Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Review on Biomass Derived Activated Carbons as Electrochemical Electrode Material for Supercapacitor Device

Author(s): Pooja Kadyan, Sonia Grover* and Raj Kishore Sharma

Volume 17, Issue 2, 2024

Published on: 18 April, 2023

Page: [116 - 134] Pages: 19

DOI: 10.2174/2666145416666230314123738

Price: $65

conference banner
Abstract

To face the challenge of the finite nature of fossil fuels and large energy crises across the globe, there is an urgent requirement for sustainable and renewable energy sources. Moreover, it is essential to focus on energy storage in order to meet the demand of future generations. Among various energy storage devices such as fuel cells, batteries, capacitors, supercapacitors, flywheels, etc., it is the supercapacitor device that has elicited extensive research interest recently because of prominent features like high power density, fast recharge capability, and long cycle life. The main objective of this article is to review the enhancement of the electrochemical performance of supercapacitor devices. The electrochemical properties of the supercapacitor device majorly depend on the electrode materials used, which include carbonaceous materials, metal oxides, and conducting polymers. In order to reduce energy shortages and environmental pressure, carbon materials derived from biomass/waste materials have been considered remarkable candidates for electrode materials with the advantages of high abundance, low cost, and environmental friendliness. This review shows the complied study of various methodologies for the preparation of activated carbons derived from different biomass residues such as plants, animals, and microorganisms, which have been investigated in the past few years as electrochemical electrode materials for supercapacitors. Further, ongoing challenges and potential improvements in this area for creating efficient energy storage devices are also discussed. The goal of this review article is to aid in the creation of new insights for energy storage applications of biomass-generated carbons that will lead to sustainable energy development.

Next »
Graphical Abstract

[1]
Gowda SR, Leela MRA, Zhan X, Ajayan PM. Building energy storage device on a single nanowire. Nano Lett 2011; 11(8): 3329-33.
[http://dx.doi.org/10.1021/nl2017042] [PMID: 21755944]
[2]
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008; 7(11): 845-54.
[http://dx.doi.org/10.1038/nmat2297] [PMID: 18956000]
[3]
Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 2010; 9(2): 146-51.
[http://dx.doi.org/10.1038/nmat2612] [PMID: 20062048]
[4]
Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2011; 4: 366-77.
[http://dx.doi.org/10.1038/nmat1368]
[5]
Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science 2011; 334(6058): 928-35.
[http://dx.doi.org/10.1126/science.1212741] [PMID: 22096188]
[6]
Sundaramurthy I, Thiyagarajan G, Panda RC, Sankar S. Collagen and carbon-ferrous nanoparticles used as a green energy composite material for energy storage devices. Cur Mater Sci 2021; 14(1): 80-92.
[http://dx.doi.org/10.2174/2666145413666201207202502]
[7]
Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008; 321(5889): 651-2.
[http://dx.doi.org/10.1126/science.1158736]
[8]
Pushparaj VL, Shaijumon MM, Kumar A, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 2007; 104(34): 13574-7.
[http://dx.doi.org/10.1073/pnas.0706508104] [PMID: 17699622]
[9]
Folkson R, Stapsford S. Alternative fuels and advanced vehicle technologies for improved environmental performance: Towards zero carbon transportation. (2nd ed.), Elsevier 2014.
[10]
Poonam , Sharma K, Arora A, Tripathi SK. Review of supercapacitors: Materials and devices. J Energy Storage 2019; 21: 801-25.
[http://dx.doi.org/10.1016/j.est.2019.01.010]
[11]
Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev 2004; 104(10): 4245-70.
[http://dx.doi.org/10.1021/cr020730k] [PMID: 15669155]
[12]
Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009; 38(9): 2520-31.
[http://dx.doi.org/10.1039/b813846j] [PMID: 19690733]
[13]
Balducci A, Dugas R, Taberna PL, et al. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 2007; 165(2): 922-7.
[http://dx.doi.org/10.1016/j.jpowsour.2006.12.048]
[14]
Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 2008; 130(9): 2730-1.
[http://dx.doi.org/10.1021/ja7106178] [PMID: 18257568]
[15]
Kandalkar SG, Dhawale DS, Kim CK, Lokhande CD. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth Met 2010; 160(11-12): 1299-302.
[http://dx.doi.org/10.1016/j.synthmet.2010.04.003]
[16]
Ashtiani C, Wright R, Hunt G. Ultracapacitors for automotive applications. J Power Sources 2006; 154(2): 561-6.
[http://dx.doi.org/10.1016/j.jpowsour.2005.10.082]
[17]
Sharma P, Bhatti TS. A review on electrochemical double-layer capacitors. Energy Convers Manage 2010; 51(12): 2901-12.
[http://dx.doi.org/10.1016/j.enconman.2010.06.031]
[18]
González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: Technologies and materials. Renew Sustain Energy Rev 2016; 58: 1189-206.
[http://dx.doi.org/10.1016/j.rser.2015.12.249]
[19]
Endo M, Takeda T, Kim YJ, Koshiba K, Ishii K. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon letters 2001; 1((3_4)): 117-28.
[20]
Bagotsky VS, Ed. Fundamentals of electrochemistry. John Wiley & Sons 2005.
[http://dx.doi.org/10.1002/047174199X]
[21]
Chapman DL. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Sci 1913; 25(148): 475-81.
[http://dx.doi.org/10.1080/14786440408634187]
[22]
Conway BE. Electrochemical supercapacitors: Scientific fundamentals and technological applications. Springer Science & Business Media 2013.
[http://dx.doi.org/10.1007/978-1-4757-3058-6]
[23]
Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys 2007; 9(15): 1774-85.
[http://dx.doi.org/10.1039/b618139m] [PMID: 17415488]
[24]
Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology. Nano Energy 2018; 52: 441-73.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.013]
[25]
Chen SM, Ramachandran R, Mani V, Saraswathi R. Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review. Int J Electrochem Sci 2014; 9(8): 4072-85.
[26]
Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review. Int J Hydrogen Energy 2009; 34(11): 4889-99.
[http://dx.doi.org/10.1016/j.ijhydene.2009.04.005]
[27]
Jiang J, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim Acta 2002; 47(15): 2381-6.
[http://dx.doi.org/10.1016/S0013-4686(02)00031-2]
[28]
Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 2011; 6(4): 232-6.
[http://dx.doi.org/10.1038/nnano.2011.13] [PMID: 21336267]
[29]
Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 2011; 196(8): 4102-8.
[http://dx.doi.org/10.1016/j.jpowsour.2010.11.002]
[30]
Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors. J Energy Chemist 2013; 22(2): 226-40.
[http://dx.doi.org/10.1016/S2095-4956(13)60028-5]
[31]
Nasibi M, Golozar MA, Rashed G. Nanoporous carbon black particles as an electrode material for electrochemical double layer capacitors. Mater Lett 2013; 91: 323-5.
[http://dx.doi.org/10.1016/j.matlet.2012.09.088]
[32]
Yang L, Hou LR, Zhang YW, Yuan CZ. Facile synthesis of mesoporous carbon nanofibres towards high-performance electrochemical capacitors. Mater Lett 2013; 97: 97-9.
[http://dx.doi.org/10.1016/j.matlet.2012.12.018]
[33]
Zheng JP, Goonetilleke PC, Pettit CM, Roy D. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM]+[EtSO4]-. Talanta 2010; 81(3): 1045-55.
[http://dx.doi.org/10.1016/j.talanta.2010.01.059] [PMID: 20298892]
[34]
Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 2002; 109(2): 403-11.
[http://dx.doi.org/10.1016/S0378-7753(02)00108-8]
[35]
Shen H, Liu E, Xiang X, et al. A novel activated carbon for supercapacitors. Mater Res Bull 2012; 47(3): 662-6.
[http://dx.doi.org/10.1016/j.materresbull.2011.12.028]
[36]
Iro ZS, Subramani C, Dash SS. A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 2016; 11(12): 10628-43.
[http://dx.doi.org/10.20964/2016.12.50]
[37]
Qian W, Sun F, Xu Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 2014; 7(1): 379-86.
[http://dx.doi.org/10.1039/C3EE43111H]
[38]
Xia X, Lei W, Hao Q, Wang W, Wang X. One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 2013; 99: 253-61.
[http://dx.doi.org/10.1016/j.electacta.2013.03.131]
[39]
Wang H, Gao Q, Jiang L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011; 7(17): 2454-9.
[http://dx.doi.org/10.1002/smll.201100534]
[40]
Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012; 1(1): 107-31.
[http://dx.doi.org/10.1016/j.nanoen.2011.11.001]
[41]
Wang JG, Yang Y, Huang ZH, Kang F. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J Power Sources 2012; 204: 236-43.
[http://dx.doi.org/10.1016/j.jpowsour.2011.12.057]
[42]
Mitchell E, Jimenez A, Gupta RK, et al. Ultrathin porous hierarchically textured NiCo2 O4 –graphene oxide flexible nanosheets for high-performance supercapacitors. New J Chem 2015; 39(3): 2181-7.
[http://dx.doi.org/10.1039/C4NJ02110J]
[43]
Li F, Xing Y, Huang M, et al. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A Mater Energy Sustain 2015; 3(15): 7855-61.
[http://dx.doi.org/10.1039/C5TA00634A]
[44]
Huang M, Zhao XL, Li F, Zhang LL, Zhang YX. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 2015; 277: 36-43.
[http://dx.doi.org/10.1016/j.jpowsour.2014.12.005]
[45]
Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX. Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 2014; 270: 426-33.
[http://dx.doi.org/10.1016/j.jpowsour.2014.07.144]
[46]
Huang M, Li F, Dong F, Zhang YX, Zhang LL. MnO2 -based nanostructures for high-performance supercapacitors. J Mater Chem A Mater Energy Sustain 2015; 3(43): 21380-423.
[http://dx.doi.org/10.1039/C5TA05523G]
[47]
Ji J, Liu J, Lai L, et al. In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode. ACS Nano 2015; 9(8): 8609-16.
[http://dx.doi.org/10.1021/acsnano.5b03888] [PMID: 26258909]
[48]
Zhang YX, Huang M, Li F, Wang XL, Wen ZQ. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes. J Power Sources 2014; 246: 449-56.
[http://dx.doi.org/10.1016/j.jpowsour.2013.07.115]
[49]
Purkait T, Singh G, Singh M, Kumar D, Dey RS. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep 2017; 7(1): 15239.
[http://dx.doi.org/10.1038/s41598-017-15463-w] [PMID: 29127348]
[50]
Pan H, Li J, Feng YP. Carbon nanotubes for supercapacitor. Nanoscale Res Lett 2010; 5(3): 654-68.
[http://dx.doi.org/10.1007/s11671-009-9508-2] [PMID: 20672061]
[51]
Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 2000; 77(15): 2421-3.
[http://dx.doi.org/10.1063/1.1290146]
[52]
Ahn HJ, Sohn JI, Kim YS, Shim HS, Kim WB, Seong TY. Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodized aluminum oxide templates. Electrochem Commun 2006; 8(4): 513-6.
[http://dx.doi.org/10.1016/j.elecom.2006.01.018]
[53]
Zhang W, Yang W, Zhou H, et al. Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim Acta 2020; 357: 136855.
[http://dx.doi.org/10.1016/j.electacta.2020.136855]
[54]
Xu Z, Younis A, Xu H, Li S, Chu D. Improved super-capacitive performance of carbon foam supported CeO x nanoflowers by selective doping and UV irradiation. RSC Advances 2014; 4(66): 35067-71.
[http://dx.doi.org/10.1039/C4RA03024A]
[55]
Ghosh A, Lee YH. Carbon-based electrochemical capacitors. Chem Sus Chem 2012; 5(3): 480-99.
[http://dx.doi.org/10.1002/cssc.201100645] [PMID: 22389329]
[56]
Candelaria SL, Shao Y, Zhou W, et al. Nanostructured carbon for energy storage and conversion. Nano Energy 2012; 1(2): 195-220.
[http://dx.doi.org/10.1016/j.nanoen.2011.11.006]
[57]
Dubey R, Guruviah V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019; 25(4): 1419-45.
[http://dx.doi.org/10.1007/s11581-019-02874-0]
[58]
Jurewicz K, Vix-Guterl C, Frackowiak E, et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids 2004; 65(2-3): 287-93.
[http://dx.doi.org/10.1016/j.jpcs.2003.10.024]
[59]
Fernández JA, Morishita T, Toyoda M, Inagaki M, Stoeckli F, Centeno TA. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J Power Sources 2008; 175(1): 675-9.
[http://dx.doi.org/10.1016/j.jpowsour.2007.09.042]
[60]
Wang R, Han M, Zhao Q, et al. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 2017; 7(1): 44562.
[http://dx.doi.org/10.1038/srep44562] [PMID: 28291246]
[61]
Zhang W, Song Y, Wang Y, et al. A perylenetetracarboxylic dianhydride and aniline-assembled supramolecular nanomaterial with multi-color electrochemiluminescence for a highly sensitive label-free immunoassay. J Mater Chem B Mater Biol Med 2020; 8(16): 3676-82.
[http://dx.doi.org/10.1039/C9TB02368B] [PMID: 32096516]
[62]
Biswal M, Banerjee A, Deo M, Ogale S. From dead leaves to high energy density supercapacitors. Energy Environ Sci 2013; 6(4): 1249-59.
[http://dx.doi.org/10.1039/c3ee22325f]
[63]
Wang J, Zhang X, Li Z, Ma Y, Ma L. Recent progress of biomass-derived carbon materials for supercapacitors. J Power Sources 2020; 451: 227794.
[http://dx.doi.org/10.1016/j.jpowsour.2020.227794]
[64]
Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J Radiat Res Appl Sci 2014; 7(2): 163-73.
[http://dx.doi.org/10.1016/j.jrras.2014.02.003]
[65]
Yang CS, Jang YS, Jeong HK. Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 2014; 14(12): 1616-20.
[http://dx.doi.org/10.1016/j.cap.2014.09.021]
[66]
Zhang Y, Gao Z, Song N, Li X. High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim Acta 2016; 222: 1257-66.
[http://dx.doi.org/10.1016/j.electacta.2016.11.099]
[67]
Qiang L, Hu Z, Li Z, et al. Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor. J Porous Mater 2019; 26(4): 1217-25.
[http://dx.doi.org/10.1007/s10934-019-00723-z]
[68]
Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N. Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 2014; 44(8): 903-16.
[http://dx.doi.org/10.1007/s10800-014-0708-9]
[69]
Jayakumar A, Zhao J, Lee JM. A coconut leaf sheath derived graphitized n-doped carbon network for high-performance supercapacitors. Chem Electro Chem 2018; 5(2): 284-91.
[http://dx.doi.org/10.1002/celc.201701133]
[70]
Tian X, Ma H, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources 2017; 359: 88-96.
[http://dx.doi.org/10.1016/j.jpowsour.2017.05.054]
[71]
Huang C, Sun T, Hulicova-Jurcakova D. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. Chem Sus Chem 2013; 6(12): 2330-9.
[http://dx.doi.org/10.1002/cssc.201300457] [PMID: 24039010]
[72]
Qu WH, Xu YY, Lu AH, Zhang XQ, Li WC. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol 2015; 189: 285-91.
[http://dx.doi.org/10.1016/j.biortech.2015.04.005] [PMID: 25898091]
[73]
Zhou J, Wang M, Li X. Promising biomass-derived nitrogen-doped porous carbon for high performance supercapacitor. J Porous Mater 2019; 26(1): 99-108.
[http://dx.doi.org/10.1007/s10934-018-0622-3]
[74]
Zhang Q, Han K, Li S, Li M, Li J, Ren K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 2018; 10(5): 2427-37.
[http://dx.doi.org/10.1039/C7NR07158B] [PMID: 29335695]
[75]
Wang D, Yang M, He Y, et al. Honeycomb-like nitrogen-superdoped porous carbon for high performance supercapacitors. J Porous Mater 2020; 27(6): 1765-71.
[http://dx.doi.org/10.1007/s10934-020-00952-7]
[76]
Senthilkumar ST, Fu N, Liu Y, Wang Y, Zhou L, Huang H. Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim Acta 2016; 211: 411-9.
[http://dx.doi.org/10.1016/j.electacta.2016.06.059]
[77]
Zhang Y, Liu S, Zheng X, et al. Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 2017; 27(3): 1604687.
[http://dx.doi.org/10.1002/adfm.201604687]
[78]
Tran Thi Dieu H, Charoensook K, Tai HC, Lin YT, Li YY. Preparation of activated carbon derived from oil palm empty fruit bunches and its modification by nitrogen doping for supercapacitors. J Porous Mater 2021; 28(1): 9-18.
[http://dx.doi.org/10.1007/s10934-020-00957-2]
[79]
Ahmed S, Ahmed A, Rafat M. Nitrogen doped activated carbon from pea skin for high performance supercapacitor. Mater Res Express 2018; 5(4): 045508.
[http://dx.doi.org/10.1088/2053-1591/aabbe7]
[80]
Leng C, Sun K, Li J, Jiang J. From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain Chem& Eng 2017; 5(11): 10474-82.
[http://dx.doi.org/10.1021/acssuschemeng.7b02481]
[81]
Gao S, Li X, Li L, Wei X. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 2017; 33: 334-42.
[http://dx.doi.org/10.1016/j.nanoen.2017.01.045]
[82]
Teo EYL, Muniandy L, Ng EP, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta 2016; 192: 110-9.
[http://dx.doi.org/10.1016/j.electacta.2016.01.140]
[83]
Zhu L, Shen F, Smith RL Jr, Yan L, Li L, Qi X. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem Eng J 2017; 316: 770-7.
[http://dx.doi.org/10.1016/j.cej.2017.02.034]
[84]
Ferrero GA, Fuertes AB, Sevilla M. From Soybean residue to advanced supercapacitors. Sci Rep 2015; 5(1): 16618.
[http://dx.doi.org/10.1038/srep16618] [PMID: 26568473]
[85]
Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 2010; 195(3): 912-8.
[http://dx.doi.org/10.1016/j.jpowsour.2009.08.048]
[86]
Li X, Xing W, Zhuo S, et al. Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 2011; 102(2): 1118-23.
[http://dx.doi.org/10.1016/j.biortech.2010.08.110] [PMID: 20850968]
[87]
Liu W, Mei J, Liu G, Kou Q, Yi T, Xiao S. Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors. ACS Sustain Chem& Eng 2018; 6(9): 11595-605.
[http://dx.doi.org/10.1021/acssuschemeng.8b01798]
[88]
Braghiroli FL, Cuña A, da Silva EL, et al. The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors. J Porous Mater 2020; 27(2): 537-48.
[http://dx.doi.org/10.1007/s10934-019-00823-w]
[89]
Huang Y, Peng L, Liu Y, Zhao G, Chen JY, Yu G. Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 2016; 8(24): 15205-15.
[http://dx.doi.org/10.1021/acsami.6b02214] [PMID: 27220422]
[90]
Wang D, Xu Z, Lian Y, Ban C, Zhang H. Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors. J Colloid Interface Sci 2019; 542: 400-9.
[http://dx.doi.org/10.1016/j.jcis.2019.02.024] [PMID: 30771635]
[91]
Fu M, Chen W, Ding J, Zhu X, Liu Q. Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. J Alloys Compd 2019; 782: 952-60.
[http://dx.doi.org/10.1016/j.jallcom.2018.12.244]
[92]
Xu Z, Li Y, Li D, et al. N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors. Appl Surf Sci 2018; 444: 661-71.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.100]
[93]
Lei S, Chen L, Zhou W, et al. Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. J Power Sources 2018; 379: 74-83.
[http://dx.doi.org/10.1016/j.jpowsour.2018.01.032]
[94]
Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 2017; 36: 322-30.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.042]
[95]
Tang L, Zhou Y, Zhou X, Chai Y, Zheng Q, Lin D. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature. J Mater Sci Mater Electron 2019; 30(3): 2600-9.
[http://dx.doi.org/10.1007/s10854-018-0535-6]
[96]
Liu M, Niu J, Zhang Z, Dou M, Wang F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 2018; 51: 366-72.
[http://dx.doi.org/10.1016/j.nanoen.2018.06.037]
[97]
Xu H, Wu C, Wei X, Gao S. Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J Mater Chem A Mater Energy Sustain 2018; 6(31): 15340-7.
[http://dx.doi.org/10.1039/C8TA04777D]
[98]
Zhou Y, Ren J, Xia L, et al. Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors. Chem Electro Chem 2017; 4(12): 3181-7.
[http://dx.doi.org/10.1002/celc.201700810]
[99]
Gao F, Qu J, Geng C, Shao G, Wu M. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J Mater Chem A Mater Energy Sustain 2016; 4(19): 7445-52.
[http://dx.doi.org/10.1039/C6TA01314G]
[100]
Zhu B, Liu B, Qu C, et al. Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. J Mater Chem A Mater Energy Sustain 2018; 6(4): 1523-30.
[http://dx.doi.org/10.1039/C7TA09608A]
[101]
Jiang L, Sheng L, Chen X, Wei T, Fan Z. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J Mater Chem A Mater Energy Sustain 2016; 4(29): 11388-96.
[http://dx.doi.org/10.1039/C6TA02570F]
[102]
Li D, Chang G, Zong L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater 2019; 17: 22-30.
[http://dx.doi.org/10.1016/j.ensm.2018.08.004]
[103]
Perez-Salcedo KY, Ruan S, Su J, Shi X, Kannan AM, Escobar B. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. J Porous Mater 2020; 27(4): 959-69.
[http://dx.doi.org/10.1007/s10934-020-00871-7]
[104]
Chen D, Li L, Xi Y, et al. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochim Acta 2018; 286: 264-70.
[http://dx.doi.org/10.1016/j.electacta.2018.08.030]
[105]
Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science 2002; 297(5582): 787-92.
[http://dx.doi.org/10.1126/science.1060928]
[106]
Chen C, Mo M, Chen W, et al. Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments. Compos Sci Technol 2018; 156: 103-8.
[http://dx.doi.org/10.1016/j.compscitech.2017.12.029]
[107]
Chen C, Wang Y, Meng T, et al. Electrically conductive polyacrylamide/carbon nanotube hydrogel: Reinforcing effect from cellulose nanofibers. Cellulose 2019; 26(16): 8843-51.
[http://dx.doi.org/10.1007/s10570-019-02710-8]
[108]
Yoon BJ, Jeong SH, Lee KH, Seok Kim H, Gyung Park C, Hun Han J. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 2004; 388(1-3): 170-4.
[http://dx.doi.org/10.1016/j.cplett.2004.02.071]
[109]
Wen S, Jung M, Joo OS, Mho S. EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Curr Appl Phys 2006; 6(6): 1012-5.
[http://dx.doi.org/10.1016/j.cap.2005.07.008]
[110]
Xu B, Wu F, Su Y, et al. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity. Electrochim Acta 2008; 53(26): 7730-5.
[http://dx.doi.org/10.1016/j.electacta.2008.05.033]
[111]
Shah R, Zhang X, Talapatra S. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 2009; 20(39): 395202.
[http://dx.doi.org/10.1088/0957-4484/20/39/395202] [PMID: 19726841]
[112]
Jung DW, Lee CS, Park S, Oh ES. Characterization of electric double-layer capacitors with carbon nanotubes directly synthesized on a copper plate as a current collector. Korean J Metals Mater 2011; 49(6): 419-24.
[http://dx.doi.org/10.3365/KJMM.2011.49.5.419]
[113]
Pan H, Poh CK, Feng YP, Lin J. Supercapacitor electrodes from tubes-in-tube carbon nanostructures. Chem Mater 2007; 19(25): 6120-5.
[http://dx.doi.org/10.1021/cm071527e]
[114]
Izadi-Najafabadi A, Yasuda S, Kobashi K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 2010; 22(35): E235-41.
[http://dx.doi.org/10.1002/adma.200904349] [PMID: 20564700]
[115]
Li-Xiang LI, Jing TAO, Xin GENG, et al. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Wuli Huaxue Xuebao 2013; 29(1): 111-6.
[http://dx.doi.org/10.3866/PKU.WHXB201211091]
[116]
Gueon D, Moon JH. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: Emulsion-assisted compact packing and capacitance enhancement. ACS Appl Mater Interfaces 2015; 7(36): 20083-9.
[http://dx.doi.org/10.1021/acsami.5b05231] [PMID: 26325508]
[117]
Bulusheva LG, Fedorovskaya EO, Kurenya AG, Okotrub AV. Supercapacitor performance of nitrogen-doped carbon nanotube arrays. Phys Status Solidi 2013; 250(12): 2586-91.
[http://dx.doi.org/10.1002/pssb.201300108]
[118]
Peng C, Jin J, Chen GZ. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 2007; 53(2): 525-37.
[http://dx.doi.org/10.1016/j.electacta.2007.07.004]
[119]
Xie L, Sun G, Su F, et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A Mater Energy Sustain 2016; 4(5): 1637-46.
[http://dx.doi.org/10.1039/C5TA09043A]
[120]
Kim TY, Lee HW, Stoller M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 2011; 5(1): 436-42.
[http://dx.doi.org/10.1021/nn101968p] [PMID: 21142183]
[121]
Zhu Y, Murali S, Stoller M, Ruoff R. Graphene-Based Ultracapacitors. IOP Publishing InECS Meeting Abstracts. (2010).
[http://dx.doi.org/10.1149/MA2010-02/6/427]
[122]
Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010; 10(12): 4863-8.
[http://dx.doi.org/10.1021/nl102661q] [PMID: 21058713]
[123]
Ogata C, Kurogi R, Hatakeyama K, Taniguchi T, Koinuma M, Matsumoto Y. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage. Chem Commun 2016; 52(20): 3919-22.
[http://dx.doi.org/10.1039/C5CC09575A] [PMID: 26871961]
[124]
Zhang H, Wang K, Zhang X, et al. Self-generating graphene and porous nanocarbon composites for capacitive energy storage. J Mater Chem A Mater Energy Sustain 2015; 3(21): 11277-86.
[http://dx.doi.org/10.1039/C5TA01783A]
[125]
Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR. Graphene-based electrochemical supercapacitors. J Chem Sci 2008; 120(1): 9-13.
[http://dx.doi.org/10.1007/s12039-008-0002-7]
[126]
Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-Based Ultracapacitors. Nano Lett 2008; 8(10): 3498-502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[127]
Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials. J Phys Chem C 2009; 113(30): 13103-7.
[http://dx.doi.org/10.1021/jp902214f]
[128]
Navarro-Suárez AM, Van Aken KL, Mathis T, et al. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim Acta 2018; 259: 752-61.
[http://dx.doi.org/10.1016/j.electacta.2017.10.125]
[129]
Li F, Chen J, Wang X, Xue M, Chen GF. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Adv Funct Mater 2015; 25(29): 4601-6.
[http://dx.doi.org/10.1002/adfm.201500718]
[130]
Yan J, Ren CE, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017; 27(30): 1701264.
[http://dx.doi.org/10.1002/adfm.201701264]
[131]
Wang F, Wang C, Zhao Y, et al. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016; 12(45): 6207-13.
[http://dx.doi.org/10.1002/smll.201602331] [PMID: 27682599]
[132]
Wang F, Liu Z, Yuan X, et al. A quasi-solid-state Li-ion capacitor with high energy density based on Li3 VO4/carbon nanofibers and electrochemically-exfoliated graphene sheets. J Mater Chem A Mater Energy Sustain 2017; 5(28): 14922-9.
[http://dx.doi.org/10.1039/C7TA03920D]
[133]
Luo H, Liu Z, Chao L, et al. Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J Mater Chem A Mater Energy Sustain 2015; 3(7): 3667-75.
[http://dx.doi.org/10.1039/C4TA05843G]
[134]
Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A Mater Energy Sustain 2013; 1(21): 6462-70.
[http://dx.doi.org/10.1039/c3ta10897j]
[135]
Zhou H, Zhang J, Amiinu IS, et al. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. Phys Chem Chem Phys 2016; 18(15): 10392-9.
[http://dx.doi.org/10.1039/C6CP00174B] [PMID: 27030144]
[136]
Chien HC, Cheng WY, Wang YH, Lu SY. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv Funct Mater 2012; 22(23): 5038-43.
[http://dx.doi.org/10.1002/adfm.201201176]
[137]
Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem Int Ed 2011; 50(7): 1699-701.
[http://dx.doi.org/10.1002/anie.201006811] [PMID: 21308936]
[138]
Wang H, Wu H, Chang Y, Chen Y, Hu Z. Tert-butylhydroquinone-decorated graphene nanosheets and their enhanced capacitive behaviors. Chin Sci Bull 2011; 56(20): 2092-7.
[http://dx.doi.org/10.1007/s11434-011-4424-0]
[139]
Anjos DM, McDonough JK, Perre E, et al. Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy 2013; 2(5): 702-12.
[http://dx.doi.org/10.1016/j.nanoen.2013.08.003]
[140]
Anjos DM, Kolesnikov AI, Wu Z, et al. Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon. Carbon 2013; 52: 150-7.
[http://dx.doi.org/10.1016/j.carbon.2012.09.016]
[141]
Chen X, Wang H, Yi H, Wang X, Yan X, Guo Z. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J Phys Chem C 2014; 118(16): 8262-70.
[http://dx.doi.org/10.1021/jp5009626]
[142]
Shabangoli Y, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB. Thionine functionalized 3D graphene aerogel: Combining simplicity and efficiency in fabrication of a metal-free redox supercapacitor. Adv Energy Mater 2018; 8(34): 1802869.
[http://dx.doi.org/10.1002/aenm.201802869]
[143]
Sun W, Gao G, Du Y, Zhang K, Wu G. A facile strategy for fabricating hierarchical nanocomposites of V 2 O 5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors. J Mater Chem A Mater Energy Sustain 2018; 6(21): 9938-47.
[http://dx.doi.org/10.1039/C8TA01448E]
[144]
Lee JH, Park SJ. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020; 163: 1-18.
[http://dx.doi.org/10.1016/j.carbon.2020.02.073]
[145]
Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 2018; 61(2): 133-58.
[http://dx.doi.org/10.1007/s40843-017-9169-4]
[146]
Wang Y, Qu Q, Gao S, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019; 155: 706-26.
[http://dx.doi.org/10.1016/j.carbon.2019.09.018]
[147]
Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 2016; 120(4): 2079-86.
[http://dx.doi.org/10.1021/acs.jpcc.5b11280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy