Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Recent Advances in Biomaterial Design for Bone Regenerative Therapy: A Mini Review

Author(s): Nurulhuda Athirah Hadri, Nursyahida Arifin, Nur Fatiha Ghazalli, Ramizu Shaari, Khairul Bariah Ahmad Amin Noordin and Norhayati Yusop*

Volume 17, Issue 2, 2024

Published on: 17 April, 2023

Page: [99 - 115] Pages: 17

DOI: 10.2174/2666145416666230228120343

Price: $65

Abstract

Longevity has been associated with morbidity and an increase in age-related illnesses, linked to tissue degeneration and gradual loss of biological functions. Bone is an important organ that gradually degenerates with increasing lifespan. The remodeling phase plays a huge role in maintaining the ability of bone to regenerate and maintain its stability and function throughout life. Hence, bone health represents one of the major challenges to elderly citizens due to the increase of injury associated with bone degeneration, such as fragility and risks of fractures. In the virtue of improving the regenerative function of bone tissues, a specialized field of bone tissue engineering (BTE) has been introduced to improve the current strategies in treating bone degenerative disorders. Most of the research performed in BTE focuses on the optimization of key components to generate new bone formation, including the scaffold. A scaffold plays a significant role in establishing the structural form that interconnects major elements of the tissue engineering triad. To date, many types of biomaterials have been explored in BTE, ranging from natural and synthetic materials to nanocomposites. However, ideal scaffolds that display excellent biocompatibility and mechanical properties, approved for clinical practices are yet available. This paper aims to describe the up-to-date advancements in scaffold for new bone generation, highlighting the essential elements and strategies in selecting suitable biomaterials for bone repair.

Graphical Abstract

[1]
Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev 2019; 2(9): 580-92.
[http://dx.doi.org/ 10.1016/S2666-7568(21)00172-0]
[2]
Abosadegh MM, Saddki N, Al-Tayar B, Rahman SA. Epidemiology of maxillofacial fractures at a teaching hospital in malaysia: A retrospective study. BioMed Res Int 2019; 2019: 9024763.
[http://dx.doi.org/10.1155/2019/9024763]
[3]
Lee C, Foo Q, Wong L, Leung Y. An overview of maxillofacial trauma in oral and maxillofacial tertiary trauma centre, queen elizabeth hospital, kota Kinabalu, Sabah. Craniomaxillofac Trauma Reconstr 2017; 10(1): 16-21.
[http://dx.doi.org/10.1055/s-0036-1584893] [PMID: 28210403]
[4]
Cheung C-L, Ang S, Chadha M. An updated hip fracture projection in Asia: The Asian federation of osteoporosis societies study. Osteoporos Sarcopenia 2018; 4(1): 16-21.
[http://dx.doi.org/10.1016/j.afos.2018.03.003] [PMID: 30775536]
[5]
The burden of musculoskeletal conditions at the start of the new millennium. Switzerland. World Health Organization technical report series 2003; 919.
[6]
Lobb DC, DeGeorge BR Jr, Chhabra AB. Bone graft substitutes: Current concepts and future expectations. J Hand Surg Am 2019; 44(6): 497-505.e2.
[http://dx.doi.org/10.1016/j.jhsa.2018.10.032] [PMID: 30704784]
[7]
Hollister SJ, Murphy WL. Scaffold translation: Barriers between concept and clinic. Tissue Eng Part B Rev 2011; 17(6): 459-74.
[http://dx.doi.org/10.1089/ten.teb.2011.0251] [PMID: 21902613]
[8]
Sheen JR, Garla VV. Fracture Healing Overview.StatPearls. StatPearls Publishing LLC 2019.
[9]
Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci 2021; 22(6): 2851.
[http://dx.doi.org/10.3390/ijms22062851]
[10]
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z. Modulation of the inflammatory response and bone healing. Front Endocrinol 2020; 11: 386.
[http://dx.doi.org/10.3389/fendo.2020.00386]
[11]
Braddock M, Houston P, Campbell C, Ashcroft P. Born again bone: Tissue engineering for bone repair. Physiology 2001; 16(5): 208-13.
[http://dx.doi.org/10.1152/physiologyonline.2001.16.5.208] [PMID: 11572922]
[12]
Sallent I, Capella-Monsonís H, Procter P, et al. Where scientists empower society. The few who made it: Commercially and clinically successful innovative bone grafts. Front Bioeng Biotechnol 2020; 8: 952.
[13]
Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 1991; (266): 259-70.
[http://dx.doi.org/10.1097/00003086-199105000-00038] [PMID: 2019059]
[14]
Liu M, Lv Y. Reconstructing bone with natural bone graft: A review of in vivo studies in bone defect animal model. Nanomaterials 2018; 8(12): 999.
[http://dx.doi.org/10.3390/nano8120999] [PMID: 30513940]
[15]
Akpan EI, Gbenebor OP, Adeosun SO, Cletus O. Chitin and chitosan composites for bone tissue regeneration.In: Handbook of Chitin and Chitosan. 2020; pp. 499-553.
[http://dx.doi.org/10.1016/B978-0-12-817966-6.00016-9]
[16]
Alonzo M, Alvarez Primo F, Anil Kumar S, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng 2021; 17: 100248.
[http://dx.doi.org/10.1016/j.cobme.2020.100248] [PMID: 33718692]
[17]
Sheikh Z, Javaid M, Hamdan N, Hashmi R. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers. Materials 2015; 8(4): 1778-816.
[http://dx.doi.org/10.3390/ma8041778] [PMID: 28788032]
[18]
Janssens K, Ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-β1 to the bone.Endocrine Reviews. Oxford: Academic 2005; pp. 743-74.
[19]
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011; 8(55): 153-70.
[http://dx.doi.org/10.1098/rsif.2010.0223] [PMID: 20719768]
[20]
Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater 2017; 9: e435-5.
[21]
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C 2021; 130: 112466.
[http://dx.doi.org/10.1016/j.msec.2021.112466] [PMID: 34702541]
[22]
Fishero B, Kohli N, Das A, Christophel J, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2015; 8(1): 23-30.
[http://dx.doi.org/10.1055/s-0034-1393724] [PMID: 25709750]
[23]
Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019; 23(1): 9.
[http://dx.doi.org/10.1186/s40824-019-0157-y] [PMID: 30915231]
[24]
García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6(2): 77-95.
[http://dx.doi.org/10.1007/s13346-015-0236-0]
[25]
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012; 30(10): 546-54.
[26]
Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020; 757.
[27]
Chan BP, Leong KW. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur Spine J 2008; 17(S4): 467-79.
[http://dx.doi.org/10.1007/s00586-008-0745-3]
[28]
Wang W, Caetano G, Ambler W, et al. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 2016; 9(12): 992.
[http://dx.doi.org/10.3390/ma9120992] [PMID: 28774112]
[29]
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7(3): 657-68.
[http://dx.doi.org/10.4252/wjsc.v7.i3.657] [PMID: 25914772]
[30]
Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS. Nanotechnology in bone tissue engineering. Nanomedicine 2015; 11(5): 1253-63.
[http://dx.doi.org/10.1016/j.nano.2015.02.013]
[31]
Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: Current scenario and challenges. Tissue Eng Regen Med 2017; 14(1): 1-14.
[http://dx.doi.org/10.1007/s13770-016-0001-6] [PMID: 30603457]
[32]
Yang M, Zhang ZC, Liu Y, et al. Function and mechanism of RGD in bone and cartilage tissue engineering. Front Bioeng Biotechnol 2021; 9(December): 773636.
[http://dx.doi.org/10.3389/fbioe.2021.773636] [PMID: 34976971]
[33]
Wubneh A, Tsekoura EK, Ayranci C. Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80: 1-30.
[http://dx.doi.org/10.1016/j.actbio.2018.09.031] [PMID: 30248515]
[34]
Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng Rep 2014; 80(1): 1-36.
[http://dx.doi.org/10.1016/j.mser.2014.04.001]
[35]
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today 2013; 16(12): 496-504.
[http://dx.doi.org/10.1016/j.mattod.2013.11.017]
[36]
Kumar A, Mandal S, Barui S, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater Sci Eng Rep 2016; 103: 1-39.
[http://dx.doi.org/10.1016/j.mser.2016.01.001]
[37]
Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices 2020; 5(1): 1-9.
[http://dx.doi.org/10.1016/j.jsamd.2020.01.007]
[38]
Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-?2?1 integrin interaction. J Cell Physiol 2000; 184(2): 207-13.
[http://dx.doi.org/10.1002/1097-4652(200008)184:2<207:AID-JCP8>3.0.CO;2-U] [PMID: 10867645]
[39]
Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem 2001; 129(1): 133-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002824] [PMID: 11134967]
[40]
Elango J, Robinson J, Zhang J, et al. Collagen peptide upregulates osteoblastogenesis from bone marrow mesenchymal stem cells through MAPK- Runx2. Cells 2019; 8(5): 446.
[http://dx.doi.org/10.3390/cells8050446] [PMID: 31083501]
[41]
Akhir HM, Teoh PL. Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci Rep 2020; 40(12): 20201325.
[http://dx.doi.org/10.1042/BSR20201325]
[42]
Somaiah C, Kumar A, Mawrie D, et al. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS One 2015; 10(12): e0145068.
[http://dx.doi.org/10.1371/journal.pone.0145068] [PMID: 26661657]
[43]
Yang HJ, Kang SY. The clinical uses of collagen-based matrices in the treatment of chronic wounds. J Wound Manag Res 2019; 15(2): 103-8.
[http://dx.doi.org/10.22467/jwmr.2019.00640]
[44]
Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. hemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds Int J Biol Macromol 2018; 107: 678-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.184]
[45]
Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci 2011 2011.
[http://dx.doi.org/10.1155/2011/290602]
[46]
Shan Wong Y, Yong Tay C, Wen F. Engineered polymeric biomaterials for tissue engineering. Curr Tissue Eng 2012; 1(1): 41-53.
[http://dx.doi.org/10.2174/2211542011201010041]
[47]
Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 2011; 8(5): 607.
[http://dx.doi.org/10.1586/erd.11.27]
[48]
Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019; 12(20): 3323.
[http://dx.doi.org/10.3390/ma12203323] [PMID: 31614735]
[49]
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13: 100186.
[http://dx.doi.org/10.1016/j.mtbio.2021.100186]
[50]
Kumar P, Dehiya BS, Sindhu A. Bioceramics for hard tissue engineering applications: A review. Int J Appl Eng Res 2018; 13(5): 2744-52.
[51]
Mittwede PN, Gottardi R, Alexander PG, Tarkin IS, Tuan RS. Clinical applications of bone tissue engineering in orthopedic trauma. Curr Pathobiol Rep 2018; 6(2): 99-108.
[http://dx.doi.org/10.1007/s40139-018-0166-x]
[52]
Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: A winning combination for tissue engineering. Front Bioeng Biotechnol 2015; 3: 202.
[http://dx.doi.org/10.3389/fbioe.2015.00202]
[53]
Wang JL, Xu JK, Hopkins C, Chow DHK, Qin L. Biodegradable magnesium‐based implants in orthopedics-A general review and perspectives. Adv Sci 2020; 7(8): 1902443.
[http://dx.doi.org/10.1002/advs.201902443] [PMID: 32328412]
[54]
Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: A review. Int J Biomater 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/641430] [PMID: 22919393]
[55]
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015; 8(9): 5744-94.
[http://dx.doi.org/10.3390/ma8095273]
[56]
Kokubo T, Yamaguchi S. Biomimetic surface modification of metallic biomaterials. Surf Coat Modif Met Biomater 2015; pp. 219-46.
[http://dx.doi.org/10.1016/B978-1-78242-303-4.00007-7]
[57]
Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review. Polym 2021; 13: 2041.
[http://dx.doi.org/10.3390/polym13132041]
[58]
Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater 2021; 31(21): 2010609.
[http://dx.doi.org/10.1002/adfm.202010609]
[59]
Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials 2019; 12(4): 568.
[http://dx.doi.org/10.3390/ma12040568]
[60]
Costantini M, Barbetta A. Gas foaming technologies for 3D scaffold engineering.Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications. Elsevier Ltd. 2018; pp. 127-49.
[http://dx.doi.org/10.1016/B978-0-08-100979-6.00006-9]
[61]
Garg T, Singh O, Arora S, Murthy RSR. Scaffold: A novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29(1): 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10] [PMID: 22356721]
[62]
Jun I, Han HS, Edwards J, Jeon H. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. Int J Mol Sci 2018; 19(3): 745.
[http://dx.doi.org/10.3390/ijms19030745] [PMID: 29509688]
[63]
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101: 26-42.
[http://dx.doi.org/10.1016/j.actbio.2019.10.038] [PMID: 31672585]
[64]
Lin W, Chen M, Qu T, Li J, Man Y. Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 108(4): 1311-21.
[http://dx.doi.org/10.1002/jbm.b.34479] [PMID: 31436374]
[65]
Betz MW, Yeatts AB, Richbourg WJ, et al. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration. Biomacromolecules 2010; 11(5): 1160-8.
[http://dx.doi.org/10.1021/bm100061z] [PMID: 20345129]
[66]
Forero J, Roa E, Reyes J, Acevedo C, Osses N. Development of useful biomaterial for bone tissue engineering by incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) scaffold. Materials 2017; 10(10): 1177.
[http://dx.doi.org/10.3390/ma10101177] [PMID: 29039747]
[67]
Kavya KC, Jayakumar R, Nair S, Chennazhi KP. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 2013; 59: 255-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.023] [PMID: 23591473]
[68]
Park HJ, Lee OJ, Lee MC, et al. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int J Biol Macromol 2015; 78: 215-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.064] [PMID: 25849999]
[69]
Zhang J, Nie J, Zhang Q, Li Y, Wang Z, Hu Q. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. J Biomater Sci Polym Ed 2014; 25(1): 61-74.
[http://dx.doi.org/10.1080/09205063.2013.836950] [PMID: 24053536]
[70]
Nie W, Peng C, Zhou X, Chen L, Wang W, Zhang Y. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 2017; 116: 325-37.
[http://dx.doi.org/10.1016/j.carbon.2017.02.013]
[71]
Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Mater Sci Eng C 2020; 107: 110347.
[http://dx.doi.org/10.1016/j.msec.2019.110347] [PMID: 31761152]
[72]
Tae Young A, Kang JH, Kang DJ, et al. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int J Biol Macromol 2016; 93(Pt B): 1488-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.027] [PMID: 27402459]
[73]
Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, et al. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A 2016; 104(8): 2001-10.
[http://dx.doi.org/10.1002/jbm.a.35731] [PMID: 27027855]
[74]
Alipour M, Firouzi N, Aghazadeh Z, et al. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol 2021; 21(1): 6.
[http://dx.doi.org/10.1186/s12896-020-00666-3] [PMID: 33430842]
[75]
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, Du Toit LC, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 2016; 21(11): 1580.
[http://dx.doi.org/10.3390/molecules21111580] [PMID: 27879635]
[76]
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 2015; 94: 53-62.
[http://dx.doi.org/10.1016/j.addr.2015.03.013] [PMID: 25861724]
[77]
Ma J, Both SK, Yang F, et al. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 2014; 3(1): 98-107.
[http://dx.doi.org/10.5966/sctm.2013-0126] [PMID: 24300556]
[78]
Reddy Vootla N, Reddy KV. Osseointegration-Key Factors Affecting Its Success-An Overview IOSR-JDMS 2017; 16(4): 62-8.
[http://dx.doi.org/10.9790/0853-1604056268]
[79]
Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 2019; 119(119): 155-68.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.007]
[80]
Chen Y, Zheng K, Niu L, et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 2019; 128: 414-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.099] [PMID: 30682469]
[81]
Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, et al. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C 2017; 75: 445-53.
[http://dx.doi.org/10.1016/j.msec.2017.02.074] [PMID: 28415484]
[82]
Torgbo S, Prakit S. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater Chem Phys 2019; 237(1): 121868.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121868]
[83]
Ghosh M, Halperin-Sternfeld M, Nanomaterials IG. Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration. Nanomaterials 2019; 9(4): 497.
[84]
Garcia Garcia A, Hébraud A, Duval JL, et al. Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction. ACS Biomater Sci Eng 2018; 4(9): 3317-26.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00521] [PMID: 33435068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy