Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neurological Complications Caused by Human Immunodeficiency Virus (HIV) and Associated Opportunistic Co-infections: A Review on their Diagnosis and Therapeutic Insights

Author(s): Sivaraman Balaji, Rohan Chakraborty and Sumit Aggarwal*

Volume 23, Issue 3, 2024

Published on: 15 May, 2023

Page: [284 - 305] Pages: 22

DOI: 10.2174/1871527322666230330083708

Price: $65

Abstract

Neurocognitive disorders associated with human immunodeficiency virus (HIV) infected individuals increase the risk of mortality and morbidity that remain a prevalent clinical complication even in the antiretroviral therapy era. It is estimated that a considerable number of people in the HIV community are developing neurological complications at their early stages of infection. The daily lives of people with chronic HIV infections are greatly affected by cognitive declines such as loss of attention, learning, and executive functions, and other adverse conditions like neuronal injury and dementia. It has been found that the entry of HIV into the brain and subsequently crossing the blood-brain barrier (BBB) causes brain cell damage, which is the prerequisite for the development of neurocognitive disorders. Besides the HIV replication in the central nervous system and the adverse effects of antiretroviral therapy on the BBB, a range of opportunistic infections, including viral, bacterial, and parasitic agents, augment the neurological complications in people living with HIV (PLHIV). Given the immuno-compromised state of PLHIV, these co-infections can present a wide range of clinical syndromes with atypical manifestations that pose challenges in diagnosis and clinical management, representing a substantial burden for the public health system. Therefore, the present review narrates the neurological complications triggered by HIV and their diagnosis and treatment options. Moreover, coinfections that are known to cause neurological disorders in HIV infected individuals are highlighted.

Graphical Abstract

[1]
Kabapy AF, Shatat HZ, Abd El-Wahab EW. Attributes of HIV infection over decades (1982–2018): A systematic review and meta‐analysis. Transbound Emerg Dis 2020; 67(6): 2372-88.
[http://dx.doi.org/10.1111/tbed.13621] [PMID: 32396689]
[2]
[3]
World Health Organization (WHO). HIV/AIDS2021. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids
[4]
Kalichman SC, Ntseane D, Nthomang K, Segwabe M, Phorano O, Simbayi LC. Recent multiple sexual partners and HIV transmission risks among people living with HIV/AIDS in Botswana. Sex Transm Infect 2007; 83(5): 371-5.
[http://dx.doi.org/10.1136/sti.2006.023630] [PMID: 17475684]
[5]
Clatts MC, Goldsamt LA, Giang LM, Yu G. Sexual practices, partner concurrency and high rates of sexually transmissible infections among male sex workers in three cities in Vietnam. Sex Health 2015; 12(1): 39-47.
[http://dx.doi.org/10.1071/SH14101] [PMID: 25622225]
[6]
Bertozzi S, Padian NS, Wegbreit J, et al. HIV/AIDS prevention and treatment. Disease control priorities in developing countries. The International Bank for Reconstruction and Development / The World Bank; 2006. Chapter 182006 2(2): 331-69.https://www.ncbi.nlm.nih.gov/books/NBK11782
[7]
Chenneville T, Gabbidon K, Hanson P, Holyfield C. The Impact of COVID-19 on HIV treatment and research: A call to action. Int J Environ Res Public Health 2020; 17(12): 4548.
[http://dx.doi.org/10.3390/ijerph17124548] [PMID: 32599783]
[8]
Günthard HF, Saag MS, Benson CA, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults. JAMA 2016; 316(2): 191-210.
[http://dx.doi.org/10.1001/jama.2016.8900] [PMID: 27404187]
[9]
Mayer KH, Venkatesh KK. Antiretroviral therapy as HIV prevention: Status and prospects. Am J Public Health 2010; 100(10): 1867-76.
[http://dx.doi.org/10.2105/AJPH.2009.184796] [PMID: 20724682]
[10]
Abuse S. Office of the Surgeon General (US. Early intervention, treatment, and management of substance use disorders. In: Facing Addiction in America: The Surgeon General's Report on Alcohol, Drugs, and Health. US Department of Health and Human Services 2016.
[11]
Spudich SS, Ances BM. Neurologic complications of HIV infection. Top Antivir Med 2012; 20(2): 41-7.
[PMID: 22710906]
[12]
Saylor D, Dickens AM, Sacktor N, et al. HIV-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol 2016; 12(4): 234-48.
[http://dx.doi.org/10.1038/nrneurol.2016.27] [PMID: 26965674]
[13]
Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I. HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J 2015; 17(1): 54-9.
[PMID: 25739180]
[14]
Antinori A, Arendt G, Grant I, et al. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: A consensus report of the mind exchange program. Clin Infect Dis 2013; 56(7): 1004-17.
[http://dx.doi.org/10.1093/cid/cis975] [PMID: 23175555]
[15]
Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis 2013; 13(11): 976-86.
[http://dx.doi.org/10.1016/S1473-3099(13)70269-X] [PMID: 24156898]
[16]
Olivier I, Cacabelos R, Naidoo V. Risk factors and pathogenesis of HIV-associated neurocognitive disorder: The role of host genetics. Int J Mol Sci 2018; 19(11): 3594.
[http://dx.doi.org/10.3390/ijms19113594] [PMID: 30441796]
[17]
Wallet C, De Rovere M, Van Assche J, et al. Microglial cells: The main HIV-1 reservoir in the brain. Front Cell Infect Microbiol 2019; 9: 362.
[http://dx.doi.org/10.3389/fcimb.2019.00362] [PMID: 31709195]
[18]
Kranick SM, Nath A. Neurologic complications of HIV-1 infection and its treatment in the era of antiretroviral therapy. Continuum 2012; 18(6): 1319-37.
[http://dx.doi.org/10.1212/01.CON.0000423849.24900.ec]
[19]
Eggers C, Arendt G, Hahn K, et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 2017; 264(8): 1715-27.
[http://dx.doi.org/10.1007/s00415-017-8503-2] [PMID: 28567537]
[20]
Nightingale S, Winston A, Letendre S, et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 2014; 13(11): 1139-51.
[http://dx.doi.org/10.1016/S1474-4422(14)70137-1] [PMID: 25316020]
[21]
Bandera A, Taramasso L, Bozzi G, et al. HIV-associated neurocognitive impairment in the modern ART era: Are we close to discovering reliable biomarkers in the setting of virological suppression? Front Aging Neurosci 2019; 11: 187.
[http://dx.doi.org/10.3389/fnagi.2019.00187] [PMID: 31427955]
[22]
Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011; 17(1): 3-16.
[http://dx.doi.org/10.1007/s13365-010-0006-1] [PMID: 21174240]
[23]
German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Human Immunodeficiency Virus (HIV). Transfus Med Hemother 2016; 43(3): 203-22.
[http://dx.doi.org/10.1159/000445852] [PMID: 27403093]
[24]
Santoro MM, Perno CF. HIV-1 genetic variability and clinical implications. International Scholarly Research Notices. 2013; 481314.
[http://dx.doi.org/ 10.1155/2013/481314.] [PMID: 23844315]
[25]
Zulfiqar HF, Javed A, Sumbal , et al. HIV diagnosis and treatment through advanced technologies. Front Public Health 2017; 5: 32.
[http://dx.doi.org/10.3389/fpubh.2017.00032] [PMID: 28326304]
[26]
HIV and AIDS Neuroligical complications. https://www.ninds.nih.gov/health-information/disorders/aids-and-hiv-neurological-complicationsNINDS.(Assessed on: 27 July 2021).
[27]
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 2017; 8: 580.
[http://dx.doi.org/10.3389/fimmu.2017.00580]
[28]
Engelman A, Cherepanov P. The structural biology of HIV-1: Mechanistic and therapeutic insights. Nat Rev Microbiol 2012; 10(4): 279-90.
[http://dx.doi.org/10.1038/nrmicro2747] [PMID: 22421880]
[29]
Coffin JM, Hughes SH, Varmus HE. Retroviruses.The Place of Retroviruses in Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 1997.
[30]
Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2012; 2(10): a006882.
[http://dx.doi.org/10.1101/cshperspect.a006882] [PMID: 23028129]
[31]
Klasse PJ. The molecular basis of HIV entry. Cell Microbiol 2012; 14(8): 1183-92.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01812.x] [PMID: 22583677]
[32]
Shaw GM, Hunter E. HIV transmission. Cold Spring Harb Perspect Med 2012; 2(11): a006965.
[http://dx.doi.org/10.1101/cshperspect.a006965] [PMID: 23043157]
[33]
Sant AJ, McMichael A. Revealing the role of CD4+ T cells in viral immunity. J Exp Med 2012; 209(8): 1391-5.
[http://dx.doi.org/10.1084/jem.20121517] [PMID: 22851641]
[34]
Walker B, McMichael A. The T-cell response to HIV. Cold Spring Harb Perspect Med 2012; 2(11): a007054.
[http://dx.doi.org/10.1101/cshperspect.a007054] [PMID: 23002014]
[35]
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): a006866.
[http://dx.doi.org/10.1101/cshperspect.a006866] [PMID: 22908191]
[36]
Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008; 9(3): 301-9.
[http://dx.doi.org/10.1038/ni1566] [PMID: 18264102]
[37]
Geijtenbeek TBH, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100(5): 587-97.
[http://dx.doi.org/10.1016/S0092-8674(00)80694-7] [PMID: 10721995]
[38]
Robey FA, Robert-Guroff M. A defined conformational epitope from the C4 domain of HIV type 1 glycoprotein 120: anti-cyclic C4 antibodies from HIV-positive donors magnify glycoprotein 120 suppression of interleukin 2 produced by T cells. AIDS Res Hum Retroviruses 2001; 17(6): 533-41.
[http://dx.doi.org/10.1089/08892220151126625] [PMID: 11350667]
[39]
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells. Front Microbiol 2016; 7: 110.
[http://dx.doi.org/10.3389/fmicb.2016.00110] [PMID: 26903989]
[40]
Julias JG, Ferris AL, Boyer PL, Hughes SH. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 2001; 75(14): 6537-46.
[http://dx.doi.org/10.1128/JVI.75.14.6537-6546.2001] [PMID: 11413321]
[41]
Purohit V, Roques BP, Kim B, Bambara RA. Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages. J Biol Chem 2007; 282(17): 12598-609.
[http://dx.doi.org/10.1074/jbc.M700043200] [PMID: 17337733]
[42]
Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med 2012; 2(7): a006890.
[http://dx.doi.org/10.1101/cshperspect.a006890] [PMID: 22762018]
[43]
Duensing TD, Fang H, Dorward DW, Pincus SH. Processing of the envelope glycoprotein gp160 in immunotoxin-resistant cell lines chronically infected with human immunodeficiency virus type 1. J Virol 1995; 69(11): 7122-31.
[http://dx.doi.org/10.1128/jvi.69.11.7122-7131.1995] [PMID: 7474132]
[44]
Siegert S, Thaler S, Wagner R, Schnierle BS. Assessment of HIV-1 entry inhibitors by MLV/HIV-1 pseudotyped vectors. AIDS Res Ther 2005; 2(1): 7.
[http://dx.doi.org/10.1186/1742-6405-2-7] [PMID: 16156891]
[45]
Puray-Chavez M, Tedbury PR, Huber AD, et al. Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nat Commun 2017; 8(1): 1882.
[http://dx.doi.org/10.1038/s41467-017-01693-z] [PMID: 29192235]
[46]
Ene L. Human immunodeficiency virus in the brain-Culprit or facilitator? Infect Dis 2018; 11.
[http://dx.doi.org/10.1177/1178633717752687] [PMID: 29467577]
[47]
Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS. J Neurovirol 2015; 21(3): 276-89.
[http://dx.doi.org/10.1007/s13365-014-0287-x] [PMID: 25236812]
[48]
Williams D, Veenstra M, Gaskill P, Morgello S, Calderon T, Berman J. Monocytes mediate HIV neuropathogenesis: Mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res 2014; 12(2): 85-96.
[http://dx.doi.org/10.2174/1570162X12666140526114526] [PMID: 24862333]
[49]
Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005; 111(2): 194-213.
[http://dx.doi.org/10.1016/j.virusres.2005.04.009] [PMID: 15885841]
[50]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1): a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[51]
Osborne O, Peyravian N, Nair M, Daunert S, Toborek M. The paradox of HIV blood–brain barrier penetrance and antiretroviral drug delivery deficiencies. Trends Neurosci 2020; 43(9): 695-708.
[http://dx.doi.org/10.1016/j.tins.2020.06.007] [PMID: 32682564]
[52]
Cilliers T, Nhlapo J, Coetzer M, et al. The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C. J Virol 2003; 77(7): 4449-56.
[http://dx.doi.org/10.1128/JVI.77.7.4449-4456.2003] [PMID: 12634405]
[53]
Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: The role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog 2014; 10(7): e1004146.
[http://dx.doi.org/10.1371/journal.ppat.1004146] [PMID: 25033082]
[54]
Atluri VSR, Hidalgo M, Samikkannu T, et al. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 2015; 9: 212.
[http://dx.doi.org/10.3389/fncel.2015.00212] [PMID: 26113810]
[55]
Louboutin JP, Strayer DS. Blood-brain barrier abnormalities caused by HIV-1 gp120: Mechanistic and therapeutic implications. Scientific World J 2012; 2012: 482575.
[56]
Anesten B, Zetterberg H, Nilsson S, et al. Effect of antiretroviral treatment on blood-brain barrier integrity in HIV-1 infection. BMC Neurol 2021; 21(1): 494.
[http://dx.doi.org/10.1186/s12883-021-02527-8] [PMID: 34937542]
[57]
Rahimy E, Li FY, Hagberg L, et al. Blood-brain barrier disruption is initiated during primary HIV infection and not rapidly altered by antiretroviral therapy. J Infect Dis 2017; 215(7): 1132-40.
[http://dx.doi.org/10.1093/infdis/jix013] [PMID: 28368497]
[58]
András IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003; 74(2): 255-65.
[http://dx.doi.org/10.1002/jnr.10762] [PMID: 14515355]
[59]
Ivey NS, MacLean AG, Lackner AA. Acquired immunodeficiency syndrome and the blood-brain barrier. J Neurovirol 2009; 15(2): 111-22.
[http://dx.doi.org/10.1080/13550280902769764] [PMID: 19306229]
[60]
Spudich S, Gisslen M, Hagberg L, et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 2011; 204(5): 753-60.
[http://dx.doi.org/10.1093/infdis/jir387] [PMID: 21844301]
[61]
Gisslen M, Keating SM, Spudich S, et al. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One 2021; 16(5): e0250987.
[http://dx.doi.org/10.1371/journal.pone.0250987] [PMID: 33983973]
[62]
Pahar B, Kuebler D, Rasmussen T, et al. Quantification of viral RNA and DNA positive cells in tissues from simian immunodeficiency virus/simian human immunodeficiency virus infected controller and progressor rhesus macaques. Front Microbiol 2019; 10: 2933.
[http://dx.doi.org/10.3389/fmicb.2019.02933] [PMID: 31921088]
[63]
Long S, Fennessey CM, Newman L, et al. Evaluating the intactness of persistent viral genomes in simian immunodeficiency virus-infected rhesus macaques after initiating antiretroviral therapy within one year of infection. J Virol 2019; 94(1): e01308-19.
[http://dx.doi.org/10.1128/JVI.01308-19] [PMID: 31597776]
[64]
Robinson-Papp J, Schütz SG. HIV-related neuropathy: current perspectives. HIV AIDS (Auckl) 2013; 5: 243-51.
[http://dx.doi.org/10.2147/HIV.S36674] [PMID: 24049460]
[65]
Daliparty VM, Balasubramanya R. HIV Encephalitis. StatPearls 2021.
[66]
Sánchez-Portocarrero J, Jiménez-Escrig A, Pérez-Cecilia E, et al. AIDS dementia complex: Incidence, clinical profile and impact of zidovudine treatment. Eur J Neurol 1996; 3(3): 191-7.
[http://dx.doi.org/10.1111/j.1468-1331.1996.tb00422.x] [PMID: 21284769]
[67]
Eggleton JS, Nagalli S. Highly Active Antiretroviral Therapy (HAART). StatPearls 2022.
[68]
Zayyad Z, Spudich S. Neuropathogenesis of HIV: From initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 2015; 12(1): 16-24.
[http://dx.doi.org/10.1007/s11904-014-0255-3] [PMID: 25604237]
[69]
Ellis RJ, Chenna A, Petropoulos CJ, et al. Higher cerebrospinal fluid biomarkers of neuronal injury in HIV-associated neurocognitive impairment. J Neurovirol 2022; 28(3): 438-45.
[http://dx.doi.org/10.1007/s13365-022-01081-4] [PMID: 35674935]
[70]
Kumar R. Understanding and managing acute encephalitis. F1000 Res 2020; 9: 60.
[http://dx.doi.org/10.12688/f1000research.20634.1]
[71]
Carmo RL, Alves Simão AK, Amaral LL, et al. Neuroimaging of emergent and reemergent infections. Radiographics 2019; 39(6): 1649-71.
[http://dx.doi.org/10.1148/rg.2019190020]
[72]
Grant I, Franklin DR Jr, Deutsch R, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 2014; 82(23): 2055-62.
[http://dx.doi.org/10.1212/WNL.0000000000000492] [PMID: 24814848]
[73]
Wendelken LA, Jahanshad N, Rosen HJ, et al. ApoE ε4 is associated with cognition, brain integrity and atrophy in HIV over age 60. J Acquir Immune Def Syndr (1999) 2016; 73(4): 426.
[74]
Levine AJ, Service S, Miller EN, et al. Genome-wide association study of neurocognitive impairment and dementia in HIV-infected adults. Am J Med Genet B Neuropsychiatr Genet 2012; 159B(6): 669-83.
[http://dx.doi.org/10.1002/ajmg.b.32071] [PMID: 22628157]
[75]
Lucas SB, Wong KT, Nightingale S, Miller RF. HIV-associated CD8 encephalitis: A UK case series and review of histopathologically confirmed cases. Front Neurol 2021; 12: 628296.
[http://dx.doi.org/10.3389/fneur.2021.628296] [PMID: 33868143]
[76]
Beadles WI, Jahn A, Weigel R, Clutterbuck D. Peripheral neuropathy in HIV-positive patients at an antiretroviral clinic in Lilongwe, Malawi. Trop Doct 2009; 39(2): 78-80.
[http://dx.doi.org/10.1258/td.2008.080213] [PMID: 19299286]
[77]
Wadley AL, Cherry CL, Price P, Kamerman PR. HIV neuropathyrisk factors and symptom characterization in stavudine-exposed South Africans. J Pain Symptom Manage 2011; 41(4): 700-6.
[78]
Geraci AP, Simpson DM. Neurological manifestations of HIV-1 infection in the HAART era. Compr Ther 2001; 27(3): 232-41.
[http://dx.doi.org/10.1007/s12019-001-0020-6] [PMID: 11569325]
[79]
Simpson DM, Tagliati M. Nucleoside analogue-associated peripheral neuropathy in human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9(2): 153-61.
[PMID: 7749792]
[80]
Peters RPH, Van Ramshorst MS, Struthers HE, McIntyre JA. Clinical assessment of peripheral neuropathy in HIV-infected children on antiretroviral therapy in rural South Africa. Eur J Pediatr 2014; 173(9): 1245-8.
[http://dx.doi.org/10.1007/s00431-014-2303-9] [PMID: 24691679]
[81]
Govender R, Eley B, Walker K, Petersen R, Wilmshurst JM. Neurologic and neurobehavioral sequelae in children with human immunodeficiency virus (HIV-1) infection. J Child Neurol 2011; 26(11): 1355-64.
[http://dx.doi.org/10.1177/0883073811405203] [PMID: 21616924]
[82]
Cornblath DR, Chaudhry V, Carter K, et al. Total neuropathy score: Validation and reliability study. Neurology 1999; 53(8): 1660-4.
[http://dx.doi.org/10.1212/WNL.53.8.1660] [PMID: 10563609]
[83]
Verma S, Estanislao L, Mintz L, Simpson D. Controlling neuropathic pain in HIV. Curr Infect Dis Rep 2004; 6(3): 237-42.
[http://dx.doi.org/10.1007/s11908-004-0014-5] [PMID: 15142488]
[84]
Kamerman PR, Moss PJ, Weber J, Wallace VCJ, Rice ASC, Huang W. Pathogenesis of HIV-associated sensory neuropathy: Evidence from in vivo and in vitro experimental models. J Peripher Nerv Syst 2012; 17(1): 19-31.
[http://dx.doi.org/10.1111/j.1529-8027.2012.00373.x] [PMID: 22462664]
[85]
Mangus LM, Dorsey JL, Laast VA, et al. Unraveling the pathogenesis of HIV peripheral neuropathy: Insights from a simian immunodeficiency virus macaque model. ILAR J 2014; 54(3): 296-303.
[http://dx.doi.org/10.1093/ilar/ilt047] [PMID: 24615443]
[86]
Schütz SG, Robinson-Papp J. HIV-related neuropathy: Current perspectives. Res Palliat Care 2013; 5: 243-51.
[http://dx.doi.org/10.2147/HIV.S36674]
[87]
Widyadharma I, Barus J, Dewi P, et al. Glial cells involvement in pathogenesis of Human Immunodeficiency Virus-Associated Sensory Neuropathy (HIV-SN) Int J Med Rev Case Rep 2018; 2(3): 49-52.
[http://dx.doi.org/ 10.5455/IJMRCR.glial-cell-hiv-sn.]
[88]
Adam J, Ellis RJ. HIV in the cART era and the mitochondrial:immune interface in the CNS Mitochondrial Dysfunction inNeurodegeneration and Peripheral Neuropathies. (1st ed.). Amsterdam, Netherlands: Elsevier Inc. 2019; Vol. 145.
[89]
Roda RH, Hoke A. Mitochondrial dysfunction in HIVinducedperipheral neuropathy Mitochondrial Dysfunction inNeurodegeneration and Peripheral Neuropathies. (1st ed.). Amsterdam, Netherlands: Elsevier Inc. 2019; p. 145.
[90]
Cooley TP, Kunches LM, Saunders CA, et al. Once-daily administration of 2′3′-dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. Results of a Phase I trial. N Engl J Med 1990; 322(19): 1340-5.
[http://dx.doi.org/10.1056/NEJM199005103221902] [PMID: 2139174]
[91]
Wright E, Brew B, Arayawichanont A, et al. Neurologic disorders are prevalent in HIV-positive outpatients in the Asia-Pacific region. Neurology 2008; 71(1): 50-6.
[http://dx.doi.org/10.1212/01.wnl.0000316390.17248.65] [PMID: 18591505]
[92]
Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med 1995; 1(5): 417-22.
[http://dx.doi.org/10.1038/nm0595-417] [PMID: 7585087]
[93]
Mongezi T, Sibi J, Jerry G, Lourdes de Fátima IV, Tozama D, Humberto FS. Atypical HIV-vacuolar myelopathy: A case report. Eur J Med Res 2021; 26(1): 13.
[http://dx.doi.org/10.1186/s40001-021-00483-0] [PMID: 33522960]
[94]
Wuliji N, Mandell MJ, Lunt JM, Merando A. HIV-associated vacuolar myelopathy and HIV-associated dementia as the initial manifestation of HIV/AIDS. Case Rep Infect Dis 2019; 2019: 1-4.
[http://dx.doi.org/10.1155/2019/3842425] [PMID: 31637067]
[95]
Rezaie A, Parmar R, Rendon C, Zell SC. Hiv-Associated vacuolar myelopathy: A rare initial presentation of HIV SAGE Open Medical Case Reports 2020; 8: 2050313X20945562.
[http://dx.doi.org/ 10.1177/2050313X20945562]
[96]
Heaton RK, Clifford DB, Franklin DR Jr, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010; 75(23): 2087-96.
[http://dx.doi.org/10.1212/WNL.0b013e318200d727] [PMID: 21135382]
[97]
Grauer OM, Reichelt D, Grüneberg U, et al. Neurocognitive decline in HIV patients is associated with ongoing T‐cell activation in the cerebrospinal fluid. Ann Clin Transl Neurol 2015; 2(9): 906-19.
[http://dx.doi.org/10.1002/acn3.227] [PMID: 26401512]
[98]
Sacktor N, Nakasujja N, Redd AD, et al. HIV subtype is not associated with dementia among individuals with moderate and advanced immunosuppression in Kampala, Uganda. Metab Brain Dis 2014; 29(2): 261-8.
[http://dx.doi.org/10.1007/s11011-014-9498-3] [PMID: 24515303]
[99]
Yusuf AJ, Hassan A, Mamman AI, Muktar HM, Suleiman AM, Baiyewu O. Prevalence of HIV-associated neurocognitive disorder (HAND) among patients attending a tertiary health facility in Northern Nigeria. J Int Assoc Provid AIDS Care 2017; 16(1): 48-55.
[http://dx.doi.org/10.1177/2325957414553839] [PMID: 25331222]
[100]
McDonnell J, Haddow L, Daskalopoulou M, et al. Minimal cognitive impairment in UK HIV-positive men who have sex with men: effect of case definitions and comparison with the general population and HIV-negative men. J Acquir Immune Deficien Syndr 1999; 67(2): 120.
[101]
Wang Y, Liu M, Lu Q, et al. Global prevalence and burden of HIV-associated neurocognitive disorder. Neurology 2020; 95(19): e2610-21.
[http://dx.doi.org/10.1212/WNL.0000000000010752] [PMID: 32887786]
[102]
Sharma H, Dubey TN, Raghuvanshi SS, Saxena R. HIV neuropathy in pre-HAART patients and it′s correlation with risk factors in Central India. Neurol India 2013; 61(5): 478-80.
[http://dx.doi.org/10.4103/0028-3886.121912] [PMID: 24262448]
[103]
Ferrari S, Vento S, Monaco S, et al. Human immunodeficiency virus-associated peripheral neuropathies. Mayo Clin Proc 2006; 81(2): 213-9.
[http://dx.doi.org/10.4065/81.2.213] [PMID: 16471077]
[104]
Hou YC, Huang CL, Lu CL, et al. The role of plasma neurofilament light protein for assessing cognitive impairment in patients with end-stage renal disease. Front Aging Neurosci 2021; 13: 657794.
[http://dx.doi.org/10.3389/fnagi.2021.657794] [PMID: 34122041]
[105]
John Hopkins Medicine. Neurology and Neurosurgery 2021. Available from: https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/peripheral_nerve/conditions/hiv_ neuropathy.html (Accessed on: August 2021).
[106]
Ernst F, Klausner F, Kleindienst W, Bartsch H, Taylor N, Trinka E. Diagnostic challenges in vacuolar myelopathy: A didactic case report. Spinal Cord Ser Cases 2016; 2(1): 16020.
[http://dx.doi.org/10.1038/scsandc.2016.20] [PMID: 28053763]
[107]
Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 2004; 271(10): 1814-9.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04082.x] [PMID: 15128291]
[108]
Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 2010; 17(9): 1113-e88.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02999.x] [PMID: 20402746]
[109]
Shlay JC, Chaloner K, Max MB, et al. Acupuncture and amitriptyline for paindue to HIV-related peripheral neuropathy: A randomized controlled trial. JAMA 1998; 280: 1590-5.
[110]
Kieburtz K, Simpson D, Yiannoutsos C, et al. A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. Neurology 1998; 51(6): 1682-8.
[http://dx.doi.org/10.1212/WNL.51.6.1682] [PMID: 9855523]
[111]
Simpson DM, McArthur JC, Olney R, et al. Lamotrigine for HIV-associated painful sensory neuropathies: A placebo-controlled trial. Neurology 2003; 60(9): 1508-14.
[http://dx.doi.org/10.1212/01.WNL.0000063304.88470.D9] [PMID: 12743240]
[112]
Simpson DM, Olney R, McArthur JC, Khan A, Godbold J, Ebel-Frommer K. A placebo-controlled trial of lamotrigine for painful HIV-associated neuropathy. Neurology 2000; 54(11): 2115-9.
[http://dx.doi.org/10.1212/WNL.54.11.2115] [PMID: 10851374]
[113]
Centers for Disease Control and Prevntions (CDC). Cytomegalovirus Laboratory Testinghttps Available from: www.cdc.gov/cmv/clinical/lab-tests.html
[114]
Carlson A, Norwitz ER, Stiller RJ. Cytomegalovirus infection in pregnancy: Should all women be screened? Rev Obstet Gynecol 2010; 3(4): 172-9.
[PMID: 21364849]
[115]
Tsai HP, Tsai YY, Lin IT, et al. Comparison of two commercial automated nucleic acid extraction and integrated quantitation real-time PCR platforms for the detection of cytomegalovirus in plasma. PLoS One 2016; 11(8): e0160493.
[http://dx.doi.org/10.1371/journal.pone.0160493] [PMID: 27494707]
[116]
Newcomb G, Mariuz P, Lachant D. CMV Encephalitis/Radiculitis: The difficulty in diagnosing in an intubated patient. Case Rep Crit Care 2019; 2019: 1-4.
[http://dx.doi.org/10.1155/2019/8067648] [PMID: 30911420]
[117]
Perello R, Vergara A, Monclus E, et al. Cytomegalovirus infection in HIV-infected patients in the era of combination antiretroviral therapy. BMC Infect Dis 2019; 19(1): 1030.
[http://dx.doi.org/10.1186/s12879-019-4643-6] [PMID: 31801482]
[118]
Shepp DH, Moses JE, Kaplan MH. Seroepidemiology of cytomegalovirus in patients with advanced HIV disease: influence on disease expression and survival. J Acquir Immune Defic Syndr Hum Retrovirol 1996; 11(5): 460-8.
[http://dx.doi.org/10.1097/00042560-199604150-00006] [PMID: 8605591]
[119]
Miller H, Simpson P, Forman M, et al. A novel multiplexed enzyme-linked immunosorbent assay for the detection of IgG seroreactivity to cytomegalovirus (CMV) UL144. J Clin Microbiol 2021; 59(8): e00964-21.
[http://dx.doi.org/10.1128/JCM.00964-21] [PMID: 34076473]
[120]
Suri V, Nambirajan A, Kataria V, Sharma M, Goyal V. Progressive multifocal leukoencephalopathy in a 44-year old male with idiopathic CD4+ T-lymphocytopenia treated with mirtazapine and mefloquine. Neurol India 2017; 65(5): 1061-4.
[http://dx.doi.org/10.4103/neuroindia.NI_535_16] [PMID: 28879898]
[121]
Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2021; 17(1): 37-51.
[http://dx.doi.org/10.1038/s41582-020-00427-y] [PMID: 33219338]
[122]
Smith AB, Smirniotopoulos JG, Rushing EJ. From the archives of the AFIP: central nervous system infections associated with human immunodeficiency virus infection: radiologic-pathologic correlation. Radiographics 2008; 28(7): 2033-58.
[http://dx.doi.org/10.1148/rg.287085135] [PMID: 19001657]
[123]
Sabath BF, Major EO. Traffic of JC virus from sites of initial infection to the brain: The path to progressive multifocal leukoencephalopathy. J Infect Dis 2002; 186 (Suppl. 2): S180-6.
[http://dx.doi.org/10.1086/344280] [PMID: 12424695]
[124]
Daniel DC, Kinoshita Y, Khan MA, et al. Internalization of exogenous human immunodeficiency virus-1 protein, Tat, by KG-1 oligodendroglioma cells followed by stimulation of DNA replication initiated at the JC virus origin. DNA Cell Biol 2004; 23(12): 858-67.
[http://dx.doi.org/10.1089/dna.2004.23.858] [PMID: 15684713]
[125]
Sharma SK, Soneja M, Ranjan S, et al. Progressive multifocal leucoencephalopathy in HIV/AIDS: Observational study from a tertiary care centre in northern India. Indian J Med Res 2013; 138(1): 72-7.
[PMID: 24056558]
[126]
Landi D, De Rossi N, Zagaglia S, et al. No evidence of beneficial effects of plasmapheresis in natalizumab-associated PML. Neurology 2017; 88(12): 1144-52.
[http://dx.doi.org/10.1212/WNL.0000000000003740] [PMID: 28228569]
[127]
Muftuoglu M, Olson A, Marin D, et al. Allogeneic BK virus–specific T cells for progressive multifocal leukoencephalopathy. N Engl J Med 2018; 379(15): 1443-51.
[http://dx.doi.org/10.1056/NEJMoa1801540] [PMID: 30304652]
[128]
Adinolfi LE, Nevola R, Lus G, et al. Chronic hepatitis C virus infection and neurological and psychiatric disorders: An overview. World J Gastroenterol 2015; 21(8): 2269-80.
[http://dx.doi.org/10.3748/wjg.v21.i8.2269] [PMID: 25741133]
[129]
Yarlott L, Heald E, Forton D. Hepatitis C virus infection, and neurological and psychiatric disorders-a review. J Adv Res 2017; 8(2): 139-48.
[http://dx.doi.org/10.1016/j.jare.2016.09.005] [PMID: 28149649]
[130]
Ryan EL, Morgello S, Isaacs K, Naseer M, Gerits P. Manhattan HIV Brain Bank. Neuropsychiatric impact of hepatitis C on advanced HIV. Neurology 2004; 62(6): 957-62.
[http://dx.doi.org/10.1212/01.WNL.0000115177.74976.6C] [PMID: 15037699]
[131]
Ejeta E, Dabsu R. Prevalence of hepatitis C virus and HIV infection among pregnant women attending antenatal care clinic in western Ethiopia. Front Med 2019; 5: 366.
[http://dx.doi.org/10.3389/fmed.2018.00366] [PMID: 30729110]
[132]
Mathew S, Faheem M, Ibrahim SM, et al. Hepatitis C virus and neurological damage. World J Hepatol 2016; 8(12): 545-56.
[http://dx.doi.org/10.4254/wjh.v8.i12.545] [PMID: 27134702]
[133]
Platt L, Easterbrook P, Gower E, et al. Prevalence and burden of HCV co-infection in people living with HIV: A global systematic review and meta-analysis. Lancet Infect Dis 2016; 16(7): 797-808.
[http://dx.doi.org/10.1016/S1473-3099(15)00485-5] [PMID: 26922272]
[134]
World Health Organization Herpes Simples Virus 2020. Available from:https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (Accessed on 01 August 2021).
[135]
Miller RF, Howard MR, Frith P, Perrons CJ, Pecorella I, Lucas SB. Herpesvirus infection of eye and brain in HIV infected patients. Sex Transm Infect 2000; 76(4): 282-6.
[http://dx.doi.org/10.1136/sti.76.4.282] [PMID: 11026884]
[136]
Berger JR, Houff S. Neurological complications of herpes simplex virus type 2 infection. Arch Neurol 2008; 65(5): 596-600.
[http://dx.doi.org/10.1001/archneur.65.5.596] [PMID: 18474734]
[137]
Strick LB, Wald A, Celum C. Management of herpes simplex virus type 2 infection in HIV type 1-infected persons. Clin Infect Dis 2006; 43(3): 347-56.
[138]
Meyding-Lamadé U, Strank C. Herpesvirus infections of the central nervous system in immunocompromised patients. Ther Adv Neurol Disord 2012; 5(5): 279-96.
[http://dx.doi.org/10.1177/1756285612456234] [PMID: 22973424]
[139]
Linke-Serinsöz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. In Seminars in diagnostic pathology 2017; 34(4): 352-63.
[140]
Brandsma D, Bromberg JEC. Primary CNS lymphoma in HIV infection. Handb Clin Neurol 2018; 152: 177-86.
[http://dx.doi.org/10.1016/B978-0-444-63849-6.00014-1] [PMID: 29604975]
[141]
Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst 2013; 105(16): 1221-9.
[http://dx.doi.org/10.1093/jnci/djt158] [PMID: 23892362]
[142]
Chirico C, Izzo I, Casari S, Cattaneo C, Doglietto F, Castelli F. AIDS-associated central nervous system lymphoma: the great mime. A case report and literature review. IDTM 2018; 4(2): e472.
[143]
Esau D. Viral causes of lymphoma: The history of Epstein-Barr virus and human T-lymphotropic virus 1. Virology 2017; 8: 1178122X17731772.
[144]
Carbone A, Volpi CC, Gualeni AV, Gloghini A. Epstein–Barr virus associated lymphomas in people with HIV. Curr Opin HIV AIDS 2017; 12(1): 39-46.
[http://dx.doi.org/10.1097/COH.0000000000000333] [PMID: 27755151]
[145]
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-related lymphoproliferative disease in HIV-positive individuals. Front Oncol 2020; 10: 1723.
[http://dx.doi.org/10.3389/fonc.2020.01723] [PMID: 33102204]
[146]
dos Reis HLB, Cavalcante FS, dos Santos KRN, Passos MRL, Ferreira DC. Herpes Zoster as a Sign of AIDS and nonadherence to antiretroviral therapy: A case report. Clinics 2011; 66(12): 2179-81.
[http://dx.doi.org/10.1590/S1807-59322011001200028] [PMID: 22189748]
[147]
Chakraborty N, Bhattacharyya S, De C, et al. Incidence of multiple Herpesvirus infection in HIV seropositive patients, a big concern for Eastern Indian scenario. Virol J 2010; 7(1): 147.
[http://dx.doi.org/10.1186/1743-422X-7-147] [PMID: 20604948]
[148]
Kennedy PGE. An overview of viral infections of the nervous system in the immunosuppressed. J Neurol 2021; 268(8): 3026-30.
[http://dx.doi.org/10.1007/s00415-020-10265-z] [PMID: 33048220]
[149]
Thwaites GE, Bang ND, Dung NH, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 2004; 351(17): 1741-51.
[http://dx.doi.org/10.1056/NEJMoa040573] [PMID: 15496623]
[150]
Vinnard C, Macgregor RR. Tuberculous meningitis in HIV-infected individuals. Curr HIV/AIDS Rep 2009; 6(3): 139-45.
[http://dx.doi.org/10.1007/s11904-009-0019-7] [PMID: 19589299]
[151]
Katrak SM, Shembalkar PK, Bijwe SR, Bhandarkar LD. The clinical, radiological and pathological profile of tuberculous meningitis in patients with and without human immunodeficiency virus infection. J Neurol Sci 2000; 181(1-2): 118-26.
[http://dx.doi.org/10.1016/S0022-510X(00)00440-8] [PMID: 11099721]
[152]
Hoshino Y, Nakata K, Hoshino S, et al. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med 2002; 195(4): 495-505.
[http://dx.doi.org/10.1084/jem.20011614] [PMID: 11854362]
[153]
Patel VB, Singh R, Connolly C, Kasprowicz V, Ndung’u T, Dheda K. Comparative utility of cytokine levels and quantitative RD-1-specific T cell responses for rapid immunodiagnosis of tuberculous meningitis. J Clin Microbiol 2011; 49(11): 3971-6.
[http://dx.doi.org/10.1128/JCM.01128-11] [PMID: 21880971]
[154]
Misra UK, Kalita J, Srivastava R, Nair PP, Mishra MK, Basu A. A study of cytokines in tuberculous meningitis: Clinical and MRI correlation. Neurosci Lett 2010; 483(1): 6-10.
[http://dx.doi.org/10.1016/j.neulet.2010.07.029] [PMID: 20691761]
[155]
Nagesh Babu G, Kumar A, Kalita J, Misra UK. Proinflammatory cytokine levels in the serum and cerebrospinal fluid of tuberculous meningitis patients. Neurosci Lett 2008; 436(1): 48-51.
[http://dx.doi.org/10.1016/j.neulet.2008.02.060] [PMID: 18359564]
[156]
Luma HN, Tchaleu BCN, Ngahane BHM, et al. Tuberculous meningitis: presentation, diagnosis and outcome in hiv-infected patients at the douala general hospital, cameroon: A cross sectional study. AIDS Res Ther 2013; 10(1): 16.
[http://dx.doi.org/10.1186/1742-6405-10-16] [PMID: 23758832]
[157]
Efsen AMW, Panteleev AM, Grint D, et al. TB meningitis in HIV-positive patients in Europe and Argentina: Clinical outcome and factors associated with mortality. BioMed Res Int 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/373601] [PMID: 24699884]
[158]
Hobbs E, Vera JH, Marks M, Barritt AW, Ridha BH, Lawrence D. Neurosyphilis in patients with HIV. Pract Neurol 2018; 18(3): 211-8.
[http://dx.doi.org/10.1136/practneurol-2017-001754] [PMID: 29478035]
[159]
Ghanem KG. REVIEW: Neurosyphilis: A historical perspective and review. CNS Neurosci Ther 2010; 16(5): e157-68.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00183.x] [PMID: 20626434]
[160]
Rotman L, Luo X, Thompson A, Mackesy-Amiti ME, Young LR, Young JD. Risk of neurosyphilis in HIV-infected persons with syphilis lacking signs or symptoms of central nervous system infection. HIV Med 2019; 20(1): 27-32.
[http://dx.doi.org/10.1111/hiv.12677] [PMID: 30402918]
[161]
Ho EL, Spudich SS. Neurosyphilis and the impact of HIV infection. Sex Health 2015; 12(2): 148-54.
[http://dx.doi.org/10.1071/SH14195] [PMID: 25890619]
[162]
Chesson HW, Heffelfinger JD, Voigt RF, Collins D. Estimates of primary and secondary syphilis rates in persons with HIV in the United States, 2002. Sex Transm Dis 2005; 32(5): 265-9.
[http://dx.doi.org/10.1097/01.olq.0000162359.75509.9c] [PMID: 15849526]
[163]
Taylor MM, Aynalem G, Olea LM, He P, Smith LV, Kerndt PR. A consequence of the syphilis epidemic among men who have sex with men (MSM): Neurosyphilis in Los Angeles, 2001-2004. Sex Transm Dis 2008; 35(5): 430-4.
[http://dx.doi.org/10.1097/OLQ.0b013e3181644b5e] [PMID: 18446083]
[164]
Lu Y, Ke W, Yang L, et al. Clinical prediction and diagnosis of neurosyphilis in HIV-negative patients: A case-control study. BMC Infect Dis 2019; 19(1): 1017.
[http://dx.doi.org/10.1186/s12879-019-4582-2] [PMID: 31791265]
[165]
Janier M, Unemo M, Dupin N, Tiplica GS. Potočnik M, Patel R. 2020 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol 2021; 35(3): 574-88.
[http://dx.doi.org/10.1111/jdv.16946] [PMID: 33094521]
[166]
Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am 2016; 30(1): 179-206.
[http://dx.doi.org/10.1016/j.idc.2015.10.006] [PMID: 26897067]
[167]
Warkentien T, Crum-Cianflone NF. An update on Cryptococcus among HIV-infected patients. Int J STD AIDS 2010; 21(10): 679-84.
[http://dx.doi.org/10.1258/ijsa.2010.010182] [PMID: 21139145]
[168]
Derbie A, Mekonnen D, Woldeamanuel Y, Abebe T. Cryptococcal antigenemia and its predictors among HIV infected patients in resource limited settings: A systematic review. BMC Infect Dis 2020; 20(1): 407.
[http://dx.doi.org/10.1186/s12879-020-05129-w] [PMID: 32527231]
[169]
Stott KE, Loyse A, Jarvis JN, et al. Cryptococcal meningoencephalitis: Time for action. Lancet Infect Dis 2021; 21(9): e259-71.
[http://dx.doi.org/10.1016/S1473-3099(20)30771-4] [PMID: 33872594]
[170]
Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect Dis 2017; 17(8): 873-81.
[http://dx.doi.org/10.1016/S1473-3099(17)30243-8] [PMID: 28483415]
[171]
Tugume L, Rhein J, Hullsiek KH, et al. HIV-associated cryptococcal meningitis occurring at relatively higher CD4 counts. J Infect Dis 2019; 219(6): 877-83.
[http://dx.doi.org/10.1093/infdis/jiy602] [PMID: 30325463]
[172]
Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 2018; 113(7): e170554.
[http://dx.doi.org/10.1590/0074-02760170554] [PMID: 29641639]
[173]
Ford N, Shubber Z, Jarvis JN, et al. CD4 cell count threshold for cryptococcal antigen screening of HIV-infected individuals: A systematic review and meta-analysis. Clin Infect Dis 2018; 66 (Suppl. 2): S152-9.
[http://dx.doi.org/10.1093/cid/cix1143] [PMID: 29514236]
[174]
Abassi M, Boulware DR, Rhein J. Cryptococcal meningitis: diagnosis and management update. Curr Trop Med Rep 2015; 2(2): 90-9.
[http://dx.doi.org/10.1007/s40475-015-0046-y] [PMID: 26279970]
[175]
Chang CC, Crane M, Zhou J, et al. HIV and co-infections. Immunol Rev 2013; 254(1): 114-42.
[http://dx.doi.org/10.1111/imr.12063] [PMID: 23772618]
[176]
Vu K, Tham R, Uhrig JP, et al. Invasion of the central nervous system by cryptococcus neoformans requires a secreted fungal metalloprotease. MBio 2014; 5(3): e01101-14.
[http://dx.doi.org/10.1128/mBio.01101-14] [PMID: 24895304]
[177]
Almeida F, Wolf JM, Casadevall A. Virulence-associated enzymes of cryptococcus neoformans. Eukaryot Cell 2015; 14(12): 1173-85.
[http://dx.doi.org/10.1128/EC.00103-15] [PMID: 26453651]
[178]
Schop J. Protective immunity against Cryptococcus neoformans infection. McGill J Med 2007; 10(1): 35-43.
[PMID: 18523595]
[179]
Jarvis JN, Casazza JP, Stone HH, et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J Infect Dis 2013; 207(12): 1817-28.
[http://dx.doi.org/10.1093/infdis/jit099] [PMID: 23493728]
[180]
Medoff BD, Wain JC, Seung E, et al. CXCR3 and its ligands in a murine model of obliterative bronchiolitis: Regulation and function. J Immunol 2006; 176(11): 7087-95.
[http://dx.doi.org/10.4049/jimmunol.176.11.7087] [PMID: 16709871]
[181]
Baril L, Ancelle T, Goulet V, Thulliez P, Tirard-Fleury V, Carme B. Risk factors for Toxoplasma infection in pregnancy: A case-control study in France. Scand J Infect Dis 1999; 31(3): 305-9.
[http://dx.doi.org/10.1080/00365549950163626] [PMID: 10482062]
[182]
Basavaraju A. Toxoplasmosis in HIV infection: An overview. Trop Parasitol 2016; 6(2): 129-35.
[http://dx.doi.org/10.4103/2229-5070.190817] [PMID: 27722101]
[183]
Subauste CS. CD154 and type-1 cytokine response: From hyper IgM syndrome to human immunodeficiency virus infection. J Infect Dis 2002; 185 (Suppl. 1): S83-9.
[http://dx.doi.org/10.1086/338003] [PMID: 11865444]
[184]
Cohen O, Weissmal D, Fauci KS. The immune pathogenesis of HIV infection Fundamental Immunology. Philadelphia: Lippincott-Raven 1999; pp. 1455-509.
[185]
Wang ZD, Wang SC, Liu HH, et al. Prevalence and burden of toxoplasma gondii infection in HIV-infected people: A systematic review and meta-analysis. Lancet HIV 2017; 4(4): e177-88.
[http://dx.doi.org/10.1016/S2352-3018(17)30005-X] [PMID: 28159548]
[186]
Colombo FA, Vidal JE, Oliveira ACP, et al. Diagnosis of cerebral toxoplasmosis in AIDS patients in Brazil: Importance of molecular and immunological methods using peripheral blood samples. J Clin Microbiol 2005; 43(10): 5044-7.
[http://dx.doi.org/10.1128/JCM.43.10.5044-5047.2005] [PMID: 16207959]
[187]
Ben-Harari RR, Goodwin E, Casoy J. Adverse event profile of pyrimethamine-based therapy in toxoplasmosis: A systematic review. Drugs R D 2017; 17(4): 523-44.
[http://dx.doi.org/10.1007/s40268-017-0206-8] [PMID: 28879584]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy