Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Ethosomes: Novel Vesicular Carriers for Effective Transdermal Delivery of Natural Therapeutics

Author(s): Shiveena Bhatia, Varinder Singh*, Manjinder Singh, Deepinder Singh, Tanveer Singh, Mona Piplani* and Ravinder Singh

Volume 21, Issue 4, 2024

Published on: 27 January, 2023

Page: [665 - 683] Pages: 19

DOI: 10.2174/1570180820666221226153523

Price: $65

Abstract

The topical delivery, being the most reliable route for drug administration, offers multiple advantages. The conventional topical dosage forms deliver a relatively higher amount of drug to achieve therapeutic action triggering hypersensitivity reactions accompanied by greasiness and staining issues. The advent of transdermal nanocarriers has waived off some of these limitations and assisted in achieving enhanced therapeutic efficacy with sustained release and minimal/no instances of systemic toxicity. The ethosome, one of the novel lipid carrier systems, has eased the administration of many hydrophilic and lipophilic drugs through the stratum corneum. It is a non-invasive drug carrier consisting of 45% ethanol, phospholipids, and non-ionic surfactants. The discovery of ethosomal technology has proved to be fruitful in delivering drugs with a wide range of polarity and other physicochemical parameters across skin. In this review, the ethosomal system has been explored for the delivery of complex phytoconstituents across the skin along with the key building material of ethosomes, associated mechanism of drug delivery, recent developments in ethosomes as a drug carrier, reported ethosomal formulations encapsulating various plant metabolites, conducted clinical trials and available ethosomal formulations for the delivery of phytocomponents across stratum corneum.

Graphical Abstract

[1]
Dawson, A.L.; Dellavalle, R.P.; Elston, D.M. Infectious skin diseases: A review and needs assessment. Dermatol. Clin., 2012, 30(1), 141-151. ix-x.
[http://dx.doi.org/10.1016/j.det.2011.08.003] [PMID: 22117875]
[2]
Bahrami, F.; Babaei, E.; Badirzadeh, A.; Riabi, T.R.; Abdoli, A. Blastocystis, urticaria, and skin disorders: Review of the current evidences. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1027-1042.
[http://dx.doi.org/10.1007/s10096-019-03793-8] [PMID: 31873864]
[3]
Schwingen, J.; Kaplan, M.; Kurschus, F.C. Review-current concepts in inflammatory skin diseases evolved by transcriptome analysis: In-depth analysis of atopic dermatitis and psoriasis. Int. J. Mol. Sci., 2020, 21(3), 699.
[http://dx.doi.org/10.3390/ijms21030699] [PMID: 31973112]
[4]
Tanner, T.; Marks, R. Delivering drugs by the transdermal route: Review and comment. Skin Res. Technol., 2008, 14(3), 249-260.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00316.x] [PMID: 31973112]
[5]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[6]
Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics, 2020, 12(7), 684.
[http://dx.doi.org/10.3390/pharmaceutics12070684] [PMID: 32698388]
[7]
Zoabi, A.; Touitou, E.; Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids Interfaces, 2021, 5(1), 18.
[http://dx.doi.org/10.3390/colloids5010018]
[8]
Kolenyak dos Santos, F.; Helena Oyafuso, M.; Priscila Kiill, C. Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases - A review. Curr. Nanosci., 2013, 9, 159-167.
[9]
Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv., 2010, 1(1), 109-131.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[10]
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv., 2006, 13(3), 175-187.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[11]
Lalotra, A.S.; Singh, V.; Khurana, B.; Agrawal, S.; Shrestha, S.; Arora, D. A comprehensive review on nanotechnology-based innovations in topical drug delivery for the treatment of skin cancer. Curr. Pharm. Des., 2020, 26(44), 5720-5731.
[http://dx.doi.org/10.2174/1381612826666200819202821] [PMID: 32814523]
[12]
Zhou, X.; Hao, Y.; Yuan, L.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett., 2018, 29(12), 1713-1724.
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[13]
Richard, C.; Cassel, S.; Blanzat, M. Vesicular systems for dermal and transdermal drug delivery. RSC Advances, 2021, 11(1), 442-451.
[http://dx.doi.org/10.1039/D0RA09561C] [PMID: 35423006]
[14]
Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes -a detailed review. J. Liposome Res., 2019, 29(2), 103-113.
[http://dx.doi.org/10.1080/08982104.2018.1517160] [PMID: 30156120]
[15]
Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. Fut. J. Pharm. Sci., 2021, 7(1), 53.
[http://dx.doi.org/10.1186/s43094-021-00202-w]
[16]
Singh, V.; Krishan, P.; Shri, R. Antioxidant-mediated neuroprotection by Allium schoenoprasum L. leaf extract against ischemia reperfusion-induced cerebral injury in mice. J. Basic Clin. Physiol. Pharmacol., 2018, 29(4), 403-410.
[http://dx.doi.org/10.1515/jbcpp-2017-0070] [PMID: 29933243]
[17]
Kaur, R.; Singh, V.; Shri, R. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism. Biomed. Pharmacother., 2017, 92, 1055-1061.
[http://dx.doi.org/10.1016/j.biopha.2017.06.029] [PMID: 28618650]
[18]
Singh, V.; Chauhan, G.; Shri, R. Anti-depressant like effects of quercetin 4′-O-glucoside from Allium cepa via regulation of brain oxidative stress and monoamine levels in mice subjected to unpredictable chronic mild stress. Nutr. Neurosci., 2021, 24(1), 35-44.
[http://dx.doi.org/10.1080/1028415X.2019.1587247] [PMID: 31368414]
[19]
Kaur, A.; Randhawa, K.; Singh, V.; Shri, R. Bioactivity-guided isolation of acetylcholinesterase inhibitor from Ganoderma mediosinense (Agaricomycetes). Int. J. Med. Mushrooms, 2019, 21(8), 755-763.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2019031508] [PMID: 31679283]
[20]
Pruthi, S.; Kaur, K.; Singh, V.; Shri, R. Improvement of cognitive function in mice by Citrus reticulata var. kinnow via modulation of central cholinergic system and oxidative stress. Metab. Brain Dis., 2021, 36(5), 901-910.
[http://dx.doi.org/10.1007/s11011-021-00687-7] [PMID: 33651274]
[21]
Singh, V.; Shri, R.; Krishan, P.; Singh, I.P.; Shah, P. Isolation and characterization of components responsible for neuroprotective effects of Allium cepa outer scale extract against ischemia reperfusion induced cerebral injury in mice. J. Food Sci., 2020, 85(11), 4009-4017.
[http://dx.doi.org/10.1111/1750-3841.15474] [PMID: 33051874]
[22]
Singh, V.; Krishan, P.; Singh, N.; Kumar, A.; Shri, R. Amelioration of ischemia-reperfusion induced functional and biochemical deficit in mice by Ocimum kilimandscharicum leaf extract. Biomed. Pharmacother., 2017, 85, 556-563.
[http://dx.doi.org/10.1016/j.biopha.2016.11.064] [PMID: 27914825]
[23]
Randhawa, K.; Singh, V.; Kaur, S.; Kaur, R.; Kumar, S.; Shri, R. Isolation of Pleurotus florida derived acetylcholinesterase inhibitor for the treatment of cognitive dysfunction in mice. Food Sci. Hum. Wellness, 2021, 10(4), 490-496.
[http://dx.doi.org/10.1016/j.fshw.2021.04.011]
[24]
Singh, V.; Kahol, A.; Singh, I.P.; Saraf, I.; Shri, R. Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. J. Ethnopharmacol., 2016, 193, 490-499.
[http://dx.doi.org/10.1016/j.jep.2016.10.026] [PMID: 27725240]
[25]
Singh, V.; Krishan, P.; Shri, R. Improvement of memory and neurological deficit with Ocimum basilicum L. extract after ischemia reperfusion induced cerebral injury in mice. Metab. Brain Dis., 2018, 33(4), 1111-1120.
[http://dx.doi.org/10.1007/s11011-018-0215-5] [PMID: 29546690]
[26]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett., 2013, 334(1), 133-141.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[27]
Singh, V.; Krishan, P.; Shri, R. Amelioration of ischaemia reperfusion-induced cerebral injury in mice by liposomes containing Allium cepa fraction administered intranasally. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S982-S992.
[http://dx.doi.org/10.1080/21691401.2018.1523181] [PMID: 30449174]
[28]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[29]
Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomedicine, 2016, 11, 1987-2007.
[http://dx.doi.org/10.2147/IJN.S104701] [PMID: 27274231]
[30]
Natsheh, H.; Vettorato, E.; Touitou, E. Ethosomes for dermal administration of natural active molecules. Curr. Pharm. Des., 2019, 25(21), 2338-2348.
[http://dx.doi.org/10.2174/1381612825666190716095826] [PMID: 31333087]
[31]
Abdulbaqi, I.; Darwis, Y.; Abdul, K.K.N. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[32]
Pilch, E. Musiał W. Liposomes with an ethanol fraction as an application for drug delivery. Int. J. Mol. Sci., 2018, 19(12), 3806.
[http://dx.doi.org/10.3390/ijms19123806] [PMID: 30501085]
[33]
Aggarwal, D.; Nautiyal, U. Ethosomes: A review. Int. J. Pharm. Med. Res., 2016, 4, 354-363.
[34]
Manosroi, A.; Jantrawut, P.; Khositsuntiwong, N.; Manosroi, W.; Manosroi, J. Novel elastic nanovesicles for cosmeceutical and pharmaceutical applications. Chiang Mai J., 2009, 36, 168-178.
[35]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[36]
Costa, R.; Santos, L. Delivery systems for cosmetics - from manufacturing to the skin of natural antioxidants. Powder Technol., 2017, 322, 402-416.
[http://dx.doi.org/10.1016/j.powtec.2017.07.086]
[37]
Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res., 2021, 38(6), 947-970.
[http://dx.doi.org/10.1007/s11095-021-03053-5] [PMID: 34036520]
[38]
Pandey, V.; Golhani, D.; Shukla, R. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv., 2015, 22(8), 988-1002.
[http://dx.doi.org/10.3109/10717544.2014.889777] [PMID: 24580572]
[39]
Zhang, Z.; Chen, Y.; Xu, H.; Wo, Y.; Zhang, Z.; Liu, Y.; Su, W.; Cui, D.; Zhang, Y. 5-Aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars. Nanoscale, 2016, 8(46), 19270-19279.
[http://dx.doi.org/10.1039/C6NR06872C] [PMID: 27830857]
[40]
Prasanthi, D.; Lakshmi, P.K. Development of ethosomes with Taguchi robust design-based studies for transdermal delivery of Alfuzosin hydrochloride. Int. Curr. Pharm. J., 2012, 1(11), 370-375.
[http://dx.doi.org/10.3329/icpj.v1i11.12063]
[41]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[42]
Paolino, D.; Lucania, G.; Mardente, D.; Alhaique, F.; Fresta, M. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J. Control. Release, 2005, 106(1-2), 99-110.
[http://dx.doi.org/10.1016/j.jconrel.2005.04.007] [PMID: 15935505]
[43]
Puri, R.; Jain, S. Ethogel topical formulation for increasing the local bioavailability of 5-fluorouracil. Anticancer Drugs, 2012, 23(9), 923-934.
[http://dx.doi.org/10.1097/CAD.0b013e3283534051] [PMID: 22926258]
[44]
Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech, 2007, 8(4), 249.
[http://dx.doi.org/10.1208/pt0804111] [PMID: 18181532]
[45]
Bendas, E.R.; Tadros, M.I. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech, 2007, 8(4), 213.
[http://dx.doi.org/10.1208/pt0804107] [PMID: 18181528]
[46]
Touitou, E. Composition for applying substances to or through the skin. United States patent, US5716638A, 1998.
[47]
López-Pinto, J.M.; González-Rodríguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm., 2005, 298(1), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.021] [PMID: 15896932]
[48]
Zhang, L.; Li, X.; Zhu, S.; Zhang, T.; Maimaiti, A.; Ding, M.; Shi, S. Dermal targeting delivery of terbinafine hydrochloride using novel multi-ethosomes: A new approach to fungal infection treatment. Coatings, 2020, 10(4), 304.
[http://dx.doi.org/10.3390/coatings10040304]
[49]
Ahmed, T.A.; Alzahrani, M.M.; Sirwi, A.; Alhakamy, N.A. The antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics, 2021, 13(2), 151.
[http://dx.doi.org/10.3390/pharmaceutics13020151] [PMID: 33498849]
[50]
Benson, H.A.E. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[51]
Jain, S.; Jain, P.; Umamaheshwari, R.B.; Jain, N.K. Transfersomes-A novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev. Ind. Pharm., 2003, 29(9), 1013-1026.
[http://dx.doi.org/10.1081/DDC-120025458] [PMID: 14606665]
[52]
Gupta, P.N.; Mishra, V.; Rawat, A.; Dubey, P.; Mahor, S.; Jain, S.; Chatterji, D.P.; Vyas, S.P. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: A comparative study. Int. J. Pharm., 2005, 293(1-2), 73-82.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.022] [PMID: 15778046]
[53]
Bajaj, K.J.; Parab, B.S.; Shidhaye, S.S. Nano-transethosomes: A novel tool for drug delivery through. Indian J. Pharm. Educ. Res., 2021, 55(1), S1-S10.
[54]
Sguizzato, M.; Ferrara, F.; Hallan, S.S.; Baldisserotto, A.; Drechsler, M.; Malatesta, M.; Costanzo, M.; Cortesi, R.; Puglia, C.; Valacchi, G.; Esposito, E. Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants, 2021, 10(5), 768.
[http://dx.doi.org/10.3390/antiox10050768] [PMID: 34066018]
[55]
Abdel-Messih, H.A.; Ishak, R.A.H.; Geneidi, A.S.; Mansour, S. Tailoring novel soft nano-vesicles ‘Flexosomes’ for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo-in vivo evaluation. Int. J. Pharm., 2019, 560, 101-115.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.072] [PMID: 30753931]
[56]
Lu, J.; Guo, T.; Fan, Y. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery. Curr. Drug Deliv., 2021, 18(5), 570-582.
[PMID: 32851961]
[57]
Alimardani, V.; Abolmaali, S.S.; Yousefi, G.; Rahiminezhad, Z.; Abedi, M.; Tamaddon, A.; Ahadian, S. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. J. Clin. Med., 2021, 10(2), 181.
[http://dx.doi.org/10.3390/jcm10020181] [PMID: 33419118]
[58]
Aldred, E.M.; Buck, C.; Vall, K. Phenols. In: Aldred, E.M.; Buck, C.; Vall, K.B.T-P., Eds.; Pharmacology: A Handbook for Complementary Healthcare Professionals; Churchill Livingstone: Edinburgh, 2009; pp. 149-166.
[59]
Gan, R-Y.; Chan, C-L.; Yang, Q-Q. Bioactive compounds and beneficial functions of sprouted grains. In: Feng, H.; Nemzer, B.; DeVries, J.W.B.T-S.G., Eds.; Sprouted Grains: Nutritional Value, Production and Applications; AACC International Press: Washington, 2019; pp. 191-246.
[http://dx.doi.org/10.1016/B978-0-12-811525-1.00009-9]
[60]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[61]
Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; A review. Pharmaceutics, 2011, 3(4), 793-829.
[http://dx.doi.org/10.3390/pharmaceutics3040793] [PMID: 24309309]
[62]
Godin, B.; Touitou, E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(1), 63-102.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i1.20] [PMID: 12911264]
[63]
Gollavilli, H.; Hegde, A.R.; Managuli, R.S.; Bhaskar, K.V.; Dengale, S.J.; Reddy, M.S.; Kalthur, G.; Mutalik, S. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf. B Biointerfaces, 2020, 193, 111122.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111122] [PMID: 32498002]
[64]
Olgierd, B. Kamila, Ż.; Anna, B.; Emilia, M. The pluripotent activities of caffeic acid phenethyl ester. Molecules, 2021, 26(5), 1335.
[http://dx.doi.org/10.3390/molecules26051335] [PMID: 33801469]
[65]
Hallan, S.S.; Sguizzato, M.; Mariani, P.; Cortesi, R.; Huang, N.; Simelière, F.; Marchetti, N.; Drechsler, M.; Ruzgas, T.; Esposito, E. Design and characterization of ethosomes for transdermal delivery of caffeic acid. Pharmaceutics, 2020, 12(8), 740.
[http://dx.doi.org/10.3390/pharmaceutics12080740] [PMID: 32781717]
[66]
Hallan, S.S.; Sguizzato, M.; Drechsler, M.; Mariani, P.; Montesi, L.; Cortesi, R.; Björklund, S.; Ruzgas, T.; Esposito, E. The potential of caffeic acid lipid nanoparticulate systems for skin application: In vitro assays to assess delivery and antioxidant effect. Nanomaterials (Basel), 2021, 11(1), 171.
[http://dx.doi.org/10.3390/nano11010171] [PMID: 33445433]
[67]
Jastrząb, A.; Jarocka-Karpowicz, I.; Markowska, A.; Wroński, A.; Gęgotek, A.; Skrzydlewska, E. Antioxidant and anti-inflammatory effect of cannabidiol contributes to the decreased lipid peroxidation of keratinocytes of rat skin exposed to UV radiation. Oxid. Med. Cell. Long., 2021, 2021, Article ID 6647222.
[http://dx.doi.org/10.1155/2021/6647222]
[68]
Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A. Nizioł-Łukaszewska, Z. Positive effect of Cannabis sativa L. Herb extracts on skin cells and assessment of cannabinoid-based hydrogels properties. Molecules, 2021, 26, 802.
[http://dx.doi.org/10.3390/molecules26040802] [PMID: 33557174]
[69]
Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol-Transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release, 2003, 93(3), 377-387.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.001] [PMID: 14644587]
[70]
Rodríguez-Luna, A.; Talero, E.; Ávila-Román, J.; Romero, A.M.F.; Rabasco, A.M.; Motilva, V.; González-Rodríguez, M.L. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model. AAPS PharmSciTech, 2021, 22(3), 103.
[http://dx.doi.org/10.1208/s12249-021-01966-3] [PMID: 33712964]
[71]
Yücel, Ç. Şeker Karatoprak, G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul., 2019, 36(2), 180-191.
[http://dx.doi.org/10.1080/02652048.2019.1617363] [PMID: 31070486]
[72]
Gaitan, E. Environmental goitrogens. In: Braverman, L.E. eds, Diseases of the Thyroid. Contemporary Endocrinology; Humana Press: Totowa, 1997; pp. 331-348.
[73]
Amnuaikit, T.; Limsuwan, T.; Khongkow, P.; Boonme, P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J. Pharm. Sci., 2018, 13(5), 472-484.
[http://dx.doi.org/10.1016/j.ajps.2018.02.004] [PMID: 32104421]
[74]
Limsuwan, T.; Boonme, P.; Khongkow, P. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. BioMed Res. Int., 2017, 2017, Article ID: 8310979.
[http://dx.doi.org/10.1155/2017/8310979]
[75]
O’Connor, S.E. Alkaloids. In: Liu, H-W.; Mander, L.; Ed.; Comprehensive Natural Products II; Elsevier: Oxford, 2010; pp. 977-1007.
[76]
Chen, Y.J.; Dai, Y.S.; Chen, B.F.; Chang, A.; Chen, H.C.; Lin, Y.C.; Chang, K.H.; Lai, Y.L.; Chung, C.H.; Lai, Y.J. The effect of tetrandrine and extracts of Centella asiatica on acute radiation dermatitis in rats. Biol. Pharm. Bull., 1999, 22(7), 703-706.
[http://dx.doi.org/10.1248/bpb.22.703] [PMID: 10443466]
[77]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine–A molecule of wide bioactivity. Phytochemistry, 2016, 125, 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[78]
Yang, Z.; Concannon, J.; Ng, K.S.; Seyb, K.; Mortensen, L.J.; Ranganath, S.; Gu, F.; Levy, O.; Tong, Z.; Martyn, K.; Zhao, W.; Lin, C.P.; Glicksman, M.A.; Karp, J.M. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci. Rep., 2016, 6(1), 30263.
[http://dx.doi.org/10.1038/srep30263] [PMID: 27457881]
[79]
Fan, C.; Li, X.; Zhou, Y.; Zhao, Y.; Ma, S.; Li, W.; Liu, Y.; Li, G. Enhanced topical delivery of tetrandrine by ethosomes for treatment of arthritis. BioMed Res. Int., 2013, 2013, 161943.
[http://dx.doi.org/10.1155/2013/161943] [PMID: 24062995]
[80]
Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev., 2013, 7(14), 199-212.
[http://dx.doi.org/10.4103/0973-7847.120524] [PMID: 24347928]
[81]
Jiang, J.; Ma, T.; Zhang, L.; Cheng, X.; Wang, C. The transdermal performance, pharmacokinetics, and anti-inflammatory pharmacodynamics evaluation of harmine-loaded ethosomes. Drug Dev. Ind. Pharm., 2020, 46(1), 101-108.
[http://dx.doi.org/10.1080/03639045.2019.1706549] [PMID: 31851523]
[82]
Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21.
[http://dx.doi.org/10.3389/fmolb.2018.00021] [PMID: 29616225]
[83]
Locke, A.B. Urinary Tract Infection (UTI). In: Integrative Medicine, (Third Edition); Elsevier: Amsterdam, 2012; pp. 211-217.e2.
[84]
Lin, H.; Lin, L.; Choi, Y.; Michniak-Kohn, B. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int. J. Pharm., 2020, 581, 119278.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119278] [PMID: 32229284]
[85]
Fatima, Z. Formulation and performance evaluation of Berberis aristata extract loaded ethosomal gel. Asian J. Pharm., 2017, 11(3)
[http://dx.doi.org/10.22377/ajp.v11i03.1401]
[86]
Sun, X.; Yang, Y.; Liu, T.; Huang, H.; Kuang, Y.; Chen, L. Evaluation of the wound healing potential of Sophora alopecuroides in SD rat’s skin. J. Ethnopharmacol., 2021, 273, 113998.
[http://dx.doi.org/10.1016/j.jep.2021.113998] [PMID: 33689799]
[87]
Zhaowu, Z.; Xiaoli, W.; Yangde, Z.; Nianfeng, L. Preparation of matrine ethosome, its percutaneous permeation in vitro and anti-inflammatory activity in vivo in rats. J. Liposome Res., 2009, 19(2), 155-162.
[http://dx.doi.org/10.1080/08982100902722381] [PMID: 19241204]
[88]
Ludwiczuk, A. Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In: Badal, S.; Delgoda, R; Pharmacognosy; Academic Press: Boston, 2017; pp. 233-266.
[89]
Reyes, B.A.S.; Dufourt, E.C.; Ross, J. Selected phyto and marine bioactive compounds: Alternatives for the treatment of type 2 diabetes. In: Atta-ur-Rahman, Ed.; Studies in Natural Products Chemistry; Elsevier: Amsterdam, 2018; p. 111-143.
[90]
Tuong, W.; Walker, L.; Sivamani, R.K. Novel use of terpenoids for treatment of dermatologic diseases: A systematic review of clinical trials. J. Altern. Complement. Med., 2015, 21(5), 261-268.
[http://dx.doi.org/10.1089/acm.2014.0273] [PMID: 25923990]
[91]
Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv. Pharm. Bull., 2020, 11(1), 137-149.
[http://dx.doi.org/10.34172/apb.2021.015] [PMID: 33747861]
[92]
Fagot, D.; Pham, D.M.; Laboureau, J.; Planel, E.; Guerin, L.; Nègre, C.; Donovan, M.; Bernard, B.A. Crocin, a natural molecule with potentially beneficial effects against skin ageing. Int. J. Cosmet. Sci., 2018, 40(4), 388-400.
[http://dx.doi.org/10.1111/ics.12472] [PMID: 29893408]
[93]
Esposito, E.; Drechsler, M.; Mariani, P.; Panico, A.M.; Cardile, V.; Crascì, L.; Carducci, F.; Graziano, A.C.E.; Cortesi, R.; Puglia, C. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater. Sci. Eng. C, 2017, 71, 669-677.
[http://dx.doi.org/10.1016/j.msec.2016.10.045] [PMID: 27987758]
[94]
Esposito, E.; Drechsler, M.; Huang, N.; Pavoni, G.; Cortesi, R.; Santonocito, D.; Puglia, C. Ethosomes and organogels for cutaneous administration of crocin. Biomed. Microdevices, 2016, 18(6), 108.
[http://dx.doi.org/10.1007/s10544-016-0134-3] [PMID: 27830454]
[95]
Ramos-Tovar, E.; Muriel, P. Phytotherapy for the liver. In: Watson, R.R.; Preedy, V.R.; Dietary Interventions in Liver Disease; Academic Press: Cambridge, 2019; pp. 101-121.
[96]
Liu, W.; Huang, S.; Li, Y.; Zheng, X.; Zhang, K. Synergistic effect of tolfenamic acid and glycyrrhizic acid on TPA-induced skin inflammation in mice. MedChemComm, 2019, 10, 1819-1827.
[http://dx.doi.org/10.1039/C9MD00345B] [PMID: 31814955]
[97]
Farrukh, M.R.; Nissar, U.A.; Kaiser, P.J.; Afnan, Q.; Sharma, P.R.; Bhushan, S.; Tasduq, S.A. Glycyrrhizic acid (GA) inhibits reactive oxygen Species mediated photodamage by blocking ER stress and MAPK pathway in UV-B irradiated human skin fibroblasts. J. Photochem. Photobiol. B, 2015, 148, 351-357.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.003] [PMID: 26009870]
[98]
Barone, A.; Cristiano, M.C.; Cilurzo, F.; Locatelli, M.; Iannotta, D.; Di Marzio, L.; Celia, C.; Paolino, D. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf. B Biointerfaces, 2020, 193, 111152.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111152] [PMID: 32535351]
[99]
Li, H.; Gao, C.; Liu, C.; Liu, L.; Zhuang, J.; Yang, J.; Zhou, C.; Feng, F.; Sun, C.; Wu, J. A review of the biological activity and pharmacology of cryptotanshinone, an important active constituent in Danshen. Biomed. Pharmacother., 2021, 137, 111332.
[http://dx.doi.org/10.1016/j.biopha.2021.111332] [PMID: 33548911]
[100]
Yu, Z.; Lv, H.; Han, G.; Ma, K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One, 2016, 11(7), e0159967.
[http://dx.doi.org/10.1371/journal.pone.0159967] [PMID: 27441661]
[101]
Babu, P.V.A.; Liu, D. Flavonoids and cardiovascular health. In: Complementary and Alternative Therapies and the Aging Population; Academic Press: San Diego, 2009; pp. 371-392.
[102]
Čvorović, J.; Ziberna, L.; Fornasaro, S. Bioavailability of flavonoids: the role of cell membrane transporters. In: Polyphenols: Mechanisms of Action in Human Health and Disease, (Second Edition); Academic Press: Cambridge, 2018; pp. 295-320.
[103]
Baliga, M.S.; Saxena, A.; Kaur, K. Polyphenols in the prevention of ulcerative colitis: past, present and future. In: Polyphenols in Human Health and Disease; Academic Press: Oxford, 2014; pp. 655-663.
[104]
Choi, S.J.; Lee, S-N.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; Kim, J.; Kwon, S.B.; Kim, M.J.; Ahn, K.J.; An, I. -.S.; An, S.; Cha, H.J. Biological effects of rutin on skin aging. Int. J. Mol. Med., 2016, 38(1), 357-363.
[http://dx.doi.org/10.3892/ijmm.2016.2604] [PMID: 27220601]
[105]
Pyo, S.M.; Meinke, M.; Keck, C.M.; Müller, R.H. Rutin-increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics, 2016, 3(1), 9.
[http://dx.doi.org/10.3390/cosmetics3010009]
[106]
Cristiano, M.C.; Barone, A.; Mancuso, A.; Torella, D.; Paolino, D. Rutin-loaded nanovesicles for improved stability and enhanced topical efficacy of natural compound. J. Funct. Biomater., 2021, 12(4), 74.
[http://dx.doi.org/10.3390/jfb12040074] [PMID: 34940553]
[107]
Park, S.N.; Lee, H.J.; Gu, H.A. Enhanced skin delivery and characterization of rutin-loaded ethosomes. Korean J. Chem. Eng., 2014, 31(3), 485-489.
[http://dx.doi.org/10.1007/s11814-013-0232-3]
[108]
Cândido, T.M.; De Oliveira, C.A.; Ariede, M.B.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and antioxidant efficacy profiles of rutin-loaded ethosomes for topical application. AAPS PharmSciTech, 2018, 19(4), 1773-1780.
[http://dx.doi.org/10.1208/s12249-018-0994-3] [PMID: 29600391]
[109]
Dhiman, A.; Singh, D.; Fatima, K.; Zia, G. Development of rutin ethosomes for enhanced skin permeation. Int. J. Trad. Med. Appl., 2019, 1(1), 4-10.
[http://dx.doi.org/10.18689/ijtma-1000102]
[110]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[111]
Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. Biofactors, 2021, 47(2), 170-180.
[http://dx.doi.org/10.1002/biof.1699] [PMID: 33368702]
[112]
Weng, Z.; Patel, A.B.; Vasiadi, M.; Therianou, A.; Theoharides, T.C. Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS One, 2014, 9(2), e90739-e90739.
[http://dx.doi.org/10.1371/journal.pone.0090739] [PMID: 24587411]
[113]
Palombo, R.; Savini, I.; Avigliano, L.; Madonna, S.; Cavani, A.; Albanesi, C.; Mauriello, A.; Melino, G.; Terrinoni, A. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis., 2016, 7(8), e2344-e2344.
[http://dx.doi.org/10.1038/cddis.2016.201] [PMID: 27537526]
[114]
Lee, S.M.; Choi, M.J.; Lee, Y.M. Preparation and characterization of ethosome containing hydrophobic flavonoid luteolin. Appl. Chem. Eng., 2010, 21, 40-45.
[115]
Wang, L.; Zhong, C.; Zu, Y.; Zhao, X.; Deng, Y.; Wu, W.; Sun, X.; Wang, L.; Wu, M. Preparation and characterization of luteolin nanoparticles for enhance bioavailability and inhibit liver microsomal peroxidation in rats. J. Funct. Foods, 2019, 55, 57-64.
[http://dx.doi.org/10.1016/j.jff.2019.01.054]
[116]
Steyn, A.; Blom van Staden, A.; Lall, N. Post-inflammatory hyperpigmentation vs. progressive macular hypomelanosis and their solutions from natural products. In: Studies in Natural Products Chemistry; Elsevier: Amsterdam, 2020; pp. 173-193.
[http://dx.doi.org/10.1016/B978-0-12-817905-5.00005-6]
[117]
Li, X.Q.; Cai, L.M.; Liu, J.; Ma, Y.L.; Kong, Y.H.; Li, H.; Jiang, M. Liquiritin suppresses UVB induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF κB and MAPK/caspase signaling pathways. Int. J. Mol. Med., 2018, 42(3), 1445-1459.
[http://dx.doi.org/10.3892/ijmm.2018.3720] [PMID: 29901082]
[118]
Im, N.R.; Kim, H.S.; Lim, J.W. Characterization and transdermal delivery of ethosomes loaded with liquiritigenin and liquiritin. Appl. Chem. Eng., 2015, 26, 563-568.
[http://dx.doi.org/10.14478/ace.2015.1072]
[119]
Horwitz, R.J. The allergic patient. In: Integrative Medicine, (Fourth Edition); Elsevier: Amsterdam, 2018; pp. 300-309.e2.
[120]
Ramadon, D.; Anwar, E.; Harahap, Y. In vitro penetration and bioavailability of novel transdermal quercetin-loaded ethosomal gel. Indian J. Pharm. Sci., 2017, 79(6), 948-956.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000312]
[121]
Park, S.N.; Lee, H.J.; Kim, H.S.; Park, M.A.; Gu, H.A. Enhanced transdermal deposition and characterization of quercetin-loaded ethosomes. Korean J. Chem. Eng., 2013, 30(3), 688-692.
[http://dx.doi.org/10.1007/s11814-012-0171-4]
[122]
Kuete, V. Moringa oleifera. In: Medicinal Spices and Vegetables from Africa; Academic Press: Cambridge, 2017; pp. 485-496.
[123]
Warren, M.P.; Ramos, R.H. Alternative therapies to hormone replacement therapy. In: Menopause; Academic Press: San Diego, 2000; pp. 459-480.
[124]
Abbas, G.; Al-Harrasi, A.S.; Hussain, H. α-Glucosidase enzyme inhibitors from natural products. In: Brahmachari G, Discovery and Development of Antidiabetic Agents from Natural Products; Elsevier: Amsterdam, 2017; pp. 251-269.
[125]
Bodiba, D.; Szuman, K.M.; Lall, N. The role of medicinal plants in oral care. In: Medicinal Plants for Holistic Health and Well-Being; Academic Press: Oxford, 2018; pp. 183-212.
[126]
Jo, N.R.; Gu, H.A.; Park, S.A.; Han, S-B.; Park, S-N. Cellular protective effect and liposome formulation for enhanced transdermal delivery of isoquercitrin. J. Soc. Cosmetic Scient. Korea, 2012, 38(2), 103-118.
[http://dx.doi.org/10.15230/SCSK.2012.38.2.103]
[127]
Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm., 2019, 560, 78-91.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.067] [PMID: 30742987]
[128]
Garrard, A. Coumarins. In: Encyclopedia of Toxicology, Third Ed.; Academic Press: Oxford, 2014; pp. 1052-1054.
[129]
Bor, T.; Aljaloud, S.O.; Gyawali, R. Antimicrobials from herbs, spices, and plants. In: Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion; Academic Press: Cambridge, 2016; pp. 551-578.
[130]
Hermanson, G.T. The Reactions of Bioconjugation. In: Hermanson, G.T. Bioconjugate Techniques, Third ed; Academic Press: Boston, 2013; pp. 229-258.
[131]
Zhang, Y.T.; Feng, N-P.; Shen, L-N.; Zhao, J-H. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int. J. Nanomedicine, 2014, 9, 669-678.
[http://dx.doi.org/10.2147/IJN.S57314] [PMID: 24489470]
[132]
Enna, S.J.; Bylund, D.B. Methoxsalen. In: Enna, S.J.; Bylund, D. Eds.; xPharm: The Comprehensive Pharmacology Reference; Elsevier: New York, 2007; p. 1-2.
[133]
Garg, B.J.; Garg, N.K.; Beg, S.; Singh, B.; Katare, O.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. J. Drug Target., 2016, 24(3), 233-246.
[http://dx.doi.org/10.3109/1061186X.2015.1070855] [PMID: 26267289]
[134]
Arora, D.; Nanda, S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int. J. Pharm., 2019, 567, 118448.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118448] [PMID: 31226472]
[135]
Cheng, Y.C.; Li, T.S.; Su, H.L.; Lee, P.C.; Wang, H.M.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules, 2020, 25(21), 5051.
[http://dx.doi.org/10.3390/molecules25215051] [PMID: 33143260]
[136]
Ríos, J-L. Essential oils: What they are and how the terms are used and defined. In: Essential Oils in Food Preservation, Flavor and Safety; San Diego: Academic Press, 2016; pp. 3-10.
[137]
Park, Y-L.; Tak, J-H. Essential oils for arthropod pest management in agricultural production systems. In: Essential Oils in Food Preservation, Flavor and Safety; San Diego: Academic Press, 2016; pp. 61-70.
[138]
Johannessen, G.S. Post-harvest strategies to reduce enteric bacteria contamination of vegetable, nut and fruit products. In: Cooper J, Niggli U, Leifert C, Ed.; Handbook of Organic Food Safety and Quality. Woodhead Publishing Ltd.: Sawston; , 2007; pp. 433-453.
[139]
Cornwell, P.A.; Barry, B.W. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil. J. Pharm. Pharmacol., 2011, 46(4), 261-269.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03791.x] [PMID: 8051608]
[140]
Avoseh, O.N.; Mtunzi, F.M.; Ogunwande, I.A.; Ascrizzi, R.; Guido, F. Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models. J. Ethnopharmacol., 2021, 268, 113676.
[http://dx.doi.org/10.1016/j.jep.2020.113676] [PMID: 33301915]
[141]
Sounouvou, H.T.; Toukourou, H.; Catteau, L.; Toukourou, F.; Evrard, B.; Van Bambeke, F.; Gbaguidi, F.; Quetin-Leclercq, J. Antimicrobial potentials of essential oils extracted from West African aromatic plants on common skin infections. Sci. African, 2021, 11, e00706.
[http://dx.doi.org/10.1016/j.sciaf.2021.e00706]
[142]
Manjunath, C.; Mahurkar, N. In vitro cytotoxicity of cardamom oil, lemon oil, and jasmine oil on human skin, gastric, and brain cancer cell line. J. Cancer Res. Ther., 2021, 17(1), 62-68.
[http://dx.doi.org/10.4103/jcrt.JCRT_915_17] [PMID: 33723134]
[143]
Nurdjannah, N.; Bermawie, N. Handbook of Herbs and Spices; 2nd ed.; Woodhead Publishing Ltd.: Sawston, 2012, 1, p. 197-215.
[144]
Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun., 2010, 5(12)
[http://dx.doi.org/10.1177/1934578X1000501236]
[145]
Zhang, Y.; Zhang, H.; Zhang, K.; Li, Z.; Guo, T.; Wu, T.; Hou, X.; Feng, N. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. Nanomedicine, 2020, 28, 102212.
[http://dx.doi.org/10.1016/j.nano.2020.102212] [PMID: 32334099]
[146]
Jin, P.; Yao, R.; Qin, D.; Chen, Q.; Du, Q. Enhancement in antibacterial activities of eugenol-entrapped ethosome nanoparticles via strengthening its permeability and sustained release. J. Agric. Food Chem., 2019, 67(5), 1371-1380.
[http://dx.doi.org/10.1021/acs.jafc.8b06278] [PMID: 30624923]
[147]
Shetty, S.; Jose, J.; Kumar, L.; Charyulu, R.N. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J. Cosmet. Dermatol., 2019, 18(3), 862-869.
[http://dx.doi.org/10.1111/jocd.12765] [PMID: 30171656]
[148]
Gupta, B.; Ghosh, K.K.; Gupta, R.C. Thymoquinone. In: Gupta, R.C.B.T-N., Ed.; Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Boston, 2016; pp. 541-550.
[149]
Eid, A.M.; Elmarzugi, N.A.; Abu Ayyash, L.M.; Sawafta, M.N.; Daana, H.I. A review on the cosmeceutical and external applications of Nigella sativa. J. Trop. Med., 2017, 2017, 7092514.
[http://dx.doi.org/10.1155/2017/7092514] [PMID: 29358959]
[150]
Kausar, H.; Mujeeb, M.; Ahad, A.; Moolakkadath, T.; Aqil, M.; Ahmad, A.; Akhter, M.H. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne. J. Drug Deliv. Sci. Technol., 2019, 49, 177-187.
[http://dx.doi.org/10.1016/j.jddst.2018.11.016]
[151]
Nasri, S.; Ebrahimi-Hosseinzadeh, B.; Rahaie, M.; Hatamian-Zarmi, A.; Sahraeian, R. Thymoquinone-loaded ethosome with breast cancer potential: Optimization, in vitro and biological assessment. J. Nanostructure Chem., 2020, 10(1), 19-31.
[http://dx.doi.org/10.1007/s40097-019-00325-w]
[152]
Madhunithya, E.; Venkatesh, G.; Shyamala, G.; Manjari, V.; Ramesh, S.; Karuppaiah, A.; Sankar, V. Development of ethosome comprising combined herbal extracts and its effect on hair growth. Adv. Tradit. Med., 2021, 21, 131-141.
[http://dx.doi.org/10.1007/s13596-020-00457-3]
[153]
Somwanshi, S.B. Development and evaluation of novel ethosomal vesicular drug delivery system of Sesamum indicum L. seed extract. Asian J. Pharm., 2019, 12(4)
[http://dx.doi.org/10.22377/ajp.v12i04.2924]
[154]
Sundari, B.T.; Rao, P.S.; Sireesha, K. Formulation and ex-vivo skin permeation study of mangifera indica ethosomal gel. Int. J. Pharm. Sci. Rev. Res., 2019, 55(1), 28-33.
[155]
Peram, M.R.; Jalalpure, S.; Kumbar, V.; Patil, S.; Joshi, S.; Bhat, K.; Diwan, P. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: In vitro evaluation. J. Liposome Res., 2019, 29(3), 291-311.
[http://dx.doi.org/10.1080/08982104.2018.1556292] [PMID: 30526186]
[156]
Witowski, C.G.; Salm, J.L. Encapsulated cannabinoid formulations for transdermal delivery. US20190216870A1, 2019.
[157]
Jianping, T.; Lixin, J.; Tanran, C; Zhiwen, Z Paclitaxel ethosome gel and preparation method thereof. CN102579323A, 2012.
[158]
Barkat, M.A. Harshita; Das, S.S. Nanotechnology-based phytotherapeutics: Current status and challenges. In: Beg, S., Barkat, M., Ahmad, F. (eds), Nanophytomedicine; Springer: Singapore, 2020; pp. 1-17.
[159]
Sabuj, M.Z.R.; Islam, N. Nanophytomedicine: An effective way for improving drug delivery and bioavailability of herbal medicines. In: Beg, S., Barkat, M., Ahmad, F. (eds), Nanophytomedicine; Springer: Singapore, 2020; pp. 55-70.
[http://dx.doi.org/10.1007/978-981-15-4909-0_4]
[160]
Mohi-ud-din, R.; Mir, R.H.; Pottoo, F.H. Nanophytomedicine ethical issues, regulatory aspects, and challenges. In: Beg, S., Barkat, M., Ahmad, F. (eds), Nanophytomedicine; Springer: Singapore, 2020; pp. 173-192.
[http://dx.doi.org/10.1007/978-981-15-4909-0_10]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy