Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Zebrafish Model as a New Discovery Path for Medicinal Plants in the Treatment of Parkinson’s Disease

Author(s): Amir Modarresi Chahardehi*, Yasaman Hosseini, Seyed Mohammad Mahdavi and Iman Naseh

Volume 23, Issue 3, 2024

Published on: 14 April, 2023

Page: [306 - 314] Pages: 9

DOI: 10.2174/1871527322666230330111712

Price: $65

Abstract

Parkinson's disease (PD) is one of the most frequent degenerative central nervous system disorders affecting older adults. Dopaminergic neuron failure in the substantia nigra is a pathological sign connected with the motor shortfall of PD. Due to their low teratogenic and adverse effect potential, medicinal herbs have emerged as a promising therapy option for preventing and curing PD and other neurodegenerative disorders. However, the mechanism through which natural compounds provide neuroprotection against PD remains unknown. While testing compounds in vertebrates such as mice is prohibitively expensive and time-consuming, zebrafish (Danio rerio) may offer an appealing alternative because they are vertebrates and share many of the same characteristics as humans. Zebrafish are commonly used as animal models for studying many human diseases, and their molecular history and bioimaging properties are appropriate for the study of PD. However, a literature review indicated that only six plants, including Alpinia oxyhylla, Bacopa monnieri, Canavalia gladiate, Centella asiatica, Paeonia suffruticosa, and Stachytarpheta indica had been investigated as potential PD treatments using the zebrafish model. Only C. asiatica and B. monnieri were found to have potential anti-PD activity. In addition to reviewing the current state of research in this field, these plants' putative mechanisms of action against PD are explored, and accessible assays for investigation are made.

Graphical Abstract

[1]
Eachus H, Bright C, Cunliffe VT, Placzek M, Wood JD, Watt PJ. Disrupted-in-Schizophrenia-1 is essential for normal Hypothalamic-Pituitary-Interrenal (HPI) axis function. Hum Mol Genet 2017; 26(11): 1992-2005.
[http://dx.doi.org/10.1093/hmg/ddx076] [PMID: 28334933]
[2]
Beitz JM. Parkinson s disease a review. Front Biosci 2014; S6(1): 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[3]
Juvekar AR, Khatri DK. Abrogation of locomotor impairment in a rotenone-induced Drosophila melanogaster and zebrafish model of Parkinson′s disease by ellagic acid and curcumin. Int J Nutr Pharmacol Neurol Dis 2016; 6(2): 90-6.
[http://dx.doi.org/10.4103/2231-0738.179969]
[4]
Makhija DT, Jagtap AG. Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: Comparison with rat model. J Pharmacol Pharmacother 2014; 5(1): 39-46.
[http://dx.doi.org/10.4103/0976-500X.124422] [PMID: 24554909]
[5]
Ambrosi G, Ghezzi C, Sepe S, et al. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1385-94.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.008] [PMID: 24854107]
[6]
Banjari I. Marček T, Tomić S, Waisundara VY. Forestalling the epidemics of Parkinson’s disease through plant-based remedies. Front Nutr 2018; 5: 95.
[http://dx.doi.org/10.3389/fnut.2018.00095] [PMID: 30425989]
[7]
Agim ZS, Cannon JR. Dietary factors in the etiology of parkinson’s disease. BioMed Res Int 2015; 2015: 1-16.
[http://dx.doi.org/10.1155/2015/672838] [PMID: 25688361]
[8]
Henchcliffe C, Dodel R, Beal MF. Biomarkers of parkinson’s disease and dementia with lewy bodies. Prog Neurobiol 2011; 95(4): 601-13.
[http://dx.doi.org/10.1016/j.pneurobio.2011.09.002] [PMID: 21983334]
[9]
Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac J Trop Biomed 2015; 5(11): 948-54.
[http://dx.doi.org/10.1016/j.apjtb.2015.07.024]
[10]
Trisnawati A, Anasrulloh A, Rianawati SB, Khotimah H, Ali M, Susetya B. Comparison effect between Pengagan (Centella asiatica) extract and Pramipexole toward locomotor activities, α-synuclein, and Nrf2 expression in zebrafish Parkinson model. Malang Neurol J 2019; 5(1): 5-13.
[11]
Cronin A. A Role for Nanor in Early Zebrafish Development and Validation of a Neurotoxic Zebrafish Model of Parkinson’s Disease PhD Theses. University of Galway 2018; p. 69.
[12]
Essa MM, Braidy N, Bridge W, et al. Review of natural products on Parkinson’s disease pathology. J Aging Res Lifestyle 2014; 3(3): 1-10.
[http://dx.doi.org/10.14283/jarcp.2014.23]
[13]
Correia AD, Soares RS, Rahimi K, et al. Green fluorescent protein labeling of dopaminergic neurons in zebrafish for the study of Parkinson’s disease. J Microbiol Exp 2017; 4(1): 00101.
[14]
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in parkinson’s disease. Prog Neurobiol 2019; 177: 73-93.
[http://dx.doi.org/10.1016/j.pneurobio.2018.09.003] [PMID: 30219247]
[15]
Tegelenbosch RAJ, Noldus LPJJ, Richardson MK, Ahmad F. Zebrafish embryos and larvae in behavioural assays. Behaviour 2012; 149(10-12): 1241-81.
[http://dx.doi.org/10.1163/1568539X-00003020]
[16]
d’Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci 2018; 12: 976.
[http://dx.doi.org/10.3389/fnins.2018.00976] [PMID: 30618594]
[17]
Priyadarshini M, Orosco LA, Panula PJ. Oxidative stress and regulation of pink1 in zebrafish (Danio rerio). PLoS One 2013; 8(11): e81851.
[http://dx.doi.org/10.1371/journal.pone.0081851] [PMID: 24324558]
[18]
Razali K, Othman N, Mohd Nasir MH, et al. The promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment. Front Genet 2021; 12: 655550.
[http://dx.doi.org/10.3389/fgene.2021.655550] [PMID: 33936174]
[19]
Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl E. Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue. Arch Comput Methods Eng 2020; 27(4): 1187-230.
[http://dx.doi.org/10.1007/s11831-019-09352-w]
[20]
Sallinen V. Zebrafish as a Model of Parkinson’s Disease. Academic Dissertation, University of Helsinki, 2009.
[21]
Basnet R, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 2019; 7(1): 23.
[http://dx.doi.org/10.3390/biomedicines7010023] [PMID: 30917585]
[22]
Williams CH, Hong CC. Multi-step usage of in vivo models during rational drug design and discovery. Int J Mol Sci 2011; 12(4): 2262-74.
[http://dx.doi.org/10.3390/ijms12042262] [PMID: 21731440]
[23]
Orger MB, de Polavieja GG. Zebrafish behavior: Opportunities and challenges. Annu Rev Neurosci 2017; 40(1): 125-47.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033857] [PMID: 28375767]
[24]
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of models of parkinson’s disease. Front Neurosci 2016; 9: 503.
[http://dx.doi.org/10.3389/fnins.2015.00503] [PMID: 26834536]
[25]
Jellinger KA. Pathology of parkinson’s disease. Mol Chem Neuropathol 1991; 14(3): 153-97.
[http://dx.doi.org/10.1007/BF03159935] [PMID: 1958262]
[26]
Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O. Zebrafish as a new animal model for movement disorders. J Neurochem 2008; 106(5): 1991-7.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05463.x] [PMID: 18466340]
[27]
Crawford AD, Liekens S, Kamuhabwa AR, et al. Zebrafish bioassay-guided natural product discovery: Isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One 2011; 6(2): e14694.
[http://dx.doi.org/10.1371/journal.pone.0014694] [PMID: 21379387]
[28]
Ren Q, Jiang X, Zhang S, et al. Neuroprotective effect of YIAEDAER peptide against parkinson’s disease like pathology in zebrafish. Biomed Pharmacother 2022; 147: 112629.
[http://dx.doi.org/10.1016/j.biopha.2022.112629] [PMID: 35030435]
[29]
Marino BLB, Sousa KPA, dos Santos CBR, Taft CA, da Silva CHT. An in silico study of natural compounds as potential MAO-B inhibitors for the treatment of parkinson’s diseaseFunctional Properties of Advanced Engineering Materials and Biomolecules. Springer 2021; pp. 591-617.
[http://dx.doi.org/10.1007/978-3-030-62226-8_20]
[30]
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of mitochondrial quality control and proteostasis by natural compounds in Parkinson’s disease models. Int J Mol Sci 2019; 20(20): 5208.
[http://dx.doi.org/10.3390/ijms20205208] [PMID: 31640129]
[31]
Dauer W, Przedborski S. Parkinson’s disease. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[32]
Muniandy Y. The use of larval zebrafish (Danio rerio) model for identifying new anxiolytic drugs from herbal medicine. Zebrafish 2018; 15(4): 321-39.
[http://dx.doi.org/10.1089/zeb.2018.1562] [PMID: 29851363]
[33]
Barnhill LM, Murata H, Bronstein JM. Studying the pathophysiology of Parkinson’s disease using zebrafish. Biomedicines 2020; 8(7): 197.
[http://dx.doi.org/10.3390/biomedicines8070197] [PMID: 32645821]
[34]
Seegobin SP, Heaton GR, Liang D, et al. Progress in LRRK2-associated Parkinson’s disease animal models. Front Neurosci 2020; 14: 674.
[http://dx.doi.org/10.3389/fnins.2020.00674] [PMID: 32765209]
[35]
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35(2): 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[36]
Chahardehi AM, Lim V. Herbal bioactive-based nutraceuticals using a metabolomics approachHerbal Bioactive-Based Drug Delivery Systems. Academic Press 2022; pp. 227-58.
[http://dx.doi.org/10.1016/B978-0-12-824385-5.00004-2]
[37]
Benchoula K, Khatib A, Jaffar A, et al. The promise of zebrafish as a model of metabolic syndrome. Exp Anim 2019; 68(4): 407-16.
[http://dx.doi.org/10.1538/expanim.18-0168] [PMID: 31118344]
[38]
Gao XY, Li K, Jiang LL, et al. Developmental toxicity of auranofin in zebrafish embryos. J Appl Toxicol 2017; 37(5): 602-10.
[http://dx.doi.org/10.1002/jat.3410] [PMID: 27813112]
[39]
Ali S, Champagne DL, Spaink HP, Richardson MK. Zebrafish embryos and larvae: A new generation of disease models and drug screens. Birth Defects Res C Embryo Today 2011; 93(2): 115-33.
[http://dx.doi.org/10.1002/bdrc.20206] [PMID: 21671352]
[40]
Kato T, Kubota M, Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev 2007; 31(6): 832-42.
[http://dx.doi.org/10.1016/j.neubiorev.2007.03.003] [PMID: 17466374]
[41]
Hsu CH, Wen ZH, Lin CS, Chakraborty C. The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 2007; 4(2): 111-20.
[http://dx.doi.org/10.2174/156720207780637234] [PMID: 17504209]
[42]
Rihel J, Ghosh M. ZebrafishDrug Discovery and Evaluation: Pharmacological Assays. Cham: Springer International Publishing 2016; pp. 4071-155.
[http://dx.doi.org/10.1007/978-3-319-05392-9_135]
[43]
Fonseca TRDSL. Zebrafish: a new model of Parkinson’s disease PhD dissertation 2010.
[44]
Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P. α-Synuclein and Parkinson’s disease. FASEB J 2004; 18(6): 617-26.
[http://dx.doi.org/10.1096/fj.03-0338rev] [PMID: 15054084]
[45]
Modarresi Chahardehi A, Hasni A, Lim V, Seeni A. Zebrafish a new development in the pharmaceutical industry for the treatment of anxiety. The 3rd National Conference on Knowledge and Technology of Psychology, Educational Sciences and Sociology of Iran Available from:https://civilica.com/doc/929667/
[46]
Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: A systematic review. Front Neurol 2018; 9: 347.
[http://dx.doi.org/10.3389/fneur.2018.00347] [PMID: 29910763]
[47]
Tierney KB. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta Mol Basis Dis 2011; 1812(3): 381-9.
[http://dx.doi.org/10.1016/j.bbadis.2010.10.011] [PMID: 21035547]
[48]
Wulliman MF, Rupp B, Reichert H. Neuroanatomy of the Zebrafish Brain: A Topological Atlas. Birkhäuser 2012; 151.
[http://dx.doi.org/10.1007/978-3-0348-8979-7]
[49]
Kalueff AV, Cachat JM, Eds. Zebrafish models in neurobehavioral research. New York, NY: Humana Press 2011.
[http://dx.doi.org/10.1007/978-1-60761-922-2]
[50]
Modarresi Chahardehi A, Arsad H, Lim V. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants 2020; 9(10): 1345.
[http://dx.doi.org/10.3390/plants9101345] [PMID: 33053800]
[51]
Zeng XS, Geng WS, Jia JJ. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN neuro 2018; 10: p. 1759091418777438.
[http://dx.doi.org/10.1177/1759091418777438] [PMID: 29809058]
[52]
Halili JFA, Quilang JP. The zebrafish embryo toxicity and teratogenicity assay. Philippine Biota 2011; 44: 63-71.
[53]
Cheng RK, Jesuthasan S, Penney TB. Time for Zebrafish. Front Integr Nuerosci 2011; 5: 40.
[http://dx.doi.org/10.3389/fnint.2011.00040] [PMID: 21887133]
[54]
Mercado G, Valdés P, Hetz C. An ercentric view of Parkinson’s disease. Trends Mol Med 2013; 19(3): 165-75.
[http://dx.doi.org/10.1016/j.molmed.2012.12.005] [PMID: 23352769]
[55]
Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M. Oxidative stress and Parkinson’s disease: New hopes in treatment with herbal antioxidants. Curr Pharm Des 2015; 22(2): 238-46.
[http://dx.doi.org/10.2174/1381612822666151112151653] [PMID: 26561062]
[56]
Gerlach M, Riederer P. Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. J Neural Transm 1996; 103(8-9): 987-1041.
[http://dx.doi.org/10.1007/BF01291788] [PMID: 9013391]
[57]
Nellore J, Pauline C, Amarnath K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental Parkinsonism in zebrafish. J Neurodegener Dis 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/972391] [PMID: 26317003]
[58]
Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson’s disease. Am J Transl Res 2015; 7(7): 1189-202.
[PMID: 26328004]
[59]
Brundin P, Li JY, Holton JL, Lindvall O, Revesz T. Research in motion: The enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci 2008; 9(10): 741-5.
[http://dx.doi.org/10.1038/nrn2477] [PMID: 18769444]
[60]
Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol 2002; 2(3): 120-3.
[http://dx.doi.org/10.1155/S1110724302203010] [PMID: 12488575]
[61]
Killinger BA, Melki R, Brundin P, Kordower JH. Endogenous alpha-synuclein monomers, oligomers and resulting pathology: Let’s talk about the lipids in the room. NPJ Parkinsons Dis 2019; 5(1): 23.
[http://dx.doi.org/10.1038/s41531-019-0095-3] [PMID: 31728405]
[62]
Anichtchik O, Diekmann H, Fleming A, Roach A, Goldsmith P, Rubinsztein DC. Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 2008; 28(33): 8199-207.
[http://dx.doi.org/10.1523/JNEUROSCI.0979-08.2008] [PMID: 18701682]
[63]
Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis 2019; 6(2): 120-8.
[http://dx.doi.org/10.1016/j.gendis.2019.01.004] [PMID: 31193965]
[64]
Mazzoni P, Shabbott B, Cortés JC. Motor control abnormalities in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(6): a009282.
[http://dx.doi.org/10.1101/cshperspect.a009282] [PMID: 22675667]
[65]
Hirsch EC. Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Mol Neurobiol 1994; 9(1-3): 135-42.
[http://dx.doi.org/10.1007/BF02816113] [PMID: 7888089]
[66]
Beal MF. Mitochondria and neurodegeneration. Novartis Found Symp 2007; 287: 183-92.
[PMID: 18074639]
[67]
Gaba A. Recent studies on nutrition and Parkinson’s disease prevention: A systematic review. Open J Prev Med 2015; 5(5): 197-205.
[http://dx.doi.org/10.4236/ojpm.2015.55023]
[68]
Kang KS, Yamabe N, Wen Y, Fukui M, Zhu BT. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain Res 2013; 1497: 1-14.
[http://dx.doi.org/10.1016/j.brainres.2012.11.043] [PMID: 23206800]
[69]
Cowie AM, Sarty KI, Mercer A, Koh J, Kidd KA, Martyniuk CJ. Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system. J Proteomics 2017; 157: 71-82.
[http://dx.doi.org/10.1016/j.jprot.2017.02.003] [PMID: 28192238]
[70]
Feng CW, Wen ZH, Huang SY, et al. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 2014; 11(3): 227-39.
[http://dx.doi.org/10.1089/zeb.2013.0950] [PMID: 24720843]
[71]
Ungerstedt U, Ljungberg T, Steg G. Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv Neurol 1974; 5: 421-6.
[PMID: 4531217]
[72]
Nellore JPN. Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol Rep 2015; 2: 950-6.
[http://dx.doi.org/10.1016/j.toxrep.2015.06.007] [PMID: 28962434]
[73]
Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ. Parkinson’s disease: A rethink of rodent models. Exp Brain Res 2006; 173(2): 196-204.
[http://dx.doi.org/10.1007/s00221-006-0461-3] [PMID: 16639500]
[74]
Cao F, Souders CL II, Li P, et al. Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf 2019; 170: 227-37.
[http://dx.doi.org/10.1016/j.ecoenv.2018.11.110] [PMID: 30529917]
[75]
Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease. J Neurosci 2000; 20(24): 9207-14.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09207.2000] [PMID: 11124998]
[76]
Melo KM, Oliveira R, Grisolia CK, et al. Short-term exposure to low doses of rotenone induces developmental, biochemical, behavioral, and histological changes in fish. Environ Sci Pollut Res Int 2015; 22(18): 13926-38.
[http://dx.doi.org/10.1007/s11356-015-4596-2] [PMID: 25948382]
[77]
Sarath Babu N, Murthy CLN, Kakara S, Sharma R, Brahmendra Swamy CV, Idris MM. 1-Methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine induced Parkinson’s disease in zebrafish. Proteomics 2016; 16(9): 1407-20.
[http://dx.doi.org/10.1002/pmic.201500291] [PMID: 26959078]
[78]
Kanavouras K, Tzatzarakis MN, Mastorodemos V, Plaitakis A, Tsatsakis AM. A case report of motor neuron disease in a patient showing significant level of DDTs, HCHs and organophosphate metabolites in hair as well as levels of hexane and toluene in blood. Toxicol Appl Pharmacol 2011; 256(3): 399-404.
[http://dx.doi.org/10.1016/j.taap.2011.07.022] [PMID: 21851830]
[79]
Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 2004; 26(6): 857-64.
[http://dx.doi.org/10.1016/j.ntt.2004.06.014] [PMID: 15451049]
[80]
Panula P, Sallinen V, Sundvik M, et al. Modulatory neurotransmitter systems and behavior: Towards zebrafish models of neurodegenerative diseases. Zebrafish 2006; 3(2): 235-47.
[http://dx.doi.org/10.1089/zeb.2006.3.235] [PMID: 18248264]
[81]
Pathan SR, Ansari I. Studies on sensitivty of zebrafish as a model for parkinson’s disease: comparison with mice model. Asian J Pharm Clin Res 2018; 11(11): 162-8.
[82]
Lu XL, Lin YH, Wu Q, et al. Paeonolum protects against MPP+-induced neurotoxicity in zebrafish and PC12 cells. BMC Complement Altern Med 2015; 15(1): 137.
[http://dx.doi.org/10.1186/s12906-015-0661-0] [PMID: 25925762]
[83]
Zhang ZJ, Cheang LCV, Wang MW, et al. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitroand dopaminergic neurons in zebrafish. Cell Mol Neurobiol 2012; 32(1): 27-40.
[http://dx.doi.org/10.1007/s10571-011-9731-0] [PMID: 21744117]
[84]
Jayanth A, Talkad MS. Neuroprotective activity of Stachytrapheta indica on rotenone induced Parkinson’s disease in zebrafish. World J Pharm Pharm Sci 2014; 3(7): 940-55.
[85]
Campos HC, da Rocha MD, Viegas FP, et al. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders I: Parkinson’s disease. CNS Neurol Disord Drug Targets 2011; 10(2): 239-50.
[http://dx.doi.org/10.2174/187152711794480483] [PMID: 20874702]
[86]
Hu Z, Zou T, Tang X, Huang Z, Xu N. The Pael-R gene does not mediate the changes in rotenone-induced Parkinson′s disease model cells. Neural Regen Res 2014; 9(4): 402-6.
[http://dx.doi.org/10.4103/1673-5374.128245] [PMID: 25206827]
[87]
Xia J, Niu C, Pei X. Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). J Environ Sci 2010; 22(9): 1435-40.
[http://dx.doi.org/10.1016/S1001-0742(09)60272-2] [PMID: 21174976]
[88]
Luo D, Zhang Q, Wang H, et al. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 2009; 617(1-3): 33-40.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.015] [PMID: 19545563]
[89]
Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA. Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 2010; 89(1): 66-77.
[http://dx.doi.org/10.1002/bdrb.20223] [PMID: 20166227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy