Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Blood-brain Barrier and Neurovascular Unit Dysfunction in Parkinson's Disease: From Clinical Insights to Pathogenic Mechanisms and Novel Therapeutic Approaches

Author(s): Sarah Lei Qi Khor, Khuen Yen Ng, Rhun Yian Koh and Soi Moi Chye*

Volume 23, Issue 3, 2024

Published on: 05 May, 2023

Page: [315 - 330] Pages: 16

DOI: 10.2174/1871527322666230330093829

Price: $65

Abstract

The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier’s foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson’s disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.

Graphical Abstract

[1]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[2]
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: Implications for drug therapy. Cell Transplant 2007; 16(3): 285-99.
[http://dx.doi.org/10.3727/000000007783464731] [PMID: 17503739]
[3]
Bogale TA, Faustini G, Longhena F, Mitola S, Pizzi M, Bellucci A. Alpha-synuclein in the regulation of brain endothelial and perivascular cells: Gaps and future perspectives. Front Immunol 2021; 12(2): 611761.
[http://dx.doi.org/10.3389/fimmu.2021.611761] [PMID: 33679750]
[4]
Braak H, Bohl JR, Müller CM, Rüb U, de Vos RAI, Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 2006; 21(12): 2042-51.
[http://dx.doi.org/10.1002/mds.21065] [PMID: 17078043]
[5]
Giguère N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol 2018; 9: 455.
[http://dx.doi.org/10.3389/fneur.2018.00455] [PMID: 29971039]
[6]
Seppi K, Ray Chaudhuri K, Coelho M, et al. the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence‐based medicine review. Mov Disord 2019; 34(2): 180-98.
[http://dx.doi.org/10.1002/mds.27602] [PMID: 30653247]
[7]
Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis 2019; 6(2): 120-8.
[http://dx.doi.org/10.1016/j.gendis.2019.01.004] [PMID: 31193965]
[8]
Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2020; 91(8): 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[9]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[10]
Banks WA. The blood–brain barrier as an endocrine tissue. Nat Rev Endocrinol 2019; 15(8): 444-55.
[http://dx.doi.org/10.1038/s41574-019-0213-7] [PMID: 31127254]
[11]
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72(5): 648-72.
[http://dx.doi.org/10.1002/ana.23648] [PMID: 23280789]
[12]
Lee H, Pienaar IS. Disruption of the blood-brain barrier in parkinson’s disease: Curse or route to a cure. Front Biosci 2014; 19(2): 272-80.
[http://dx.doi.org/10.2741/4206] [PMID: 24389183]
[13]
Grammas P, Martinez J, Miller B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med 2011; 13: e19.
[http://dx.doi.org/10.1017/S1462399411001918] [PMID: 21676288]
[14]
Erdő F, Denes L, de Lange E. Age-associated physiological and pathological changes at the blood–brain barrier: A review. J Cereb Blood Flow Metab 2017; 37(1): 4-24.
[http://dx.doi.org/10.1177/0271678X16679420] [PMID: 27837191]
[15]
Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977; 1(5): 409-17.
[http://dx.doi.org/10.1002/ana.410010502] [PMID: 617259]
[16]
Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: A developmental study. J Physiol 1990; 429(1): 47-62.
[http://dx.doi.org/10.1113/jphysiol.1990.sp018243] [PMID: 2277354]
[17]
Jetté L, Têtu B, Béliveau R. High levels of P-glycoprotein detected in isolated brain capillaries. Biochim Biophys Acta Biomembr 1993; 1150(2): 147-54.
[http://dx.doi.org/10.1016/0005-2736(93)90083-C] [PMID: 8102251]
[18]
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14(11): 1398-405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[19]
Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood–brain barrier. Nature 2010; 468(7323): 557-61.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[20]
Cabezas R, Ávila M, Gonzalez J, et al. Astrocytic modulation of blood brain barrier: Perspectives on Parkinson’s disease. Front Cell Neurosci 2014; 8(8): 211.
[http://dx.doi.org/10.3389/fncel.2014.00211] [PMID: 25136294]
[21]
Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol 2011; 55(3): 261-8.
[http://dx.doi.org/10.1387/ijdb.103167dr] [PMID: 21710434]
[22]
Paul G, Özen I, Christophersen NS, et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE 2012; 7(4): e35577.
[http://dx.doi.org/10.1371/journal.pone.0035577]
[23]
Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci 2017; 11: 224.
[http://dx.doi.org/10.3389/fnins.2017.00224] [PMID: 28484368]
[24]
Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323: 170-82.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.007] [PMID: 25595973]
[25]
Tien AC, Tsai HH, Molofsky AV, et al. Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 2012; 139(14): 2477-87.
[http://dx.doi.org/10.1242/dev.077214] [PMID: 22675209]
[26]
Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 2010; 116(5): 829-40.
[http://dx.doi.org/10.1182/blood-2009-12-257832] [PMID: 20404134]
[27]
Haruwaka K, Ikegami A, Tachibana Y, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 2019; 10(1): 5816.
[http://dx.doi.org/10.1038/s41467-019-13812-z] [PMID: 31862977]
[28]
Astradsson A, Jenkins BG, Choi JK, et al. The blood–brain barrier is intact after levodopa-induced dyskinesias in parkinsonian primates-Evidence from in vivo neuroimaging studies. Neurobiol Dis 2009; 35(3): 348-51.
[http://dx.doi.org/10.1016/j.nbd.2009.05.018] [PMID: 19501164]
[29]
Kortekaas R, Leenders KL, van Oostrom JCH, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005; 57(2): 176-9.
[http://dx.doi.org/10.1002/ana.20369] [PMID: 15668963]
[30]
Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci 2011; 108(10): 4194-9.
[http://dx.doi.org/10.1073/pnas.1100976108] [PMID: 21325059]
[31]
Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 2003; 37(4): 583-95.
[http://dx.doi.org/10.1016/S0896-6273(03)00024-2] [PMID: 12597857]
[32]
Paleologou KE, Kragh CL, Mann DMA, et al. Detection of elevated levels of soluble α-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 2009; 132(Pt 4): 1093-101.
[PMID: 19155272]
[33]
Jangula A, Murphy EJ. Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci Lett 2013; 551: 23-7.
[http://dx.doi.org/10.1016/j.neulet.2013.06.058] [PMID: 23876253]
[34]
Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood–brain barrier. Peptides 2014; 62: 197-202.
[http://dx.doi.org/10.1016/j.peptides.2014.09.018] [PMID: 25278492]
[35]
Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A. The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy. Neural Plast 2017; 2017: 1-15.
[http://dx.doi.org/10.1155/2017/5012129] [PMID: 28133550]
[36]
Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008; 283(14): 9089-100.
[http://dx.doi.org/10.1074/jbc.M710012200] [PMID: 18245082]
[37]
Lagrange P, Romero IA, Minn A, Revest PA. Transendothelial permeability changes induced by free radicals in an in vitromodel of the blood-brain barrier. Free Radic Biol Med 1999; 27(5-6): 667-72.
[http://dx.doi.org/10.1016/S0891-5849(99)00112-4] [PMID: 10490287]
[38]
Gaillard P, de Boer AB, Breimer DD. Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood-brain barrier in vitro. Microvasc Res 2003; 65(1): 24-31.
[http://dx.doi.org/10.1016/S0026-2862(02)00009-2] [PMID: 12535868]
[39]
Kim GW, Gasche Y, Grzeschik S, Copin JC, Maier CM, Chan PH. Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: Role of matrix metalloproteinase-9 in early blood-brain barrier disruption. J Neurosci 2003; 23(25): 8733-42.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08733.2003] [PMID: 14507973]
[40]
Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 2003; 106(6): 518-26.
[http://dx.doi.org/10.1007/s00401-003-0766-2] [PMID: 14513261]
[41]
Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1β IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(1): 13-6.
[http://dx.doi.org/10.1016/0304-3940(96)12706-3] [PMID: 8809836]
[42]
Pajares M. I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells 2020; 9(7): 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[43]
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 2008; 29(11): 1690-701.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.006] [PMID: 17537546]
[44]
Zhang W, Wang T, Pei Z, et al. Aggregated α‐synuclein activates microglia: A process leading to disease progression in Parkinson’s disease. FASEB J 2005; 19(6): 533-42.
[http://dx.doi.org/10.1096/fj.04-2751com] [PMID: 15791003]
[45]
Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 2000; 123(4): 698-709.
[http://dx.doi.org/10.1093/brain/123.4.698] [PMID: 10734001]
[46]
Silwedel C, Förster C. Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. J Neuroimmunol 2006; 179(1-2): 37-45.
[http://dx.doi.org/10.1016/j.jneuroim.2006.06.019] [PMID: 16884785]
[47]
Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 2004; 190(2): 446-55.
[http://dx.doi.org/10.1016/j.expneurol.2004.08.008] [PMID: 15530883]
[48]
Hartz AMS, Bauer B, Fricker G, Miller DS. Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-α and lipopolysaccharide. Mol Pharmacol 2006; 69(2): 462-70.
[http://dx.doi.org/10.1124/mol.105.017954] [PMID: 16278373]
[49]
Bartels AL. Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr Pharm Des 2011; 17(26): 2771-7.
[http://dx.doi.org/10.2174/138161211797440122] [PMID: 21831040]
[50]
Schinkel AH, Smit JJM, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77(4): 491-502.
[http://dx.doi.org/10.1016/0092-8674(94)90212-7] [PMID: 7910522]
[51]
Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 2012; 119(1): 59-71.
[http://dx.doi.org/10.1007/s00702-011-0684-8] [PMID: 21748523]
[52]
Faucheux BA, Agid Y, Hirsch EC, Bonnet A-M. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 1999; 353(9157): 981-2.
[http://dx.doi.org/10.1016/S0140-6736(99)00641-8] [PMID: 10459912]
[53]
Barcia C, Bautista V, Sánchez-Bahillo Á, et al. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 2005; 112(9): 1237-48.
[http://dx.doi.org/10.1007/s00702-004-0256-2] [PMID: 15666038]
[54]
Rite I, Machado A, Cano J, Venero JL. Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007; 101(6): 1567-82.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04567.x] [PMID: 17437543]
[55]
VanGilder RL, Rosen CL, Barr TL, Huber JD. Targeting the neurovascular unit for treatment of neurological disorders. Pharmacol Ther 2011; 130(3): 239-47.
[http://dx.doi.org/10.1016/j.pharmthera.2010.12.004] [PMID: 21172386]
[56]
Baloyannis SJ, Baloyannis IS. The vascular factor in Alzheimer’s disease: A study in Golgi technique and electron microscopy. J Neurol Sci 2012; 322(1-2): 117-21.
[http://dx.doi.org/10.1016/j.jns.2012.07.010] [PMID: 22857991]
[57]
Farkas E, De Jong GI, de Vos RAI, Jansen Steur ENH, Luiten PGM. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol 2000; 100(4): 395-402.
[http://dx.doi.org/10.1007/s004010000195] [PMID: 10985698]
[58]
Dieriks BV, Park TIH, Fourie C, Faull RLM, Dragunow M, Curtis MA. α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci Rep 2017; 7(1): 42984.
[http://dx.doi.org/10.1038/srep42984] [PMID: 28230073]
[59]
Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res 2019; 124: 61-6.
[http://dx.doi.org/10.1016/j.mvr.2019.03.005] [PMID: 30885616]
[60]
Elabi O, Gaceb A, Carlsson R, et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep 2021; 11(1): 1120.
[http://dx.doi.org/10.1038/s41598-020-80889-8] [PMID: 33441868]
[61]
Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015; 35(5): 747-50.
[http://dx.doi.org/10.1038/jcbfm.2015.32] [PMID: 25757748]
[62]
Gaceb A, Özen I, Padel T, Barbariga M, Paul G. Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB. J Cereb Blood Flow Metab 2018; 38(1): 45-57.
[http://dx.doi.org/10.1177/0271678X17719645] [PMID: 28741407]
[63]
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013; 61(12): 1939-58.
[http://dx.doi.org/10.1002/glia.22575] [PMID: 24123158]
[64]
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: The dual role of reactive astrocytes. Antioxidants 2019; 8(8): 265.
[http://dx.doi.org/10.3390/antiox8080265] [PMID: 31374936]
[65]
Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012; 32(18): 6391-410.
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[66]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[67]
MCNaught KSP Jenner P. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 1999; 73(6): 2469-76.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0732469.x] [PMID: 10582607]
[68]
Herrera AJ, Castaño A, Venero JL, Cano J, Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000; 7(4): 429-47.
[http://dx.doi.org/10.1006/nbdi.2000.0289] [PMID: 10964613]
[69]
Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. J Neurosci 1999; 19(9): 3440-7.
[http://dx.doi.org/10.1523/JNEUROSCI.19-09-03440.1999] [PMID: 10212304]
[70]
Vila M, Jackson-Lewis V, Guégan C, et al. The role of glial cells in Parkinsonʼs disease. Curr Opin Neurol 2001; 14(4): 483-9.
[http://dx.doi.org/10.1097/00019052-200108000-00009] [PMID: 11470965]
[71]
Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 2003; 991(1): 214-28.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07478.x] [PMID: 12846989]
[72]
Braidy N, Gai WP, Xu YH, et al. Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener 2013; 2(1): 20.
[http://dx.doi.org/10.1186/2047-9158-2-20] [PMID: 24093918]
[73]
Cavaliere F, Cerf L, Dehay B, et al. In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol Dis 2017; 103: 101-12.
[http://dx.doi.org/10.1016/j.nbd.2017.04.011] [PMID: 28411117]
[74]
Koob AO, Paulino AD, Masliah E. GFAP reactivity, apolipoprotein E redistribution and cholesterol reduction in human astrocytes treated with α-synuclein. Neurosci Lett 2010; 469(1): 11-4.
[http://dx.doi.org/10.1016/j.neulet.2009.11.034] [PMID: 19932737]
[75]
Lindström V, Gustafsson G, Sanders LH, et al. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017; 82: 143-56.
[http://dx.doi.org/10.1016/j.mcn.2017.04.009] [PMID: 28450268]
[76]
Rostami J, Holmqvist S, Lindström V, et al. Human astrocytes transfer aggregated alpha-synuclein viatunneling nanotubes. J Neurosci 2017; 37(49): 11835-53.
[http://dx.doi.org/10.1523/JNEUROSCI.0983-17.2017] [PMID: 29089438]
[77]
Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T α-synuclein causes neurodegeneration in mice. Mol Brain 2010; 3(1): 12.
[http://dx.doi.org/10.1186/1756-6606-3-12] [PMID: 20409326]
[78]
Lan G, Wang P, Chan RB, et al. Astrocytic VEGFA: An essential mediator in blood–brain‐barrier disruption in Parkinson’s disease. Glia 2022; 70(2): 337-53.
[http://dx.doi.org/10.1002/glia.24109] [PMID: 34713920]
[79]
Béraud D, Hathaway HA, Trecki J, et al. Microglial activation and antioxidant responses induced by the Parkinson’s disease protein α-synuclein. J Neuroimmune Pharmacol 2013; 8(1): 94-117.
[http://dx.doi.org/10.1007/s11481-012-9401-0] [PMID: 23054368]
[80]
Ruan Z, Zhang D, Huang R, et al. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int J Mol Sci 2022; 23(5): 2793.
[http://dx.doi.org/10.3390/ijms23052793] [PMID: 35269933]
[81]
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS One 2014; 9(10): e110024.
[http://dx.doi.org/10.1371/journal.pone.0110024]
[82]
Allen C, Thornton P, Denes A, et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol 2012; 189(1): 381-92.
[http://dx.doi.org/10.4049/jimmunol.1200409] [PMID: 22661091]
[83]
Sumi N, Nishioku T, Takata F, et al. Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 2010; 30(2): 247-53.
[http://dx.doi.org/10.1007/s10571-009-9446-7] [PMID: 19728078]
[84]
Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Wenning GK. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol 2011; 179(2): 954-63.
[http://dx.doi.org/10.1016/j.ajpath.2011.04.013] [PMID: 21801874]
[85]
Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: Pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 2011; 8(1): 8.
[http://dx.doi.org/10.1186/2045-8118-8-8] [PMID: 21349156]
[86]
Kim JH, Kim JH, Yu YS, Kim DH, Kim KW. Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res 2009; 87(3): 653-9.
[http://dx.doi.org/10.1002/jnr.21884] [PMID: 18816791]
[87]
Mándi Y, Ocsovszki I, Szabo D, Nagy Z, Nelson J, Molnar J. Nitric oxide production and MDR expression by human brain endothelial cells. Anticancer Res 1998; 18(4C): 3049-52.
[PMID: 9713508]
[88]
Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav Immun 2006; 20(5): 449-55.
[http://dx.doi.org/10.1016/j.bbi.2005.10.005] [PMID: 16309883]
[89]
Reyes TM, Fabry Z, Coe CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999; 851(1-2): 215-20.
[http://dx.doi.org/10.1016/S0006-8993(99)02189-7] [PMID: 10642846]
[90]
McGuire TR, Trickler WJ, Hock L, Vrana A, Hoie EB, Miller DW. Release of prostaglandin E-2 in bovine brain endothelial cells after exposure to three unique forms of the antifungal drug amphotericin-B: Role of COX-2 in amphotericin-B induced fever. Life Sci 2003; 72(23): 2581-90.
[http://dx.doi.org/10.1016/S0024-3205(03)00172-3] [PMID: 12672504]
[91]
Kis B, Kaiya H, Nishi R, et al. Cerebral endothelial cells are a major source of adrenomedullin. J Neuroendocrinol 2002; 14(4): 283-93.
[http://dx.doi.org/10.1046/j.1365-2826.2002.00778.x] [PMID: 11963825]
[92]
Banks WA, Kovac A, Morofuji Y. Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J Cereb Blood Flow Metab 2018; 38(6): 1104-18.
[http://dx.doi.org/10.1177/0271678X17740793] [PMID: 29106322]
[93]
Benarroch EE. Nitric oxide: A pleiotropic signal in the nervous system. Neurology 2011; 77(16): 1568-76.
[http://dx.doi.org/10.1212/WNL.0b013e318233b3e4] [PMID: 22006889]
[94]
Zhang L, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson’s disease. Pharmacol Ther 2006; 109(1-2): 33-41.
[http://dx.doi.org/10.1016/j.pharmthera.2005.05.007] [PMID: 16005074]
[95]
Beal MF. M. Flint Beal. Excitotoxicity and nitric oxide in parkinson’s disease pathogenesis. Ann Neurol 1998; 44(S1): S110-4.
[http://dx.doi.org/10.1002/ana.410440716] [PMID: 9749581]
[96]
Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008; 33(12): 2416-26.
[http://dx.doi.org/10.1007/s11064-008-9697-6] [PMID: 18415676]
[97]
Chung KKK, Thomas B, Li X, et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 2004; 304(5675): 1328-31.
[http://dx.doi.org/10.1126/science.1093891] [PMID: 15105460]
[98]
Farzi A, Fröhlich EE, Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 2018; 15(1): 5-22.
[http://dx.doi.org/10.1007/s13311-017-0600-5] [PMID: 29380303]
[99]
Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[100]
Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759]
[101]
Mulak A. An overview of the neuroendocrine system in Parkinson’s disease: What is the impact on diagnosis and treatment. Expert Rev Neurother 2020; 20(2): 127-35.
[http://dx.doi.org/10.1080/14737175.2020.1701437] [PMID: 31829756]
[102]
Fasano A, Bove F, Gabrielli M, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 2013; 28(9): 1241-9.
[http://dx.doi.org/10.1002/mds.25522] [PMID: 23712625]
[103]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[104]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[105]
Devos D, Lebouvier T, Lardeux B, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis 2013; 50: 42-8.
[http://dx.doi.org/10.1016/j.nbd.2012.09.007] [PMID: 23017648]
[106]
Olanow CW, Wakeman DR, Kordower JH. Peripheral alpha-synuclein and Parkinson’s disease. Mov Disord 2014; 29(8): 963-6.
[http://dx.doi.org/10.1002/mds.25966] [PMID: 25043799]
[107]
Jurado-Coronel JC, Cabezas R, Ávila Rodríguez MF, Echeverria V, García-Segura LM, Barreto GE. Sex differences in Parkinson’s disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 2018; 50: 18-30.
[http://dx.doi.org/10.1016/j.yfrne.2017.09.002] [PMID: 28974386]
[108]
Baldereschi M, Di Carlo A, Rocca WA, et al. ILSA Working Group Italian Longitudinal Study on Aging. Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. Neurology 2000; 55(9): 1358-63.
[http://dx.doi.org/10.1212/WNL.55.9.1358] [PMID: 11087781]
[109]
Haaxma CA, Bloem BR, Borm GF, et al. Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78(8): 819-24.
[http://dx.doi.org/10.1136/jnnp.2006.103788] [PMID: 17098842]
[110]
Alves G, Müller B, Herlofson K, et al. Norwegian ParkWest study group. Incidence of Parkinson’s disease in Norway: The Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 2009; 80(8): 851-7.
[http://dx.doi.org/10.1136/jnnp.2008.168211] [PMID: 19246476]
[111]
Cereda E, Barichella M, Cassani E, Caccialanza R, Pezzoli G. Reproductive factors and clinical features of Parkinson’s disease. Parkinsonism Relat Disord 2013; 19(12): 1094-9.
[http://dx.doi.org/10.1016/j.parkreldis.2013.07.020] [PMID: 23931933]
[112]
Ragonese P, D’Amelio M, Callari G, Salemi G, Morgante L, Savettieri G. Age at menopause predicts age at onset of Parkinson’s disease. Mov Disord 2006; 21(12): 2211-4.
[http://dx.doi.org/10.1002/mds.21127] [PMID: 17029261]
[113]
Benedetti MD, Maraganore DM, Bower JH, et al. Hysterectomy, menopause, and estrogen use preceding Parkinson’s disease: An exploratory case-control study. Mov Disord 2001; 16(5): 830-7.
[http://dx.doi.org/10.1002/mds.1170] [PMID: 11746612]
[114]
Lee YH, Cha J, Chung SJ, et al. Beneficial effect of estrogen on nigrostriatal dopaminergic neurons in drug-naïve postmenopausal Parkinson’s disease. Sci Rep 2019; 9(1): 10531.
[http://dx.doi.org/10.1038/s41598-019-47026-6] [PMID: 31324895]
[115]
Chen YH, Wang V, Huang EYK, et al. Delayed dopamine dysfunction and motor deficits in female Parkinson model mice. Int J Mol Sci 2019; 20(24): 6251.
[http://dx.doi.org/10.3390/ijms20246251] [PMID: 31835787]
[116]
Weber CM, Clyne AM. Sex differences in the blood–brain barrier and neurodegenerative diseases. APL Bioeng 2021; 5(1): 011509.
[http://dx.doi.org/10.1063/5.0035610] [PMID: 33758788]
[117]
Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 2008; 29(4): 507-19.
[http://dx.doi.org/10.1016/j.yfrne.2008.04.001] [PMID: 18522863]
[118]
Lang TJ. Estrogen as an immunomodulator. Clin Immunol 2004; 113(3): 224-30.
[http://dx.doi.org/10.1016/j.clim.2004.05.011] [PMID: 15507385]
[119]
Purvis GSD, Solito E, Thiemermann C. Annexin-A1: Therapeutic potential in microvascular disease. Front Immunol 2019; 10: 938.
[http://dx.doi.org/10.3389/fimmu.2019.00938] [PMID: 31114582]
[120]
Maggioli E, McArthur S, Mauro C, et al. Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51: 212-22.
[http://dx.doi.org/10.1016/j.bbi.2015.08.020] [PMID: 26321046]
[121]
Haarmann A, Nowak E, Deiß A, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity viaintegrin α-4-transduced outside-in signalling. Acta Neuropathol 2015; 129(5): 639-52.
[http://dx.doi.org/10.1007/s00401-015-1417-0] [PMID: 25814153]
[122]
Hou X, Pei F. Estradiol inhibits cytokine-induced expression of VCAM-1 and ICAM-1 in cultured human endothelial cells via AMPK/PPARα activation. Cell Biochem Biophys 2015; 72(3): 709-17.
[http://dx.doi.org/10.1007/s12013-015-0522-y] [PMID: 25627546]
[123]
Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson’s disease. Neurobiol Dis 2013; 58: 209-19.
[http://dx.doi.org/10.1016/j.nbd.2013.06.004] [PMID: 23774254]
[124]
Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV. Potential role of MCP-1 in endothelial cell tight junction ‘opening’: Signaling via Rho and Rho kinase. J Cell Sci 2003; 116(22): 4615-28.
[http://dx.doi.org/10.1242/jcs.00755] [PMID: 14576355]
[125]
Amerongen GPN, Delft S, Vermeer MA, Collard JG, van Hinsbergh VWM. Activation of RhoA by thrombin in endothelial hyperpermeability: Role of Rho kinase and protein tyrosine kinases. Circ Res 2000; 87(4): 335-40.
[http://dx.doi.org/10.1161/01.RES.87.4.335] [PMID: 10948069]
[126]
Feng S, Zou L, Wang H, He R, Liu K, Zhu H. RhoA/ROCK-2 pathway inhibition and tight junction protein upregulation by catalpol suppresses lipopolysaccharide-induced disruption of blood-brain barrier permeability. Molecules 2018; 23(9): 2371.
[http://dx.doi.org/10.3390/molecules23092371] [PMID: 30227623]
[127]
Bourque M, Morissette M, Al Sweidi S, Caruso D, Melcangi RC, Di Paolo T. Neuroprotective effect of progesterone in MPTP-treated male mice. Neuroendocrinology 2016; 103(3-4): 300-14.
[http://dx.doi.org/10.1159/000438789] [PMID: 26227546]
[128]
Litim N, Morissette M, Di Paolo T. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice. Neuropharmacology 2017; 117: 209-18.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.007] [PMID: 28192111]
[129]
Alexaki VI, Fodelianaki G, Neuwirth A, et al. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatry 2018; 23(6): 1410-20.
[http://dx.doi.org/10.1038/mp.2017.167] [PMID: 28894299]
[130]
Fox SH, Katzenschlager R, Lim SY, et al. Movement Disorder Society Evidence-Based Medicine Committee International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2018; 33(8): 1248-66.
[http://dx.doi.org/10.1002/mds.27372] [PMID: 29570866]
[131]
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[132]
Goyal V, Radhakrishnan DM. Parkinson’s disease: A review. Neurol India 2018; 66(7) (Suppl.): 26.
[http://dx.doi.org/10.4103/0028-3886.226451] [PMID: 29503325]
[133]
Lerner RP, Francardo V, Fujita K, et al. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 2017; 7(1): 16005.
[http://dx.doi.org/10.1038/s41598-017-16228-1] [PMID: 29167476]
[134]
Mercuri N, Bernardi G. The ‘magic’ of -dopa: why is it the gold standard Parkinson’s disease therapy. Trends Pharmacol Sci 2005; 26(7): 341-4.
[http://dx.doi.org/10.1016/j.tips.2005.05.002] [PMID: 15936832]
[135]
Hawkins RA, Mokashi A, Simpson IA. An active transport system in the blood–brain barrier may reduce levodopa availability. Exp Neurol 2005; 195(1): 267-71.
[http://dx.doi.org/10.1016/j.expneurol.2005.04.008] [PMID: 15925365]
[136]
Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJL. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: Evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 1994; 62(1): 45-53.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62010045.x] [PMID: 7903354]
[137]
Lindenau J, Noack H, Possel H, Asayama K, Wolf G. Cellular distribution of superoxide dismutases in the rat CNS. Glia 2000; 29(1): 25-34.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<25:AID-GLIA3>3.0.CO;2-G] [PMID: 10594920]
[138]
Siushansian R, Dixon SJ, Wilson JX. Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J Neurochem 1996; 66(3): 1227-33.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66031227.x] [PMID: 8769888]
[139]
Mythri RB, Venkateshappa C, Harish G, et al. Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 2011; 36(8): 1452-63.
[http://dx.doi.org/10.1007/s11064-011-0471-9] [PMID: 21484266]
[140]
Norris EH, Giasson BI, Ischiropoulos H, Lee VMY. Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J Biol Chem 2003; 278(29): 27230-40.
[http://dx.doi.org/10.1074/jbc.M212436200] [PMID: 12857790]
[141]
Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989; 52(2): 515-20.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09150.x] [PMID: 2911028]
[142]
Giordano G, Kavanagh TJ, Costa LG. Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the Poly Brominated Diphenyl Ether (PBDE) mixture DE-71. Neurotoxicology 2009; 30(2): 326-9.
[http://dx.doi.org/10.1016/j.neuro.2008.12.009] [PMID: 19150461]
[143]
Agarwal R, Shukla GS. Potential role of cerebral glutathione in the maintenance of blood-brain barrier integrity in rat. Neurochem Res 1999; 24(12): 1507-14.
[http://dx.doi.org/10.1023/A:1021191729865] [PMID: 10591399]
[144]
Price TO, Eranki V, Banks WA, Ercal N, Shah GN. Topiramate treatment protects blood-brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology 2012; 153(1): 362-72.
[http://dx.doi.org/10.1210/en.2011-1638] [PMID: 22109883]
[145]
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.001] [PMID: 23665395]
[146]
Wang T, Li C, Han B, et al. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complementary Medicine and Therapies 2020; 20(1): 20.
[http://dx.doi.org/10.1186/s12906-019-2738-7] [PMID: 32020857]
[147]
Daneshvar Kakhaki R, Ostadmohammadi V, Kouchaki E, et al. Melatonin supplementation and the effects on clinical and metabolic status in Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Neurol Neurosurg 2020; 195: 105878.
[http://dx.doi.org/10.1016/j.clineuro.2020.105878] [PMID: 32417629]
[148]
Wei Y, Lu M, Mei M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020; 11(1): 941.
[http://dx.doi.org/10.1038/s41467-020-14788-x] [PMID: 32071304]
[149]
Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab 2010; 30(6): 1121-36.
[http://dx.doi.org/10.1038/jcbfm.2009.277] [PMID: 20051973]
[150]
Botella JA, Bayersdorfer F, Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease. Neurobiol Dis 2008; 30(1): 65-73.
[http://dx.doi.org/10.1016/j.nbd.2007.11.013] [PMID: 18243716]
[151]
Kim GW, Lewén A, Copin JC, Watson BD, Chan PH. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 2001; 105(4): 1007-18.
[http://dx.doi.org/10.1016/S0306-4522(01)00237-8] [PMID: 11530238]
[152]
Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 2014; 509(7501): 507-11.
[http://dx.doi.org/10.1038/nature13324] [PMID: 24828040]
[153]
Chow BW, Gu C. Gradual Suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 2017; 93(6): 1325-33.
[http://dx.doi.org/10.1016/j.neuron.2017.02.043] [PMID: 28334606]
[154]
Winkler EA, Bell RD, Zlokovic BV. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 2010; 5(1): 32.
[http://dx.doi.org/10.1186/1750-1326-5-32] [PMID: 20738866]
[155]
Hellström M. Kal n M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126(14): 3047-55.
[http://dx.doi.org/10.1242/dev.126.14.3047] [PMID: 10375497]
[156]
Lebrin F, Srun S, Raymond K, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 2010; 16(4): 420-8.
[http://dx.doi.org/10.1038/nm.2131] [PMID: 20364125]
[157]
Lebrin F, Soussain C, Thalgott J. Use of thalidomide or analogs thereof for preventing neurologic disorders induced by brain irradiation Patent WO2015107196A1, 2015.
[158]
Casu MA, Mocci I, Isola R, et al. Neuroprotection by the immunomodulatory drug pomalidomide in the Drosophila LRRK2WD40 genetic model of Parkinson’s disease. Front Aging Neurosci 2020; 12: 31.
[http://dx.doi.org/10.3389/fnagi.2020.00031] [PMID: 32116655]
[159]
Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One 2013; 8(1): e55375.
[http://dx.doi.org/10.1371/journal.pone.0055375]
[160]
Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 2015; 8(376): ra45-5.
[http://dx.doi.org/10.1126/scisignal.2005965] [PMID: 25969543]
[161]
Sharma N, Nehru B. Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model. Mol Neurobiol 2016; 53(5): 3326-37.
[http://dx.doi.org/10.1007/s12035-015-9267-2] [PMID: 26081143]
[162]
Zhang F, Shi JS, Zhou H, Wilson B, Hong JS, Gao HM. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol 2010; 78(3): 466-77.
[http://dx.doi.org/10.1124/mol.110.064535] [PMID: 20554604]
[163]
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 2013; 4(3): e525-5.
[http://dx.doi.org/10.1038/cddis.2013.54] [PMID: 23470532]
[164]
Valera E, Mante M, Anderson S, Rockenstein E, Masliah E. Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson’s disease. J Neuroinflammat 2015; 12(1): 93.
[http://dx.doi.org/10.1186/s12974-015-0320-x] [PMID: 25966683]
[165]
Liu Z, Ran Y, Huang S, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci 2017; 9: 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[166]
Zhu YL, Sun MF, Jia XB, et al. Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int Immunopharmacol 2019; 66: 19-27.
[http://dx.doi.org/10.1016/j.intimp.2018.11.004] [PMID: 30419450]
[167]
McFarthing K, Rafaloff G, Baptista M, et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 2022 update. J Parkinsons Dis 2022; 12(4): 1073-82.
[http://dx.doi.org/10.3233/JPD-229002] [PMID: 35527571]
[168]
Hong CT, Chan L, Chen KY, et al. Rifaximin modifies gut microbiota and attenuates inflammation in Parkinson’s disease: Preclinical and clinical studies. Cells 2022; 11(21): 3468.
[http://dx.doi.org/10.3390/cells11213468] [PMID: 36359864]
[169]
Kim C, Ojo-Amaize E, Spencer B, et al. Hypoestoxide reduces neuroinflammation and α-synuclein accumulation in a mouse model of Parkinson’s disease. J Neuroinflammation 2015; 12(1): 236.
[http://dx.doi.org/10.1186/s12974-015-0455-9] [PMID: 26683203]
[170]
Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 2009; 202(3): 431-9.
[http://dx.doi.org/10.1677/JOE-09-0132] [PMID: 19570816]
[171]
Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versusplacebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017; 390(10103): 1664-75.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[172]
Malatt C, Wu T, Bresee C, Hogg E, Wertheimer J, Tan E, et al. Liraglutide improves non-motor function and activities of daily living in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial (P9-11.005). Neurology 2022; 98(18) (Suppl.).https://n.neurology.org/content/98/18_Supplement/3068
[173]
Zhang R, Xu S, Cai Y, Zhou M, Zuo X, Chan P. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evid Based Complement Alternat Med 2011; 2011: 1-9.
[http://dx.doi.org/10.1093/ecam/nep075] [PMID: 19617199]
[174]
Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11(8): 2306-25.
[http://dx.doi.org/10.1016/j.apsb.2020.11.023] [PMID: 34522589]
[175]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[176]
Gunay MS, Ozer AY, Chalon S. Drug delivery systems for imaging and therapy of Parkinson’s disease. CN 2016; 14(4): 376-91.
[177]
Mogharbel BF, Cardoso MA, Irioda AC, et al. Biodegradable nanoparticles loaded with levodopa and curcumin for treatment of Parkinson’s disease. Molecules 2022; 27(9): 2811.
[http://dx.doi.org/10.3390/molecules27092811] [PMID: 35566173]
[178]
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[179]
Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 2018; 9(1): 2336.
[180]
Mead BP, Kim N, Miller GW, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett 2017; 17(6): 3533-42.
[http://dx.doi.org/10.1021/acs.nanolett.7b00616] [PMID: 28511006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy