Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Commentary

Up-to-date Combinational Polymeric Approaches for the Enhancement of Drug Absorption and Membrane Transductivity

Author(s): Panagiotis Theodosis-Nobelos and Maria Rikkou-Kalourkoti*

Volume 21, Issue 4, 2024

Published on: 03 February, 2023

Page: [659 - 664] Pages: 6

DOI: 10.2174/1570180820666230119103518

Price: $65

Abstract

Many of the challenges concerning pharmaceutical compounds are involved in the tuning of their physical properties and controlled and targeted drug delivery, in order to acquire the optimum therapeutic effect. With these challenges in mind and with the recent emergence of advanced materials, various combinational polymeric approaches have been applied. The use of coordination polymers, which are hybrid inorganic-organic materials, consists of transition metals and multidentate organic ligands and have been proven to prolong the release and increase the drug permeation rate of active pharmaceutical ingredients (APIs). Another recent approach is the preparation of deformable polymeric nanoparticles (DPN) that require the physical incorporation of a lipid in a polymeric micelle, offering flexible and deformable phase properties. It has been shown that skin delivery efficiency could be increased due to this deformable phase. Enhanced skin permeation was also observed when TAT peptides were chemically attached to the DPNs. Other recent approaches, such as microarray patches, sustained release microspheres, nanoparticles coated with biological membranes, nanosponges, and lipid-based nanoparticles, modified by polymers, have also been able to improve the pharmacokinetic profiles of APIs and are also discussed in this paper.

Next »
[1]
Ma, Z.; Moulton, B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coord. Chem. Rev., 2011, 255, 1623-1641.
[2]
Krishnamoorthy, K.; Mahalingam, M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv. Pharm. Bull., 2015, 5(1), 57-67.
[PMID: 25789220]
[3]
M’bitsi-Ibouily, G.C.; Marimuthu, T.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pradeep, P.; Modi, G.; Pillay, V.; Pillay, V. Synthesis, characterisation and in vitro permeation, dissolution and cytotoxic evaluation of Ruthenium(II)-liganded sulpiride and amino alcohol. Sci. Rep., 2019, 9(1), 4146.
[http://dx.doi.org/10.1038/s41598-019-40538-1] [PMID: 30858469]
[4]
M’bitsi-Ibouily, G.C.; Marimuthu, T.; du Toit, L.C.; Kumar, P.; Choonara, Y.E. In vitro, ex vivo and in vivo evaluation of a novel metal-liganded nanocomposite for the controlled release and improved oral bioavailability of sulpiride. J. Drug Deliv. Sci. Technol., 2021, 66, 102909.
[http://dx.doi.org/10.1016/j.jddst.2021.102909]
[5]
Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro‐ and nanosystems for advanced transdermal delivery. Adv. Ther. (Weinh.), 2019, 2(12), 1900141.
[http://dx.doi.org/10.1002/adtp.201900141]
[6]
Park, D.; Lee, J.Y.; Cho, H.K.; Hong, W.J.; Kim, J.; Seo, H.; Choi, I.; Lee, Y.; Kim, J.; Min, S.J.; Yoon, S-H.; Hwang, J.S.; Cho, K.J.; Kim, J.W. Cell-penetrating peptide-patchy deformable polymeric nanovehicles with enhanced cellular uptake and transdermal delivery. Biomacromolecules, 2018, 19(7), 2682-2690.
[http://dx.doi.org/10.1021/acs.biomac.8b00292] [PMID: 29847726]
[7]
Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci., 2001, 14(2), 101-114.
[http://dx.doi.org/10.1016/S0928-0987(01)00167-1] [PMID: 11500256]
[8]
Donnelly, R.F.; McCrudden, M.T.C.; Alkilani, A.Z.; Larrañeta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C.; Singh, T.R.R.; McCarthy, H.O.; Kett, V.L.; Caffarel-Salvador, E.; Al-Zahrani, S.; Woolfson, A.D. Hydrogel-forming microneedles prepared from “Super Swelling” polymers combined with lyophilized wafers for transdermal drug delivery. PLoS One, 2014, 9(10), e111547.
[9]
Ramadon, D.; Permana, A.D.; Courtenay, A.J.; McCrudden, M.T.C.; Tekko, I.A.; McAlister, E.; Anjani, Q.K.; Utomo, E.; McCarthy, H.O.; Donnelly, R.F. Development, evaluation, and pharmacokinetic assessment of polymeric microarray patches for transdermal delivery of vancomycin hydrochloride. Mol. Pharm., 2020, 17(9), 3353-3368.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00431] [PMID: 32706591]
[10]
Anjani, Q.K.; Sabri, A.H.B.; Domínguez-Robles, J.; Moreno-Castellanos, N.; Utomo, E.; Wardoyo, L.A.H.; Larrañeta, E.; Donnelly, R.F. Metronidazole nanosuspension loaded dissolving microarray patches: An engineered composite pharmaceutical system for the treatment of skin and soft tissue infection. Biomater. Adv., 2022, 140, 213073.
[http://dx.doi.org/10.1016/j.bioadv.2022.213073] [PMID: 35964387]
[11]
Anjani, Q.K.; Sabri, A.H.B.; Moreno-Castellanos, N.; Utomo, E.; Cárcamo-Martínez, Á.; Domínguez-Robles, J.; Wardoyo, L.A.H.; Donnelly, R.F. Soluplus®-based dissolving microarray patches loaded with colchicine: towards a minimally invasive treatment and management of gout. Biomater. Sci., 2022, 10(20), 5838-5855.
[http://dx.doi.org/10.1039/D2BM01068B] [PMID: 35972236]
[12]
Volpe-Zanutto, F.; Vora, L.K.; Tekko, I.A.; McKenna, P.E.; Permana, A.D.; Sabri, A.H.; Anjani, Q.K.; McCarthy, H.O.; Paredes, A.J.; Donnelly, R.F. Hydrogel-forming microarray patches with cyclodextrin drug reservoirs for long-acting delivery of poorly soluble cabotegravir sodium for HIV pre-exposure prophylaxis. J. Control. Release, 2022, 348, 771-785.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.028] [PMID: 35738464]
[13]
Azmana, M.; Mahmood, S.; Hilles, A.R.; Mandal, U.K.; Saeed Al-Japairai, K.A.; Raman, S. Transdermal drug delivery system through polymeric microneedle: A recent update. J. Drug Deliv. Sci. Technol., 2020, 60, 101877.
[http://dx.doi.org/10.1016/j.jddst.2020.101877]
[14]
Hu, L.; Zhang, H.; Song, W. An overview of preparation and evaluation sustained-release injectable microspheres. J. Microencapsul., 2013, 30(4), 369-382.
[http://dx.doi.org/10.3109/02652048.2012.742158] [PMID: 23140260]
[15]
Patel, M.; Jha, A.; Patel, R. Potential application of PLGA microsphere for tissue engineering. J. Polym. Res., 2021, 28(6), 214.
[http://dx.doi.org/10.1007/s10965-021-02562-6]
[16]
Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on-demand therapy. Acc. Chem. Res., 2017, 50(4), 669-679.
[http://dx.doi.org/10.1021/acs.accounts.6b00536]
[17]
Das, S.S. Neelam; Hussain, K.; Singh, S.; Hussain, A.; Faruk, A.; Tebyetekerwa, M. Laponite-based nanomaterials for biomedical applications: A review. Curr. Pharm. Des., 2019, 25(4), 424-443.
[http://dx.doi.org/10.2174/1381612825666190402165845] [PMID: 30947654]
[18]
Zou, S.; Wang, B.; Wang, C.; Wang, Q.; Zhang, L. Cell membrane-coated nanoparticles: research advances. Nanomedicine (Lond.), 2020, 15(6), 625-641.
[http://dx.doi.org/10.2217/nnm-2019-0388] [PMID: 32098564]
[19]
Zhang, M.; Bai, Y.; Xu, C.; Lin, J.; Jin, J.; Xu, A.; Lou, J.N.; Qian, C.; Yu, W.; Wu, Y.; Qi, Y.; Tao, H. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv., 2021, 28(1), 2548-2561.
[http://dx.doi.org/10.1080/10717544.2021.2009937] [PMID: 34854786]
[20]
Khare, S.; Dal, S.S.; Lingam, S.; Veeramanikandan, V.; Balaji, P.; Hota, A.; Kannaiyan, J. Plate-rich plasma and its utility in clinical conditions: A systematic review. J. Drug Deliv. Ther., 2021, 11(1-s), 186-194.
[http://dx.doi.org/10.22270/jddt.v11i1-s.4721]
[21]
Gedam, S.S.; Basarkar, G.D. Formulation, design and in-vitro characterization of clopidogrel bisulphate nanosponge tablets for oral administration. Res. J. Pharm. Technol., 2021, 14(4), 2069-2075.
[http://dx.doi.org/10.52711/0974-360X.2021.00367]
[22]
Tannous, M.; Trotta, F.; Cavalli, R. Nanosponges for combination drug therapy: state-of-the-art and future directions. Nanomedicine (Lond.), 2020, 15(7), 643-646.
[http://dx.doi.org/10.2217/nnm-2020-0007] [PMID: 32077373]
[23]
Mashhadi Malekzadeh, A.; Ramazani, A.; Tabatabaei Rezaei, S.J.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73.
[http://dx.doi.org/10.1016/j.jcis.2016.11.014] [PMID: 27870961]
[24]
Khan, A.; Kumar Sahu, N. Folate ‐ conjugated magnetite nanoparticles for targeted drug delivery and hyperthermia applications. ChemistrySelect, 2022, 7(37), e202202012.
[http://dx.doi.org/10.1002/slct.202202012]
[25]
Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Forootanfar, H.; Firoozpour, L.; Foroumadi, A.; Ramazani, A.; Khoobi, M. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J. Colloid Interface Sci., 2019, 556, 128-139.
[http://dx.doi.org/10.1016/j.jcis.2019.08.046] [PMID: 31437658]
[26]
Wang, X.; Ma, Q.; Wen, C.; Gong, T.; Li, J.; Liang, W.; Li, M.; Wang, Y.; Guo, R. Folic acid and deoxycholic acid derivative modified Fe3O4 nanoparticles for efficient pH-dependent drug release and multi-targeting against liver cancer cells. RSC Advances, 2021, 11(63), 39804-39812.
[http://dx.doi.org/10.1039/D1RA05874F] [PMID: 35494148]
[27]
Caldera, F.; Nisticò, R.; Magnacca, G.; Matencio, A.; Khazaei Monfared, Y.; Trotta, F. Magnetic composites of dextrin-based carbonate nanosponges and iron oxide nanoparticles with potential application in targeted drug delivery. Nanomaterials (Basel), 2022, 12(5), 754.
[http://dx.doi.org/10.3390/nano12050754] [PMID: 35269242]
[28]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[29]
Varghese, R.; Salvi, S.; Sood, P.; Kulkarni, B.; Kumar, D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun., 2022, 46, 100561.
[http://dx.doi.org/10.1016/j.colcom.2021.100561]
[30]
Madheswaran, T.; Kandasamy, M.; Bose, R.J.C.; Karuppagounder, V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov. Today, 2019, 24(7), 1405-1412.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004] [PMID: 31102731]
[31]
Aleandri, S.; Bandera, D.; Mezzenga, R.; Landau, E.M. Landau. E. M. Biotinylated cubosomes: a versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir, 2015, 31(46), 12770-12776.
[http://dx.doi.org/10.1021/acs.langmuir.5b03469] [PMID: 26513646]
[32]
Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1-12.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[33]
Guo, Q.; Jiang, C. Delivery strategies for macromolecular drugs in cancer therapy. Acta Pharm. Sin. B, 2020, 10(6), 979-986.
[http://dx.doi.org/10.1016/j.apsb.2020.01.009] [PMID: 32642406]
[34]
Huang, P.; Deng, H.; Zhou, Y.; Chen, X. The roles of polymers in mRNA delivery. Matter, 2022, 5(6), 1670-1699.
[http://dx.doi.org/10.1016/j.matt.2022.03.006]
[35]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[36]
Shajari, N.; Mansoori, B.; Davudian, S.; Mohammadi, A.; Baradaran, B. Overcoming the challenges of siRNA delivery: Nanoparticle strategies. Curr. Drug Deliv., 2017, 14(1), 36-46.
[http://dx.doi.org/10.2174/1567201813666160816105408] [PMID: 27538460]
[37]
Theodosis-Nobelos, P.; Charalambous, D.; Triantis, C.; Rikkou-Kalourkoti, M. Drug Conjugates using different dynamic covalent bonds and their application in cancer therapy. Curr. Drug Deliv., 2020, 17(7), 542-557.
[http://dx.doi.org/10.2174/1567201817999200508092141] [PMID: 32384029]
[38]
Guo, Q.; Li, C.; Zhou, W.; Chen, X.; Zhang, Y.; Lu, Y.; Zhang, Y.; Chen, Q.; Liang, D.; Sun, T.; Jiang, C. GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharm. Sin. B, 2019, 9(4), 832-842.
[http://dx.doi.org/10.1016/j.apsb.2019.01.012] [PMID: 31384542]
[39]
Li, M.; Zhao, M.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release, 2016, 228, 9-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.043] [PMID: 26941035]
[40]
Uchenna Agu, R.; Jorissen, M.; Willems, T.; Van den Mooter, G.; Kinget, R.; Verbeke, N.; Augustijns, P. Safety assessment of selected cyclodextrins - effect on ciliary activity using a human cell suspension culture model exhibiting in vitro ciliogenesis. Int. J. Pharm., 2000, 193(2), 219-226.
[http://dx.doi.org/10.1016/S0378-5173(99)00342-7] [PMID: 10606785]

© 2024 Bentham Science Publishers | Privacy Policy