi.org/10.1016/j.yexmp.2020.104449] [PMID: 32380054]
[18]
Meng, H.; Li, Y.Y.; Han, D.; Zhang, C.Y. miRNA-93-5p promotes the biological progression of gastric cancer cells via Hippo signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(11), 4763-4769.
[PMID: 31210305]
[19]
Qiao, K.; Ning, S.; Wan, L.; Wu, H.; Wang, Q.; Zhang, X.; Xu, S.; Pang, D. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 418.
[http://dx.doi.org/10.1186/s13046-019-1421-7] [PMID: 31623640]
[20]
Zhang, X.; Zhou, J.; Xue, D.; Li, Z.; Liu, Y.; Dong, L. miR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer. Int. J. Biol. Macromol., 2019, 129, 227-232.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.127] [PMID: 30685303]
[21]
Liu, J.; Liu, H.; Zeng, Q.; Xu, P.; Liu, M.; Yang, N. Circular RNA circ-MAT2B facilitates glycolysis and growth of gastric cancer through regulating the miR-515-5p/HIF-1α axis. Cancer Cell Int., 2020, 20(1), 171.
[http://dx.doi.org/10.1186/s12935-020-01256-1] [PMID: 32467667]
[22]
Zhang, H.; Wang, X.; Huang, H.; Wang, Y.; Zhang, F.; Wang, S. Hsa_circ_0067997 promotes the progression of gastric cancer by inhibition of miR-515-5p and activation of X chromosome-linked inhibitor of apoptosis (XIAP). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 308-318.
[http://dx.doi.org/10.1080/21691401.2018.1553787] [PMID: 30688097]
[23]
Li, L.; Lai, Q.; Zhang, M.; Jia, J. Long non-coding RNA DLGAP1-AS1 promotes the progression of gastric cancer via miR-515-5p/MARK4 axis. Braz. J. Med. Biol. Res., 2021, 54(8)e10062
[http://dx.doi.org/10.1590/1414-431x2020e10062] [PMID: 34037089]
[24]
Caiment, F.; Gaj, S.; Claessen, S.; Kleinjans, J. High-throughput data integration of RNA–miRNA–circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res., 2015, 43(5), 2525-2534.
[http://dx.doi.org/10.1093/nar/gkv115] [PMID: 25690898]
[25]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[26]
Li, R.; Jiang, J.; Shi, H.; Qian, H.; Zhang, X.; Xu, W. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci., 2020, 77(9), 1661-1680.
[http://dx.doi.org/10.1007/s00018-019-03345-5] [PMID: 31659415]
[27]
Tang, W.; Fu, K.; Sun, H.; Rong, D.; Wang, H.; Cao, H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer, 2018, 17(1), 137.
[http://dx.doi.org/10.1186/s12943-018-0888-8] [PMID: 30236115]
[28]
Cao, L.; Wang, M.; Dong, Y.; Xu, B.; Chen, J.; Ding, Y.; Qiu, S.; Li, L.; Karamfilova, Z.E.; Zhou, X.; Xu, Y. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis., 2020, 11(2), 145.
[http://dx.doi.org/10.1038/s41419-020-2336-0] [PMID: 32094325]
[29]
Liu, F.; Zhang, H.; Xie, F.; Tao, D.; Xiao, X.; Huang, C.; Wang, M.; Gu, C.; Zhang, X.; Jiang, G. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis. Oncogene, 2020, 39(8), 1696-1709.
[http://dx.doi.org/10.1038/s41388-019-1092-z] [PMID: 31705065]
[30]
Zhang, Y.; Shi, Z.; Li, Z.; Wang, X.; Zheng, P.; Li, H. Circ_0057553/miR-515-5p regulates prostate cancer cell proliferation, apoptosis, migration, invasion and aerobic glycolysis by targeting YES1. OncoTargets Ther., 2020, 13, 11289-11299.
[http://dx.doi.org/10.2147/OTT.S272294] [PMID: 33177837]
[31]
Ni, J.; Zheng, H.; Ou, Y.; Tao, Y.; Wang, Z.; Song, L.; Yan, H.; Zhou, W. miR-515–5p suppresses HCC migration and invasion via targeting IL6/JAK/STAT3 pathway. Surg. Oncol., 2020, 34, 113-120.
[http://dx.doi.org/10.1016/j.suronc.2020.03.003] [PMID: 32891315]
[32]
Proost, P.; Wuyts, A.; Conings, R.; Lenaerts, J.P.; Billiau, A.; Opdenakker, G.; Van Damme, J. Human and bovine granulocyte chemotactic protein-2: Complete amino acid sequence and functional characterization as chemokines. Biochemistry, 1993, 32(38), 10170-10177.
[http://dx.doi.org/10.1021/bi00089a037] [PMID: 8399143]
[33]
Wuyts, A.; Van Osselaer, N.; Haelens, A.; Samson, I.; Herdewijn, P.; Ben-Baruch, A.; Oppenheim, J.J.; Proost, P.; Van Damme, J. Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vitro inflammatory properties. Biochemistry, 1997, 36(9), 2716-2723.
[http://dx.doi.org/10.1021/bi961999z] [PMID: 9054580]
[34]
Sun, M.Y.; Wang, S.J.; Li, X.Q.; Shen, Y.L.; Lu, J.R.; Tian, X.H.; Rahman, K.; Zhang, L.J.; Nian, H.; Zhang, H. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway. Front. Pharmacol., 2019, 10, 224.
[http://dx.doi.org/10.3389/fphar.2019.00224] [PMID: 30967776]
[35]
Wang, X.; Dai, Y.; Zhang, X.; Pan, K.; Deng, Y.; Wang, J.; Xu, T. CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia–reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation. Cancer Biol. Ther., 2021, 22(1), 30-39.
[http://dx.doi.org/10.1080/15384047.2020.1842705] [PMID: 33241954]
[36]
Liu, G.; An, L.; Zhang, H.; Du, P.; Sheng, Y. Activation of CXCL6/CXCR1/2 axis promotes the growth and metastasis of osteosarcoma cells in vitro and in vitro. Front. Pharmacol., 2019, 10, 307.
[http://dx.doi.org/10.3389/fphar.2019.00307] [PMID: 30984000]
[37]
Zheng, S.; Shen, T.; Liu, Q.; Liu, T.; Tuerxun, A.; Zhang, Q.; Yang, L.; Han, X.; Lu, X. CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vitro through upregulation of PD L1 via activation of STAT3 pathway. J. Cell. Physiol., 2021, 236(7), 5373-5386.
[http://dx.doi.org/10.1002/jcp.30236] [PMID: 33368292]
[38]
Gijsbers, K.; Gouwy, M.; Struyf, S.; Wuyts, A.; Proost, P.; Opdenakker, G.; Penninckx, F.; Ectors, N.; Geboes, K.; Van Damme, J. GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp. Cell Res., 2005, 303(2), 331-342.
[http://dx.doi.org/10.1016/j.yexcr.2004.09.027] [PMID: 15652347]
[39]
Sun, C.; Li, G.; Liu, M. A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways. OncoTargets Ther., 2020, 13, 6171-6180.
[http://dx.doi.org/10.2147/OTT.S256238] [PMID: 32636641]
[40]
Li, J.; Tang, Z.; Wang, H.; Wu, W.; Zhou, F.; Ke, H.; Lu, W.; Zhang, S.; Zhang, Y.; Yang, S.; Ni, S.; Huang, J. CXCL6 promotes non-small cell lung cancer cell survival and metastasis via down-regulation of miR-515-5p. Biomed. Pharmacother., 2018, 97, 1182-1188.
[http://dx.doi.org/10.1016/j.biopha.2017.11.004] [PMID: 29136957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy