Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Nalbuphine Suppresses Leukemia Stem Cells and Acts Synergistically with Chemotherapy Drugs via Inhibiting Ras/Raf/Mek/Erk Pathway

Author(s): Jinliang Xiao, Weilian Wang and Jiapeng Dan*

Volume 23, Issue 8, 2023

Published on: 16 January, 2023

Page: [922 - 928] Pages: 7

DOI: 10.2174/1871520623666221213120258

Price: $65

Abstract

Aims: Retrospective clinical studies have shown that opioids could potentially affect the risk of cancer recurrence and metastasis. Better understanding of the effects of opioids on cancer will help to select the optimal anesthetic regimens to achieve better outcomes in cancer patients.

Background: Increasing evidence has shown the direct effects of opioids on bulk cancer cells and cancer stem cells. Opioid such as nalbuphine is approved to control cancer-associated pain but little is known on their possible cancer effects.

Objective: To assess the biological effects of nalbuphine on acute myeloid leukemia (AML) differentiated and stem/progenitor CD34+ cells.

Methods: AML CD34+ cells were isolated with colony formation, growth and apoptosis assays performed. Biochemical and immunoblotting analyses were conducted in AML cells exposed to nalbuphine.

Results: Nalbuphine at clinically relevant concentrations was active against a panel of AML cell lines with varying IC50. Importantly, nalbuphine augmented the efficacy of cytarabine and daunorubicin in decreasing AML cell viability/ growth. Besides bulk AML cells, we noted that nalbuphine was effective and selective in decreasing viability and colony formation of AML CD34+ cells while sparing normal hematopoietic CD34+ cells. The action of nalbuphine on AML cells is not associated with opioid receptors but via inhibiting Ras/Raf/MEK/ERK signaling pathway. Overexpression of constitutively active Ras partially but significantly reversed the inhibitory effects of nalbuphine on AML cells.

Conclusion: Our findings reveal the selective anti-AML activity of nalbuphine and its ability in inhibiting Ras signaling. Our work suggests that nalbuphine may be beneficial for leukemia patients.

Graphical Abstract

[1]
Stein, C. Opioid receptors. Annu. Rev. Med., 2016, 67(1), 433-451.
[http://dx.doi.org/10.1146/annurev-med-062613-093100] [PMID: 26332001]
[2]
Cronin-Fenton, D. Opioids and breast cancer recurrence. Curr. Opin. Support. Palliat. Care, 2019, 13(2), 88-93.
[http://dx.doi.org/10.1097/SPC.0000000000000426] [PMID: 30925533]
[3]
Amaram-Davila, J.; Davis, M.; Reddy, A. Opioids and cancer mortality. Curr. Treat. Options Oncol., 2020, 21(3), 22.
[http://dx.doi.org/10.1007/s11864-020-0713-7] [PMID: 32095929]
[4]
Ondrovics, M.; Hoelbl-Kovacic, A.; Fux, D.A. Opioids: Modulators of angiogenesis in wound healing and cancer. Oncotarget, 2017, 8(15), 25783-25796.
[http://dx.doi.org/10.18632/oncotarget.15419] [PMID: 28445930]
[5]
Zhang, K.; Huang, W.; Chen, W.; Zhou, Q.; Zhang, Q.; Wu, X.; Xu, Y.; Li, D.; Xie, T.; Liu, J. Morphine stimulates angiogenesis through Akt/mTOR/eIF4E activation under serum deprivation or H2O2‐induced oxidative stress condition. Clin. Exp. Pharmacol. Physiol., 2020, 47(2), 227-235.
[http://dx.doi.org/10.1111/1440-1681.13191] [PMID: 31612523]
[6]
Zhang, J.; Yao, N.; Tian, S. Morphine stimulates migration and growth and alleviates the effects of chemo drugs via AMPK-dependent induction of epithelial-mesenchymal transition in esophageal carcinoma cells. Biol. Pharm. Bull., 2020, 43(5), 774-781.
[http://dx.doi.org/10.1248/bpb.b19-00779] [PMID: 32378556]
[7]
Zhou, Z.; Liu, T.; Zhang, J. Morphine activates blast-phase chronic myeloid leukemia cells and alleviates the effects of tyrosine kinase inhibitors. Biochem. Biophys. Res. Commun., 2019, 520(3), 560-565.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.067] [PMID: 31615652]
[8]
Chen, Y.; Qin, Y.; Li, L.; Chen, J.; Zhang, X.; Xie, Y. Morphine can inhibit the growth of breast cancer MCF-7 cells by arresting the cell cycle and inducing apoptosis. Biol. Pharm. Bull., 2017, 40(10), 1686-1692.
[http://dx.doi.org/10.1248/bpb.b17-00215] [PMID: 28740043]
[9]
Kim, J.Y.; Ahn, H.J.; Kim, J.K.; Kim, J.; Lee, S.H.; Chae, H.B. Morphine suppresses lung cancer cell proliferation through the interaction with opioid growth factor receptor. Anesth. Analg., 2016, 123(6), 1429-1436.
[http://dx.doi.org/10.1213/ANE.0000000000001293] [PMID: 27167686]
[10]
Koodie, L.; Yuan, H.; Pumper, J.A.; Yu, H.; Charboneau, R.; Ramkrishnan, S.; Roy, S. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am. J. Pathol., 2014, 184(4), 1073-1084.
[http://dx.doi.org/10.1016/j.ajpath.2013.12.019] [PMID: 24495739]
[11]
Singleton, P.A.; Moss, J. Effect of perioperative opioids on cancer recurrence: a hypothesis. Future Oncol., 2010, 6(8), 1237-1242.
[http://dx.doi.org/10.2217/fon.10.99] [PMID: 20799870]
[12]
Yu, Y.; Li, D.; Duan, J.; Xu, H.; Li, L.; Tan, D.; Yan, H. The pro- and anti-cancer effects of oxycodone are associated with epithelial growth factor receptor level in cancer cells. Biosci. Rep., 2020, 40(2)BSR20193524
[http://dx.doi.org/10.1042/BSR20193524] [PMID: 31967294]
[13]
Hu, N.; Yu, T.; Chen, J.; Zheng, S.; Yan, H.; Duan, J. Oxycodone stimulates normal and malignant hematopoietic progenitors via opioid-receptor-independent-β-catenin activation. Biochem. Biophys. Res. Commun., 2020, 533(4), 1457-1463.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.031] [PMID: 33268026]
[14]
Zeng, Z.; Lu, J.; Shu, C.; Chen, Y.; Guo, T.; Wu, Q.; Yao, S.; Yin, P. A comparision of nalbuphine with morphine for analgesic effects and safety: Meta-analysis of randomized controlled trials. Sci. Rep., 2015, 5(1), 10927.
[http://dx.doi.org/10.1038/srep10927] [PMID: 26039709]
[15]
Larsen, D.; Maani, C.V. Nalbuphine In; StatPearls: Treasure Island, FL, 2021.
[16]
Yu, J.; Luo, Y.; Wen, Q. Nalbuphine suppresses breast cancer stem-like properties and epithelial-mesenchymal transition via the AKT-NFkappaB signaling pathway. Journal of experimental & clinical cancer research. CR, 2019, 38(1), 197.
[PMID: 31092275]
[17]
Roboz, G.J. Novel approaches to the treatment of acute myeloid leukemia. Hematology, 2011, 2011(1), 43-50.
[http://dx.doi.org/10.1182/asheducation-2011.1.43] [PMID: 22160011]
[18]
Dan, J.; Gong, X.; Li, D.; Zhu, G.; Wang, L.; Li, F. Inhibition of gastric cancer by local anesthetic bupivacaine through multiple mechanisms independent of sodium channel blockade. Biomed. Pharmacother., 2018, 103, 823-828.
[19]
Raghav, R.; Jain, R.; Dhawan, A.; Roy, T.S.; Kumar, P. Chronic co-administration of nalbuphine attenuates the development of opioid dependence. Pharmacol. Biochem. Behav., 2018, 175, 130-138.
[http://dx.doi.org/10.1016/j.pbb.2018.10.001] [PMID: 30312633]
[20]
Murphy, T.; Yee, K.W.L. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin. Pharmacother., 2017, 18(16), 1765-1780.
[http://dx.doi.org/10.1080/14656566.2017.1391216] [PMID: 29017371]
[21]
Rozenfeld-Granot, G.; Toren, A.; Amariglio, N.; Nagler, A.; Rosenthal, E.; Biniaminov, M.; Brok-Simoni, F.; Rechavi, G. MAP kinase activation by mu opioid receptor in cord blood CD34+CD38− cells. Exp. Hematol., 2002, 30(5), 473-480.
[http://dx.doi.org/10.1016/S0301-472X(02)00786-5] [PMID: 12031654]
[22]
Wigmore, T.; Farquhar-Smith, P. Opioids and cancer. Curr. Opin. Support. Palliat. Care, 2016, 10(2), 109-118.
[http://dx.doi.org/10.1097/SPC.0000000000000208] [PMID: 26990052]
[23]
Zhang, Y.; Shen, B.; Guan, X.; Qin, M.; Ren, Z.; Ma, Y.; Dai, W.; Ding, X.; Jiang, Y. Safety and efficacy of ex vivo expanded CD34+ stem cells in murine and primate models. Stem Cell Res. Ther., 2019, 10(1), 173.
[http://dx.doi.org/10.1186/s13287-019-1275-0] [PMID: 31196160]
[24]
Dai, S.; Zhang, X.; Zhang, P.; Zheng, X.; Pang, Q. Fentanyl inhibits acute myeloid leukemia differentiated cells and committed progenitors via opioid receptor‐independent suppression of Ras and STAT5 pathways. Fundam. Clin. Pharmacol., 2021, 35(1), 174-183.
[http://dx.doi.org/10.1111/fcp.12581] [PMID: 32564393]
[25]
Kaburagi, T.; Yamato, G.; Shiba, N.; Yoshida, K.; Hara, Y.; Tabuchi, K.; Shiraishi, Y.; Ohki, K.; Sotomatsu, M.; Arakawa, H.; Matsuo, H.; Shimada, A.; Taki, T.; Kiyokawa, N.; Tomizawa, D.; Horibe, K.; Miyano, S.; Taga, T.; Adachi, S.; Ogawa, S.; Hayashi, Y. Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia. Haematologica, 2021, 107(3), 583-592.
[http://dx.doi.org/10.3324/haematol.2020.269431] [PMID: 33730843]
[26]
Steelman, L.S.; Franklin, R.A.; Abrams, S.L.; Chappell, W.; Kempf, C.R.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; Nicoletti, F.; Libra, M.; Ruvolo, P.; Ruvolo, V.; Evangelisti, C.; Martelli, A.M.; McCubrey, J.A. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011, 25(7), 1080-1094.
[http://dx.doi.org/10.1038/leu.2011.66] [PMID: 21494257]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy