Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Updates on Structural Aspects of ALK Inhibitors as an Anticancer Agent

Author(s): Md Shahid Ayaz, Ritu Bhupal, Priyanka Sharma, Adarsh Sahu, Parwati Singh, Ghanshyam Das Gupta and Vivek Asati*

Volume 23, Issue 8, 2023

Published on: 31 January, 2023

Page: [900 - 921] Pages: 22

DOI: 10.2174/1871520623666230110114620

Price: $65

Abstract

Presently, several protein kinases have been discovered with the aim to treat various cancers. Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that plays a role in the pathogenesis of a wide variety of human cancers known as ALCLs, NSCLC, ovarian cancer, breast cancer, colorectal cancer, neuroblastoma, etc. The fulllength ALK receptor is a classical receptor tyrosine kinase composed of an amino-terminal extracellular domain and an intracellular tyrosine kinase domain. Crizotinib is a strong oral small-molecule first tyrosine kinase inhibitor of ALK to be used in the treatment of ALK-dependent NSCLC. Due to the drug resistance of first generation ALK inhibitors, researchers are trying to design and synthesize novel ALK inhibitors with various heterocyclic rings in which 2,4- diarylaminopyrimidine derivatives with a specific N-(3-pyridinylmethyl)urea moiety, 2-amino-4-(1-piperidine) pyridine derivatives, 7-azaindole and carboxamide derivatives and some others produced potential compounds. To overcome drug resistance, to get better affinity and to reduce drug toxicity, there is an urgent need for novel ALK inhibitors. The present review describes the ALK signaling, their inhibitors and related structure activity relationships for the development of potential ALK inhibitors.

Graphical Abstract

[1]
Kuo, A.H.; Stoica, G.E.; Riegel, A.T.; Wellstein, A. Recruitment of insulin receptor substrate-1 and activation of NF-κB essential for midkine growth signaling through anaplastic lymphoma kinase. Oncogene, 2007, 26(6), 859-869.
[http://dx.doi.org/10.1038/sj.onc.1209840] [PMID: 16878150]
[2]
Mo, E.S.; Cheng, Q.; Reshetnyak, A.V.; Schlessinger, J.; Nicoli, S. Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc. Natl. Acad. Sci. USA, 2017, 114(45), 12027-12032.
[http://dx.doi.org/10.1073/pnas.1710254114] [PMID: 29078341]
[3]
Mundade, R.; Imperiale, T.F.; Prabhu, L.; Loehrer, P.J.; Lu, T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience, 2014, 1(6), 400-406.
[http://dx.doi.org/10.18632/oncoscience.59] [PMID: 25594038]
[4]
Coffin, C.M.; Patel, A.; Perkins, S.; Elenitoba-Johnson, K.S.J.; Perlman, E.; Griffin, C.A. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod. Pathol., 2001, 14(6), 569-576.
[http://dx.doi.org/10.1038/modpathol.3880352] [PMID: 11406658]
[5]
Webb, T.R.; Slavish, J.; George, R.E.; Look, A.T.; Xue, L.; Jiang, Q.; Cui, X.; Rentrop, W.B.; Morris, S.W. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev. Anticancer Ther., 2009, 9(3), 331-356.
[http://dx.doi.org/10.1586/14737140.9.3.331] [PMID: 19275511]
[6]
Turner, N.; Tutt, A.; Ashworth, A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer, 2004, 4(10), 814-819.
[http://dx.doi.org/10.1038/nrc1457] [PMID: 15510162]
[7]
Barreca, A.; Lasorsa, E.; Riera, L.; Machiorlatti, R.; Piva, R.; Ponzoni, M.; Kwee, I.; Bertoni, F.; Piccaluga, P.P.; Pileri, S.A.; Inghirami, G. Anaplastic lymphoma kinase in human cancer. J. Mol. Endocrinol., 2011, 47(1), R11-R23.
[http://dx.doi.org/10.1530/JME-11-0004] [PMID: 21502284]
[8]
Maris, J.M.; Matthay, K.K. Molecular biology of neuroblastoma. J. Clin. Oncol., 1999, 17(7), 2264-2279.
[http://dx.doi.org/10.1200/JCO.1999.17.7.2264] [PMID: 10561284]
[9]
Esteller, M.; Corn, P.G.; Baylin, S.B.; Herman, J.G. A gene hypermethylation profile of human cancer. Cancer Res., 2001, 61(8), 3225-3229.
[PMID: 11309270]
[10]
Azarova, A.M.; Gautam, G. George, RE Emerging importance of ALK in neuroblastoma. In: Seminars in cancer biology. Academic Press: Cambridge, , 2011; 21, p. (4)pp. 267-275.
[http://dx.doi.org/10.1016/j.semcancer.2011.09.005]
[11]
Lorén, C.E.; Scully, A.; Grabbe, C.; Edeen, P.T.; Thomas, J.; McKeown, M.; Hunter, T.; Palmer, R.H. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells, 2001, 6(6), 531-544.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00440.x] [PMID: 11442633]
[12]
Jiang, G.; den Hertog, J.; Hunter, T. Receptor-like protein tyrosine phosphatase α homodimerizes on the cell surface. Mol. Cell. Biol., 2000, 20(16), 5917-5929.
[http://dx.doi.org/10.1128/MCB.20.16.5917-5929.2000] [PMID: 10913175]
[13]
Aricescu, A.R.; Hon, W.C.; Siebold, C.; Lu, W.; van der Merwe, P.A.; Jones, E.Y. Molecular analysis of receptor protein tyrosine phosphatase μ-mediated cell adhesion. EMBO J., 2006, 25(4), 701-712.
[http://dx.doi.org/10.1038/sj.emboj.7600974] [PMID: 16456543]
[14]
Stoica, G.E.; Kuo, A.; Powers, C.; Bowden, E.T.; Sale, E.B.; Riegel, A.T.; Wellstein, A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem., 2002, 277(39), 35990-35998.
[http://dx.doi.org/10.1074/jbc.M205749200] [PMID: 12122009]
[15]
Stylianou, D.C.; Auf der Maur, A.; Kodack, D.P.; Henke, R.T.; Hohn, S.; Toretsky, J.A.; Riegel, A.T.; Wellstein, A. Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor. Oncogene, 2009, 28(37), 3296-3306.
[http://dx.doi.org/10.1038/onc.2009.184] [PMID: 19633684]
[16]
Reshetnyak, A.V.; Murray, P.B.; Shi, X.; Mo, E.S.; Mohanty, J.; Tome, F.; Bai, H.; Gunel, M.; Lax, I.; Schlessinger, J. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand-receptor interactions. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 15862-15867.
[http://dx.doi.org/10.1073/pnas.1520099112] [PMID: 26630010]
[17]
Miyake, I.; Hakomori, Y.; Shinohara, A.; Gamou, T.; Saito, M.; Iwamatsu, A.; Sakai, R. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene, 2002, 21(38), 5823-5834.
[http://dx.doi.org/10.1038/sj.onc.1205735] [PMID: 12185581]
[18]
Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 2021, 21(2), 71-88.
[http://dx.doi.org/10.1038/s41568-020-00312-2] [PMID: 33214692]
[19]
Pulford, K.; Lamant, L.; Morris, S.W.; Butler, L.H.; Wood, K.M.; Stroud, D.; Delsol, G.; Mason, D.Y. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood, 1997, 89(4), 1394-1404.
[http://dx.doi.org/10.1182/blood.V89.4.1394] [PMID: 9028963]
[20]
McGowan, S.E. Paracrine cellular and extracellular matrix interactions with mesenchymal progenitors during pulmonary alveolar septation. Birth Defects Res. A Clin. Mol. Teratol., 2014, 100(3), 227-239.
[http://dx.doi.org/10.1002/bdra.23230] [PMID: 24639378]
[21]
Pulford, K.; Morris, S.W.; Turturro, F. Anaplastic lymphoma kinase proteins in growth control and cancer. J. Cell. Physiol., 2004, 199(3), 330-358.
[http://dx.doi.org/10.1002/jcp.10472] [PMID: 15095281]
[22]
Reiner, D.J.; Ailion, M.; Thomas, J.H.; Meyer, B.J.C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-β signaling. Curr. Biol., 2008, 18(15), 1101-1109.
[http://dx.doi.org/10.1016/j.cub.2008.06.060] [PMID: 18674914]
[23]
Lorén, C.E.; Englund, C.; Grabbe, C.; Hallberg, B.; Hunter, T.; Palmer, R.H. A crucial role for the anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep., 2003, 4(8), 781-786.
[http://dx.doi.org/10.1038/sj.embor.embor897] [PMID: 12855999]
[24]
Savage-Dunn, C. Targets of TGFβ-related signaling in Caenorhabditis elegans. Cytokine Growth Factor Rev., 2001, 12(4), 305-312.
[http://dx.doi.org/10.1016/S1359-6101(01)00015-6] [PMID: 11544101]
[25]
Bazigou, E.; Apitz, H.; Johansson, J.; Lorén, C.E.; Hirst, E.M.A.; Chen, P.L.; Palmer, R.H.; Salecker, I. Anterograde jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell, 2007, 128(5), 961-975.
[http://dx.doi.org/10.1016/j.cell.2007.02.024] [PMID: 17350579]
[26]
Englund, C.; Lorén, C.E.; Grabbe, C.; Varshney, G.K.; Deleuil, F.; Hallberg, B.; Palmer, R.H. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature, 2003, 425(6957), 512-516.
[http://dx.doi.org/10.1038/nature01950] [PMID: 14523447]
[27]
Cazes, A.; Lopez-Delisle, L.; Tsarovina, K.; Pierre-Eugène, C.; De Preter, K.; Peuchmaur, M.; Nicolas, A.; Provost, C.; Louis-Brennetot, C.; Daveau, R.; Kumps, C.; Cascone, I.; Schleiermacher, G.; Prignon, A.; Speleman, F.; Rohrer, H.; Delattre, O.; Janoueix-Lerosey, I. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget, 2014, 5(9), 2688-2702.
[http://dx.doi.org/10.18632/oncotarget.1883] [PMID: 24811913]
[28]
Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer, 2018, 17(1), 30.
[http://dx.doi.org/10.1186/s12943-018-0776-2] [PMID: 29455642]
[29]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[30]
Xia, Z.; Ji, Y.; Sun, D.; Peng, X.; Gao, Y.; Fang, Y.; Zhao, X.; Wang, W.; Ding, J.; Geng, M.; Ai, J. SAF-189s, a potent new-generation ROS1 inhibitor, is active against crizotinib-resistant ROS1 mutant-driven tumors. Acta Pharmacol. Sin., 2021, 42(6), 998-1004.
[http://dx.doi.org/10.1038/s41401-020-00513-3] [PMID: 32918045]
[31]
Li, T.; LoRusso, P.; Maitland, M.L.; Ou, S.H.I.; Bahceci, E.; Ball, H.A.; Park, J.W.; Yuen, G.; Tolcher, A. First-in-human, open-label dose-escalation and dose-expansion study of the safety, pharmacokinetics, and antitumor effects of an oral ALK inhibitor ASP3026 in patients with advanced solid tumors. J. Hematol. Oncol., 2016, 9(1), 23.
[http://dx.doi.org/10.1186/s13045-016-0254-5] [PMID: 26966027]
[32]
Attwa, M.W.; Kadi, A.A.; Darwish, H.W. Belizatinib: Novel reactive intermediates and bioactivation pathways characterized by LC-MS/MS. J. Pharm. Biomed. Anal., 2019, 171, 132-147.
[http://dx.doi.org/10.1016/j.jpba.2019.04.006] [PMID: 30999224]
[33]
Ott, G.R.; Cheng, M.; Learn, K.S.; Wagner, J.; Gingrich, D.E.; Lisko, J.G.; Curry, M.; Mesaros, E.F.; Ghose, A.K.; Quail, M.R.; Wan, W.; Lu, L.; Dobrzanski, P.; Albom, M.S.; Angeles, T.S.; Wells-Knecht, K.; Huang, Z.; Aimone, L.D.; Bruckheimer, E.; Anderson, N.; Friedman, J.; Fernandez, S.V.; Ator, M.A.; Ruggeri, B.A.; Dorsey, B.D. Discovery of clinical candidate CEP-37440, a selective inhibitor of focal adhesion kinase (FAK) and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2016, 59(16), 7478-7496.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00487] [PMID: 27527804]
[34]
Weiss, G.J.; Rosell, R.; Fossella, F.; Perry, M.; Stahel, R.; Barata, F.; Nguyen, B.; Paul, S.; McAndrews, P.; Hanna, N.; Kelly, K.; Bunn, P.A., Jr The impact of induction chemotherapy on the outcome of second-line therapy with pemetrexed or docetaxel in patients with advanced non-small-cell lung cancer. Ann. Oncol., 2007, 18(3), 453-460.
[http://dx.doi.org/10.1093/annonc/mdl454] [PMID: 17322539]
[35]
Butrynski, J.E.; D’Adamo, D.R.; Hornick, J.L.; Dal Cin, P.; Antonescu, C.R.; Jhanwar, S.C.; Ladanyi, M.; Capelletti, M.; Rodig, S.J.; Ramaiya, N.; Kwak, E.L.; Clark, J.W.; Wilner, K.D.; Christensen, J.G.; Jänne, P.A.; Maki, R.G.; Demetri, G.D.; Shapiro, G.I. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med., 2010, 363(18), 1727-1733.
[http://dx.doi.org/10.1056/NEJMoa1007056] [PMID: 20979472]
[36]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[37]
Garraway, L.A.; Jänne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov., 2012, 2(3), 214-226.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0012] [PMID: 22585993]
[38]
Katayama, R; Shaw, AT; Khan, TM; Mino-Kenudson, M; Solomon, BJ; Halmos, B Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Science translational medicine. 2012, 4(120), 120ra17-ra17.
[39]
Crystal, A.S.; Shaw, A.T.; Sequist, L.V.; Friboulet, L.; Niederst, M.J.; Lockerman, E.L.; Frias, R.L.; Gainor, J.F.; Amzallag, A.; Greninger, P.; Lee, D.; Kalsy, A.; Gomez-Caraballo, M.; Elamine, L.; Howe, E.; Hur, W.; Lifshits, E.; Robinson, H.E.; Katayama, R.; Faber, A.C.; Awad, M.M.; Ramaswamy, S.; Mino-Kenudson, M.; Iafrate, A.J.; Benes, C.H.; Engelman, J.A. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346(6216), 1480-1486.
[http://dx.doi.org/10.1126/science.1254721] [PMID: 25394791]
[40]
Iams, W.T.; Lovly, C.M. Anaplastic Lymphoma Kinase (ALK) as a therapeutic target in non-small cell lung cancer. Cancer J., 2015, 21(5), 378-382.
[http://dx.doi.org/10.1097/PPO.0000000000000142] [PMID: 26389762]
[41]
Su, K.Y.; Chen, H.Y.; Li, K.C.; Kuo, M.L.; Yang, J.C.H.; Chan, W.K.; Ho, B.C.; Chang, G.C.; Shih, J.Y.; Yu, S.L.; Yang, P.C. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(4), 433-440.
[http://dx.doi.org/10.1200/JCO.2011.38.3224] [PMID: 22215752]
[42]
Risbridger, G.P.; Toivanen, R.; Taylor, R.A. Preclinical models of prostate cancer: Patient-derived xenografts, organoids, and other explant models. Cold Spring Harb. Perspect. Med., 2018, 8(8)a030536
[http://dx.doi.org/10.1101/cshperspect.a030536] [PMID: 29311126]
[43]
Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem. Biol., 2018, 13(2), 406-416.
[http://dx.doi.org/10.1021/acschembio.7b00657] [PMID: 29035510]
[44]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[45]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S.; Balke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[46]
Lin, J.J.; Riely, G.J.; Shaw, A.T. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov., 2017, 7(2), 137-155.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1123] [PMID: 28122866]
[47]
Redaelli, S.; Ceccon, M.; Zappa, M.; Sharma, G.G.; Mastini, C.; Mauri, M.; Nigoghossian, M.; Massimino, L.; Cordani, N.; Farina, F.; Piazza, R.; Gambacorti-Passerini, C.; Mologni, L. Lorlatinib treatment elicits multiple on-and off-target mechanisms of resistance in ALK-driven cancer. Cancer Res., 2018, 78(24), 6866-6880.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1867] [PMID: 30322862]
[48]
Attili, I.; Del Re, M.; Guerini-Rocco, E.; Crucitta, S.; Pisapia, P.; Pepe, F.; Barberis, M.; Troncone, G.; Danesi, R.; de Marinis, F.; Malapelle, U.; Passaro, A. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev. Mol. Diagn., 2021, 21(8), 757-766.
[http://dx.doi.org/10.1080/14737159.2021.1943365] [PMID: 34278933]
[49]
Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00306] [PMID: 27144831]
[50]
Gettinger, S.N.; Bazhenova, L.; Salgia, R.; Langer, C.J.; Gold, K.A.; Rosell, R. Updated efficacy and safety of the ALK inhibitor AP26113 in patients (pts) with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC); American Society of Clinical Oncology, 2014.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.8047]
[51]
Gettinger, S.N.; Zhang, S.; Hodgson, J.G.; Bazhenova, L.; Burgers, S.; Kim, D-W. Activity of brigatinib (BRG) in crizotinib (CRZ) resistant patients (pts) according to ALK mutation status; American Society of Clinical Oncology, 2016.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9060]
[52]
Shaw, A.T.; Bauer, T.M.; Felip, E.; Besse, B.; James, L.P.; Clancy, J.S. Clinical activity and safety of PF-06463922 from a dose escalation study in patients with advanced ALK+ or ROS1+ NSCLC; American Society of Clinical Oncology, 2015.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.8018]
[53]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[54]
Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M.B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J.M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther., 2016, 15(4), 628-639.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0758] [PMID: 26939704]
[55]
Drilon, A.; De Braud, F.G.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Liu, S.V.; Reddinger, N.; Patel, R.; Luo, D.; Maneval, E.C.; Multani, P.S.; Doebele, R.C.; Shaw, A.T. Abstract CT007: Entrectinib, an oral pan-Trk, ROS1, and ALK inhibitor in TKI-naïve patients with advanced solid tumors harboring gene rearrangements: Updated phase I results. Cancer Res., 2016, 71, (14_Supplement)(Suppl.), CT007.
[http://dx.doi.org/10.1158/1538-7445.AM2016-CT007]
[56]
Lovly, C.M.; Heuckmann, J.M.; de Stanchina, E.; Chen, H.; Thomas, R.K.; Liang, C.; Pao, W. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res., 2011, 71(14), 4920-4931.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3879] [PMID: 21613408]
[57]
Johnson, T.W.; Richardson, P.F.; Bailey, S.; Brooun, A.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Huang, Q.; Kania, R.S.; Kath, J.C.; Lam, H.; Lam, J.L.; Le, P.T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C.L.; Sach, N.W.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Discovery of (10R)-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno) pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J. Med. Chem., 2014, 57(11), 4720-4744.
[http://dx.doi.org/10.1021/jm500261q] [PMID: 24819116]
[58]
Murray, B.W.; Zhai, D.; Deng, W.; Zhang, X.; Ung, J.; Nguyen, V.; Zhang, H.; Barrera, M.; Parra, A.; Cowell, J.; Lee, D.J.; Aloysius, H.; Rogers, E. TPX-0131, a Potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant Mutations. Mol. Cancer Ther., 2021, 20(9), 1499-1507.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0221] [PMID: 34158340]
[59]
Wargo, J.A.; Reuben, A.; Cooper, Z.A.; Oh, K.S.; Sullivan, R.J. Eds. Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Seminars in oncology; Elsevier: Amsterdam, 2015.
[60]
Fujimura, T.; Furugaki, K.; Harada, N.; Yoshimura, Y. Enhanced antitumor effect of alectinib in combination with cyclin-dependent kinase 4/6 inhibitor against RET-fusion-positive non-small cell lung cancer cells. Cancer Biol. Ther., 2020, 21(9), 863-870.
[http://dx.doi.org/10.1080/15384047.2020.1806643] [PMID: 32835580]
[61]
Chen, Y.; Ma, G.; Su, C.; Wu, P.; Wang, H.; Song, X.; Yu, Q.; Zeng, A.; Zhou, S. Apatinib reverses alectinib resistance by targeting vascular endothelial growth factor receptor 2 and attenuating the oncogenic signaling pathway in echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene-positive lung cancer cell lines. Anticancer Drugs, 2018, 29(10), 935-943.
[http://dx.doi.org/10.1097/CAD.0000000000000667] [PMID: 30074936]
[62]
Castellanos, E.H.; Horn, L. Re-evaluating progression in an Era of progress: A review of first- and second-line treatment options in anaplastic lymphoma kinase-positive non-small cell lung cancer. Oncologist, 2016, 21(6), 755-761.
[http://dx.doi.org/10.1634/theoncologist.2015-0396] [PMID: 27053502]
[63]
Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A., Jr; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; Camidge, D.R. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol., 2012, 7(12), 1807-1814.
[http://dx.doi.org/10.1097/JTO.0b013e3182745948] [PMID: 23154552]
[64]
Gan, G.N.; Weickhardt, A.J.; Scheier, B.; Doebele, R.C.; Gaspar, L.E.; Kavanagh, B.D. Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int. J. Radiat. Oncol. Biol. Phys., 2014, 88(4), 892-898.
[http://dx.doi.org/10.1016/j.ijrobp.2013.11.010]
[65]
A study of foretinib in patients with recurrent/metastic breast cancer (IND197). U.S. National Library of Medicine, 2020. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01147484
[66]
Ma, Y.; Yang, N.; Li, S.; Zhao, H.; Li, L.; Yang, H.; Fang, W.; Zhang, Y.; Hong, S.; Xiong, Y.; Zhou, C. A phase I, dose-escalation and expansion study of TQ-B3139, a novel ALK TKI, in Chinese ALK or ROS1 positive advanced non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 2020, 38(15)(Suppl.), 9585-9585.
[67]
A phase study of alkotinib in patients with advanced non small cell lung cancer (NSCLC), 2022. Available from: https://clinicaltrials. gov/ct2/show/NCT03607188
[68]
Lin, C.C.; Arkenau, H.T.; Lu, S.; Sachdev, J.; de Castro Carpeño, J.; Mita, M.; Dziadziuszko, R.; Su, W.C.; Bobilev, D.; Hughes, L.; Chan, J.; Zhang, Z.Y.; Weiss, G.J. A phase 1, open-label, dose-escalation trial of oral TSR-011 in patients with advanced solid tumours and lymphomas. Br. J. Cancer, 2019, 121(2), 131-138.
[http://dx.doi.org/10.1038/s41416-019-0503-9] [PMID: 31217479]
[69]
Desai, A.V.; Brodeur, G.M.; Foster, J.; Berg, S.L.; Basu, E.M.; Shusterman, S.; Sabnis, A.J.; Macy, M.; Yoon, J.; Gauvain, K.; Esquibel, V. Phase 1 study of entrectinib (RXDX-101), a TRK, ROS1, and ALK inhibitor, in children, adolescents, and young adults with recurrent or refractory solid tumors. ASCO Annual Meeting I. 2018.
[70]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[http://dx.doi.org/10.1056/NEJMoa1214886] [PMID: 23724913]
[71]
Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
[http://dx.doi.org/10.1056/NEJMoa1408440] [PMID: 25470694]
[72]
Larkins, E.; Blumenthal, G.M.; Chen, H.; He, K.; Agarwal, R.; Gieser, G.; Stephens, O.; Zahalka, E.; Ringgold, K.; Helms, W.; Shord, S.; Yu, J.; Zhao, H.; Davis, G.; McKee, A.E.; Keegan, P.; Pazdur, R. FDA approval: Alectinib for the treatment of metastatic, ALK-positive non-small cell lung cancer following crizotinib. Clin. Cancer Res., 2016, 22(21), 5171-5176.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1293] [PMID: 27413075]
[73]
Shaw, A.T.; Gandhi, L.; Gadgeel, S.; Riely, G.J.; Cetnar, J.; West, H.; Camidge, D.R.; Socinski, M.A.; Chiappori, A.; Mekhail, T.; Chao, B.H.; Borghaei, H.; Gold, K.A.; Zeaiter, A.; Bordogna, W.; Balas, B.; Puig, O.; Henschel, V.; Ou, S.H.I. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol., 2016, 17(2), 234-242.
[http://dx.doi.org/10.1016/S1470-2045(15)00488-X] [PMID: 26708155]
[74]
Hida, T.; Nokihara, H.; Kondo, M.; Kim, Y.H.; Azuma, K.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; Imamura, F.; Hotta, K.; Watanabe, S.; Goto, K.; Satouchi, M.; Kozuki, T.; Shukuya, T.; Nakagawa, K.; Mitsudomi, T.; Yamamoto, N.; Asakawa, T.; Asabe, R.; Tanaka, T.; Tamura, T. Alectinib versus crizotinib in patients with ALK -positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet, 2017, 390(10089), 29-39.
[http://dx.doi.org/10.1016/S0140-6736(17)30565-2] [PMID: 28501140]
[75]
Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; Zeaiter, A.; Mitry, E.; Golding, S.; Balas, B.; Noe, J.; Morcos, P.N.; Mok, T. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 829-838.
[http://dx.doi.org/10.1056/NEJMoa1704795] [PMID: 28586279]
[76]
Shaw, A.T.; Spigel, D.R.; Tan, D.S.W.; Kim, D.W.; Mehra, R.; Orlov, S.; Park, K.; Yu, C.J.; Mok, T.; Nishio, M.; Scagliotti, G.; Sutradhar, S.; Cesic, D.; Felip, E. MINI01. 01: Whole body and intracranial efficacy of ceritinib in ALK-inhibitor naive patients with ALK+ NSCLC and brain metastases: Results of ASCEND 1 and 3: topic: Medical oncology. J. Thorac. Oncol., 2016, 11(11), S256.
[http://dx.doi.org/10.1016/j.jtho.2016.09.016]
[77]
Crinò, L; Ahn, MJ; De Marinis, F; Groen, HJ; Wakelee, H; Hida, T; Mok, T; Spigel, D; Felip, E; Nishio, M Scagliotti, GV Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2, 2016.
[http://dx.doi.org/10.1200/JCO.2015.65.5936]
[78]
Markham, A. Brigatinib: First global approval. Drugs, 2017, 77(10), 1131-1135.
[http://dx.doi.org/10.1007/s40265-017-0776-3] [PMID: 28597393]
[79]
Drilon, A.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[80]
Gunzinger, J.; Leander, K. Isoquinolines Derivatives as Igf-1R Inhibitors. U.S. Patent Application 11/991, 531, 2009.
[81]
Haltiwanger, R.C.; Mesaros, E.F.; Ott, G.R. Pyrrolotriazines as alk inhibitors. U.S. Patent 9, 440, 984, 2016.
[82]
Grogan, T.; Nitta, H.; Barnes, M.; Towne, P.; Singh, S.; Clements, J.F. Method of identifying treatment responsive non-small cell lung cancer using anaplastic lymphoma kinase (ALK) as a marker. 2020.
[83]
Wang, S.; Chen, J. Aminopyrimidines as ALK inhibitors. U.S. Patent 10, 709, 705, 2020.
[84]
Wang, W.; Geng, M.; Ding, J.; Zhao, X.; Jing, A.; Tian, Q. Certain protein kinase inhibitors. U.S. Patent 10, 328, 060, 2015.
[85]
Das-Young, L.; Wilner, K.D.; Ho, S.N. Combination of a PD-1 antagonist and an ALK inhibitor for treating cancer. U.S. Patent 10, 695, 426, 2020.
[86]
Harris, J.L.; Li, N.; Smith, T.R.; Mosse, Y.; Wood, A. Combination of an alk inhibitor and a cdk inhibitor for the treatment of cell proliferative diseases., 2018.
[87]
Liu, J.; Liu, Q.; Jiang, T.; Aoli, W.; Jiaxin, W.; Wu, H. EGFR and ALK dual inhibitor., 2019.
[88]
Yao, X-J.; Leung, E.L-h.; Luo, L-X.; Liu, L. ALK Kinase Inhibitor and its use; Google Patents, 2018.
[89]
Peters, M.; Lebwohl, D.; Scott, J.; Li, N.; Yvonne, L. Combination therapies of alk inhibitors; Google Patents, 2017.
[90]
Schlessinger, J.; Alvarado, D.; Murray, P.B. Regulators of anaplastic lymphoma kinase and uses thereof; Google Patents, 2017.
[91]
Li, N.; Harris, J.L.; McNamara, P.; Sun, F. Methods of using ALK inhibitors; Google Patents, 2014.
[92]
Yao, X.J.; Leung, L.H.; Luo, L.X.; Liu, L. Oncogenic ROS1 and ALK kinase inhibitor; Google Patents, 2017.
[93]
Zhu, M.; Li, W.; Zhao, T.; Chen, Y.; Li, T.; Wei, S.; Guo, M.; Zhai, X. Fragment-based modification of 2,4-diarylaminopyrimidine derivatives as ALK and ROS1 dual inhibitors to overcome secondary mutants. Bioorg. Med. Chem., 2020, 28(20)115719
[http://dx.doi.org/10.1016/j.bmc.2020.115719] [PMID: 33069075]
[94]
Liu, S.; Jiang, Y.; Yan, R.; Li, Z.; Wan, S.; Zhang, T.; Wu, X.; Hou, J.; Zhu, Z.; Tian, Y.; Zhang, J. Design, synthesis and biological evaluations of 2-amino-4-(1-piperidine) pyridine derivatives as novel anti crizotinib-resistant ALK/ROS1 dual inhibitors. Eur. J. Med. Chem., 2019, 179, 358-375.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.043] [PMID: 31260890]
[95]
Achary, R.; Yun, J.I.; Park, C.M.; Mathi, G.R.; Lee, J.Y.; Ha, J.D.; Chae, C.H.; Ahn, S.; Park, C.H.; Lee, C.O.; Hwang, J.Y.; Yun, C.S.; Jung, H.J.; Cho, S.Y.; Kim, H.R.; Kim, P. Discovery of novel tetrahydroisoquinoline-containing pyrimidines as ALK inhibitors. Bioorg. Med. Chem., 2016, 24(2), 207-219.
[http://dx.doi.org/10.1016/j.bmc.2015.12.004] [PMID: 26712094]
[96]
Cai, D.; Zhang, Z.; Chen, Y.; Ruan, C.; Li, S.; Chen, S.; Chen, L. Design, synthesis and biological evaluation of novel amide-linked 18β-glycyrrhetinic acid derivatives as novel ALK inhibitors. RSC Advances, 2020, 10(20), 11694-11706.
[http://dx.doi.org/10.1039/D0RA00681E] [PMID: 35496614]
[97]
Cao, M.; Chen, Y.; Zhao, T.; Wei, S.; Guo, M.; Zhai, X. Pyrroformyl-containing 2,4-diaminopyrimidine derivatives as a new optimization strategy of ALK inhibitors combating mutations. Bioorg. Med. Chem., 2020, 28(20)115715
[http://dx.doi.org/10.1016/j.bmc.2020.115715] [PMID: 33069079]
[98]
Gummadi, V.R.; Rajagopalan, S.; Looi, C.Y.; Paydar, M.; Renukappa, G.A.; Ainan, B.R.; Krishnamurthy, N.R.; Panigrahi, S.K.; Mahasweta, K.; Raghuramachandran, S.; Rajappa, M.; Ramanathan, A.; Lakshminarasimhan, A.; Ramachandra, M.; Wong, P.F.; Mustafa, M.R.; Nanduri, S.; Hosahalli, S. Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: Wild type and mutant (L1196M) active compounds with unique binding mode. Bioorg. Med. Chem. Lett., 2013, 23(17), 4911-4918.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.071] [PMID: 23880539]
[99]
Geng, K.; Xia, Z.; Ji, Y.; Zhang, R.R.; Sun, D.; Ai, J.; Song, Z.; Geng, M.; Zhang, A. Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation. Eur. J. Med. Chem., 2018, 144, 386-397.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.060] [PMID: 29288940]
[100]
Guo, M.; Zuo, D.; Zhang, J.; Xing, L.; Gou, W.; Jiang, F.; Jiang, N.; Zhang, D.; Zhai, X. Dual potent ALK and ROS1 inhibitors combating drug-resistant mutants: Synthesis and biological evaluation of aminopyridine-containing diarylaminopyrimidine derivatives. Eur. J. Med. Chem., 2018, 158, 322-333.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.012] [PMID: 30223120]
[101]
Han, M.; Wang, C.; Ji, Y.; Song, Z.; Xing, L.; Su, Y.; Wang, X.; Zhang, A.; Ai, J.; Geng, M. Metabolism-based structure optimization: Discovery of a potent and orally available tyrosine kinase ALK inhibitor bearing the tetracyclic benzo[b]carbazolone core. Bioorg. Med. Chem. Lett., 2016, 26(22), 5399-5402.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.039] [PMID: 27769623]
[102]
Iikubo, K.; Kurosawa, K.; Matsuya, T.; Kondoh, Y.; Kamikawa, A.; Moritomo, A.; Iwai, Y.; Tomiyama, H.; Shimada, I. Synthesis and structure-activity relationships of pyrazine-2-carboxamide derivatives as novel echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1683-1692.
[http://dx.doi.org/10.1016/j.bmc.2019.03.018] [PMID: 30878193]
[103]
Jiang, X.; Zhou, J.; Ai, J.; Song, Z.; Peng, X.; Xing, L.; Xi, Y.; Guo, J.; Yao, Q.; Ding, J.; Geng, M.; Zhang, A. Novel tetracyclic benzo[b]carbazolones as highly potent and orally bioavailable ALK inhibitors: Design, synthesis, and structure-activity relationship study. Eur. J. Med. Chem., 2015, 105, 39-56.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.005] [PMID: 26476749]
[104]
Kinoshita, K.; Asoh, K.; Furuichi, N.; Ito, T.; Kawada, H.; Hara, S.; Ohwada, J.; Miyagi, T.; Kobayashi, T.; Takanashi, K.; Tsukaguchi, T.; Sakamoto, H.; Tsukuda, T.; Oikawa, N. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg. Med. Chem., 2012, 20(3), 1271-1280.
[http://dx.doi.org/10.1016/j.bmc.2011.12.021] [PMID: 22225917]
[105]
Lei, H.; Jiang, N.; Miao, X.; Xing, L.; Guo, M.; Liu, Y.; Xu, H.; Gong, P.; Zuo, D.; Zhai, X. Discovery of novel mutant-combating ALK and ROS1 dual inhibitors bearing imidazolidin-2-one moiety with reasonable PK properties. Eur. J. Med. Chem., 2019, 171, 297-309.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.038] [PMID: 30927566]
[106]
Liu, Z.; Yue, X.; Song, Z.; Peng, X.; Guo, J.; Ji, Y.; Cheng, Z.; Ding, J.; Ai, J.; Geng, M.; Zhang, A. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors. Eur. J. Med. Chem., 2014, 86, 438-448.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.003] [PMID: 25200979]
[107]
Mesaros, E.F.; Ott, G.R.; Dorsey, B.D. Anaplastic lymphoma kinase inhibitors as anticancer therapeutics: A patent review. Expert Opin. Ther. Pat., 2014, 24(4), 417-442.
[http://dx.doi.org/10.1517/13543776.2014.877890] [PMID: 24476492]
[108]
Geng, K.; Liu, H.; Song, Z.; Zhang, C.; Zhang, M.; Yang, H.; Cao, J.; Geng, M.; Shen, A.; Zhang, A. Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur. J. Med. Chem., 2018, 152, 76-86.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.019] [PMID: 29698859]
[109]
Miao, X.; Xing, L.; Guo, M.; Zhang, H.; Liu, S.; Yin, S.; Gong, P.; Zhang, D.; Zhai, X. Design, synthesis and biological evaluation of 2-arylaminopyrimidine derivatives bearing 1,3,8-triazaspiro[4,5]decan-4-one or piperidine-3-carboxamide moiety as novel Type-I1/2 ALK inhibitors. Bioorg. Chem., 2020, 94103456
[http://dx.doi.org/10.1016/j.bioorg.2019.103456] [PMID: 31787343]
[110]
Michellys, P.Y.; Chen, B.; Jiang, T.; Jin, Y.; Lu, W.; Marsilje, T.H.; Pei, W.; Uno, T.; Zhu, X.; Wu, B.; Nguyen, T.N.; Bursulaya, B.; Lee, C.; Li, N.; Kim, S.; Tuntland, T.; Liu, B.; Sun, F.; Steffy, A.; Hood, T. Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 1090-1096.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.049] [PMID: 26750252]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy