Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Chalcones As Potent Agents Against Staphylococcus aureus: A Computational Approach

Author(s): Jayze da Cunha Xavier, Hélcio Silva dos Santos, Márcia Machado Marinho, Matheus Nunes da Rocha, Alexandre Magno Rodrigues Teixeira, Henrique Douglas Melo Coutinho, Emmanuel Silva Marinho, Sucheta, Nitin Kumar and Raghav Mishra*

Volume 21, Issue 4, 2024

Published on: 10 February, 2023

Page: [684 - 700] Pages: 17

DOI: 10.2174/1570180820666230120145921

Price: $65

Abstract

Background: Studies on natural or synthetic products from chalcones have shown to be very promising due to their peculiar structure that allows different possibilities of reallocation that will define their diverse bioactivities in the creation of new substances. This creation is facilitated by the synthesis of substances in conjunction with the molecular study, which allows a considerable advancement in research, reducing the number of in vitro tests.

Objective: This work focuses on the antibacterial activity of chalcones against Staphylococcus aureus, which causes several diseases and is one of the main microorganisms with increasing resistance to conventional drugs.

Methods: Articles that studied antibacterial activity, efflux pump, or molecular docking were considered complimentary analyses of chalcones. From these data, molecular docking and ADMET of the first five chalcones were performed with the best activity found.

Results: The result of the antimicrobial activity against Staphylococcus aureus was confirmed through in silico study and pharmacokinetic data.

Conclusion: The results of the antimicrobial activity of the most active chalcones against Staphylococcus aureus were supported by in silico and pharmacokinetic studies, which not only confirmed their potential to act against resistant strains but also established the future utility of chalcones as lead molecules or prototypes for the synthesis of potent new antimicrobial agents against Staphylococcus aureus.

Graphical Abstract

[1]
Wright, G.D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep., 2017, 34(7), 694-701.
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[2]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[3]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[4]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[5]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[6]
Silva, C.F.M.; Pinto, D.C.G.A.; Silva, A.M.S. Chromones: A promising ring system for new anti-inflammatory drugs. ChemMedChem, 2016, 11(20), 2252-2260.
[http://dx.doi.org/10.1002/cmdc.201600359] [PMID: 27630077]
[7]
Mujwar, S.; Deshmukh, R.; Harwansh, R.K.; Gupta, J.K.; Gour, A. Drug repurposing approach for developing novel therapy against mupirocin-resistant Staphylococcus aureus. Assay Drug Dev. Technol., 2019, 17(7), 298-309.
[http://dx.doi.org/10.1089/adt.2019.944] [PMID: 31634019]
[8]
Mishra, I.; Sachan, N. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects. ECS Trans., 2022, 107(1), 17745-17768.
[http://dx.doi.org/10.1149/10701.17745ecst]
[9]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404.
[http://dx.doi.org/10.4172/2161-0444.1000291] [PMID: 26798565]
[10]
Baviskar, B.A.; Baviskar, B.; Shiradkar, M.R.; Deokate, U.A.; Khadabadi, S.S. Synthesis and antimicrobial activity of somenovel benzimidazolyl chalcones. E-J. Chem., 2009, 6(1), 196-200.
[http://dx.doi.org/10.1155/2009/746292]
[11]
Khan, S.A.; Asiri, A.M.; Alamry, K.A.; El-Daly, S.A.; Zayed, M.A.M. Eco-friendly synthesis and in vitro antibacterial activities of some novel chalcones. Bioorg. Khim., 2013, 39(3), 353-357.
[http://dx.doi.org/10.7868/S013234231303007X] [PMID: 24397034]
[12]
Medina, E.; Pieper, D.H. Tackling threats and future problems of multidrug-resistant bacteria. Curr. Top. Microbiol. Immunol., 2016, 398, 3-33.
[http://dx.doi.org/10.1007/82_2016_492] [PMID: 27406189]
[13]
Isha; Sachan, N. Design, synthesis and biological assessment of thiazole derivatives as possible antioxidant and antimicrobial agents. J. Pharm. Res. Int., 2021, 33(53), 24-32.
[http://dx.doi.org/10.9734/jpri/2021/v33i53A33635]
[14]
Pandit, N.; Shah, K.; Agrawal, N.; Upmanyu, N.; Shrivastava, S.K.; Mishra, P. Synthesis, characterization and biological evaluation of some novel fluoroquinolones. Med. Chem. Res., 2016, 25(5), 843-851.
[http://dx.doi.org/10.1007/s00044-016-1526-x]
[15]
Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene scaffold as prospective antimicrobial agent: A review. J. Heterocycl. Chem., 2018, 55(9), 2019-2034.
[http://dx.doi.org/10.1002/jhet.3249]
[16]
Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem., 2020, 57(6), 2304-2329.
[http://dx.doi.org/10.1002/jhet.3970]
[17]
Krishna, S.; Miller, L.S. Host–pathogen interactions between the skin and Staphylococcus aureus. Curr. Opin. Microbiol., 2012, 15(1), 28-35.
[http://dx.doi.org/10.1016/j.mib.2011.11.003] [PMID: 22137885]
[18]
Dugourd, P.M.; Dupont, A.; Hubiche, T.; Chiaverini, C.; Alkhalifa, A.; Roudiere, L.; Tristan, A.; Gustave, C.A.; Del Giudice, P. Staphylococcal toxic shock syndrome should be considered in the event of diffuse erythema with fever and shock. Ann. Dermatol. Venereol., 2019, 146(4), 287-291.
[http://dx.doi.org/10.1016/j.annder.2018.12.002] [PMID: 30691878]
[19]
Bergin, S.P.; Holland, T.L.; Fowler, V.G., Jr; Tong, S.Y.C. Bacteremia, sepsis, and infective endocarditis associated with Staphylococcus aureus. Curr. Top. Microbiol. Immunol., 2015, 409, 263-296.
[http://dx.doi.org/10.1007/82_2015_5001] [PMID: 26659121]
[20]
Dantes, R.; Mu, Y.; Belflower, R.; Aragon, D.; Dumyati, G.; Harrison, L.H.; Lessa, F.C.; Lynfield, R.; Nadle, J.; Petit, S.; Ray, S.M.; Schaffner, W.; Townes, J.; Fridkin, S. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern. Med., 2013, 173(21), 1970-1978.
[http://dx.doi.org/10.1001/jamainternmed.2013.10423] [PMID: 24043270]
[21]
Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther., 2013, 11(3), 297-308.
[http://dx.doi.org/10.1586/eri.13.12] [PMID: 23458769]
[22]
Yılmaz, E.Ş.; Aslantaş Ö. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac. J. Trop. Med., 2017, 10(11), 1059-1064.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.003] [PMID: 29203102]
[23]
van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: an overview. Front. Microbiol., 2011, 2, 203.
[http://dx.doi.org/10.3389/fmicb.2011.00203] [PMID: 22046172]
[24]
Kohanski, M.A.; DePristo, M.A.; Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell, 2010, 37(3), 311-320.
[http://dx.doi.org/10.1016/j.molcel.2010.01.003] [PMID: 20159551]
[25]
Dua, R.; Shrivastava, S.; Sonwane, S.; Srivastava, S. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. (Faisalabad), 2011, 5, 120-144.
[26]
Kalirajan, R.; Sivakumar, S.U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1, 27-34.
[27]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(2), 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[28]
Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem., 2018, 77, 236-244.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.016] [PMID: 29421698]
[29]
Qiu, R-L.; Li, L.; Zhu, M-H.; Liu, J. Study on the chemical constituents of Psoralea corylifolia. Zhong Yao Cai, 2011, 34(8), 1211-1213.
[PMID: 22233033]
[30]
Doan, T.N.; Tran, D.T. Synthesis, antioxidant and antimicrobial activities of a novel series of chalcones, pyrazolic chalcones, and allylic chalcones. Pharmacol. Pharm., 2011, 2(4), 282-288.
[http://dx.doi.org/10.4236/pp.2011.24036]
[31]
Bandgar, B.P.; Patil, S.A.; Gacche, R.N.; Korbad, B.L.; Hote, B.S.; Kinkar, S.N.; Jalde, S.S. Synthesis and biological evaluation of nitrogen-containing chalcones as possible anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2010, 20(2), 730-733.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.068] [PMID: 20005707]
[32]
Vogel, S.; Barbic, M.; Jürgenliemk, G.; Heilmann, J. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur. J. Med. Chem., 2010, 45(6), 2206-2213.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.060] [PMID: 20153559]
[33]
Kuete, V.; Alibert-Franco, S.; Eyong, K.O.; Ngameni, B.; Folefoc, G.N.; Nguemeving, J.R.; Tangmouo, J.G.; Fotso, G.W.; Komguem, J.; Ouahouo, B.M.W.; Bolla, J.M.; Chevalier, J.; Ngadjui, B.T.; Nkengfack, A.E.; Pagès, J.M. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int. J. Antimicrob. Agents, 2011, 37(2), 156-161.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.020] [PMID: 21163632]
[34]
David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev., 2010, 23(3), 616-687.
[http://dx.doi.org/10.1128/CMR.00081-09] [PMID: 20610826]
[35]
David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus infections. Curr. Top. Microbiol. Immunol., 2017, 409, 325-383.
[http://dx.doi.org/10.1007/82_2017_42] [PMID: 28900682]
[36]
DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet, 2010, 375(9725), 1557-1568.
[http://dx.doi.org/10.1016/S0140-6736(09)61999-1] [PMID: 20206987]
[37]
Peacock, S.J.; Paterson, G.K. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem., 2015, 84(1), 577-601.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034516] [PMID: 26034890]
[38]
Powers, M.E.; Wardenburg, J.B. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog., 2014, 10(2), e1003871.
[http://dx.doi.org/10.1371/journal.ppat.1003871] [PMID: 24550724]
[39]
Lee, G.S. Antibacterial and synergistic activity of prenylated chalcone isolated from the roots of Sophora flavescens. J. Korean Soc. Appl. Biol. Chem., 2010, 53(3), 290-296.
[http://dx.doi.org/10.3839/jksabc.2010.045]
[40]
Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; Meyer, J.J.M.; Lall, N.; Beng, V.P. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol., 2008, 116(3), 483-489.
[http://dx.doi.org/10.1016/j.jep.2007.12.017] [PMID: 18280679]
[41]
Feng, L.; Maddox, M.M.; Alam, M.Z.; Tsutsumi, L.S.; Narula, G.; Bruhn, D.F.; Wu, X.; Sandhaus, S.; Lee, R.B.; Simmons, C.J.; Tse-Dinh, Y.C.; Hurdle, J.G.; Lee, R.E.; Sun, D. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J. Med. Chem., 2014, 57(20), 8398-8420.
[http://dx.doi.org/10.1021/jm500853v] [PMID: 25238443]
[42]
Mariani, R.; Suganda, A.; Sukandar, E. Drug-drug interactions between Griseofulvin and a new prenylated chalcone from Elatostema parasiticum and its antibacterial activity nortriptyline at binding sites of bovine serum albumin. Pharmacologyonline, 2016, 1, 1-6.
[43]
Muharini, R.; Díaz, A.; Ebrahim, W.; Mándi, A.; Kurtán, T.; Rehberg, N.; Kalscheuer, R.; Hartmann, R.; Orfali, R.S.; Lin, W.; Liu, Z.; Proksch, P. Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha Fruticosa. Z. Fur Phytother. 2017 Von der Innovation zur Evidenz. Georg Thieme Verlag KG, 2017, 38(501), 51-544.
[http://dx.doi.org/10.1055/s-0037-1607173]
[44]
Zhang, M.; Prior, A.M.; Maddox, M.M.; Shen, W.J.; Hevener, K.E.; Bruhn, D.F.; Lee, R.B.; Singh, A.P.; Reinicke, J.; Simmons, C.J.; Hurdle, J.G.; Lee, R.E.; Sun, D. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega, 2018, 3(12), 18343-18360.
[http://dx.doi.org/10.1021/acsomega.8b03174] [PMID: 30613820]
[45]
Chen, J.; Li, Y.; Yang, L.Q.; Li, Y.Z.; Nan, Z.B.; Gao, K. Biological activities of flavonoids from pathogenic-infected Astragalus adsurgens. Food Chem., 2012, 131(2), 546-551.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.021] [PMID: 23122096]
[46]
Cui, Y.; Taniguchi, S.; Kuroda, T.; Hatano, T. Constituents of psoralea corylifolia fruits and their effects on methicillin-resistant Staphylococcus aureus. Molecules, 2015, 20(7), 12500-12511.
[http://dx.doi.org/10.3390/molecules200712500] [PMID: 26184136]
[47]
Gaur, R.; Gupta, V.K.; Pal, A.; Darokar, M.P.; Bhakuni, R.S.; Kumar, B. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Advances, 2015, 5(8), 5830-5845.
[http://dx.doi.org/10.1039/C4RA10842F]
[48]
Alvarez, M.A.; Debattista, N.B.; Pappano, N.B. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol. (Praha), 2008, 53(1), 23-28.
[http://dx.doi.org/10.1007/s12223-008-0003-4] [PMID: 18481214]
[49]
Drewes, S.E.; van Vuuren, S.F. Antimicrobial acylphloroglucinols and dibenzyloxy flavonoids from flowers of Helichrysum gymnocomum. Phytochemistry, 2008, 69(8), 1745-1749.
[http://dx.doi.org/10.1016/j.phytochem.2008.02.022] [PMID: 18406436]
[50]
Tran, T.D.; Do, T.H.; Tran, N.C.; Ngo, T.D.; Huynh, T.N.P.; Tran, C.D.; Thai, K.M. Synthesis and anti Methicillin resistant Staphylococcus aureus activity of substituted chalcones alone and in combination with non-beta-lactam antibiotics. Bioorg. Med. Chem. Lett., 2012, 22(14), 4555-4560.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.112] [PMID: 22727643]
[51]
Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44(5), 2211-2218.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.010] [PMID: 18584918]
[52]
Prasad, S.; Radhakrishna, V.; Ravi, T.K. Synthesis, spectroscopic and antibacterial studies of some schiff bases of 4-(4-bromophenyl)-6-(4-chlorophenyl)-2-aminopyrimidine. Arab. J. Chem., 2019, 12(8), 3943-3947.
[http://dx.doi.org/10.1016/j.arabjc.2016.03.003]
[53]
Bush, K.; Fisher, J.F. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu. Rev. Microbiol., 2011, 65(1), 455-478.
[http://dx.doi.org/10.1146/annurev-micro-090110-102911] [PMID: 21740228]
[54]
Singh, P.K.; Silakari, O. The current status of O‐heterocycles: A synthetic and medicinal overview. ChemMedChem, 2018, 13(11), 1071-1087.
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[55]
Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds-A critical review. Int. J. Antimicrob. Agents, 2012, 39(5), 381-389.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.01.011] [PMID: 22421329]
[56]
Paphitou, N.I. Antimicrobial resistance: action to combat the rising microbial challenges. Int. J. Antimicrob. Agents, 2013, 42(Suppl.), S25-S28.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.04.007] [PMID: 23684003]
[57]
Sharma, P.C.; Alawadhi, N.; Sharma, A.; Pahwa, R.; Rajak, H. Fluoroquinolones in urinary tract infections: A study on perception analysis of prescribers. Der Chemica Sinica, 2010, 1(3), 84-90.
[58]
Koba, M. Bączek, T.; Macur, K.; Bober, L.; Frąckowiak, T.; Buciński, A.; Rystok-Grabska, D.; Stasiak, J.; Koba, K. Factor analysis of microbiological activity data and structural parameters of antibacterial quinolones. J. Mol. Model., 2010, 16(2), 327-335.
[http://dx.doi.org/10.1007/s00894-009-0549-3] [PMID: 19603202]
[59]
Schillaci, D.; Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.; Cascioferro, S. Pharmaceutical approaches to target antibiotic resistance mechanisms. J. Med. Chem., 2017, 60(20), 8268-8297.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00215] [PMID: 28594170]
[60]
Kvist, M.; Hancock, V.; Klemm, P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol., 2008, 74(23), 7376-7382.
[http://dx.doi.org/10.1128/AEM.01310-08] [PMID: 18836028]
[61]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[62]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[63]
Higgins, C.F. Multiple molecular mechanisms for multidrug resistance transporters. Nature, 2007, 446(7137), 749-757.
[http://dx.doi.org/10.1038/nature05630] [PMID: 17429392]
[64]
Lekshmi, M.; Ammini, P.; Adjei, J.; Sanford, L.M.; Shrestha, U.; Kumar, S.; Varela, M.F. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiol., 2018, 4(1), 1-18.
[http://dx.doi.org/10.3934/microbiol.2018.1.1] [PMID: 31294201]
[65]
Kumar, S.; Smith, K.P.; Floyd, J.L.; Varela, M.F. Cloning and molecular analysis of a mannitol operon of phosphoenolpyruvate-dependent phosphotransferase (PTS) type from Vibrio cholerae O395. Arch. Microbiol., 2011, 193(3), 201-208.
[http://dx.doi.org/10.1007/s00203-010-0663-8] [PMID: 21184218]
[66]
Wu, S.C.; Han, F.; Song, M.R.; Chen, S.; Li, Q.; Zhang, Q.; Zhu, K.; Shen, J.Z. Natural flavones from Morus alba against methicillin-resistant Staphylococcus aureus via targeting the proton motive force and membrane permeability. J. Agric. Food Chem., 2019, 67(36), 10222-10234.
[http://dx.doi.org/10.1021/acs.jafc.9b01795] [PMID: 31385700]
[67]
Schindler, B.D.; Frempong-Manso, E.; DeMarco, C.E.; Kosmidis, C.; Matta, V.; Seo, S.M.; Kaatz, G.W. Analyses of multidrug efflux pump-like proteins encoded on the Staphylococcus aureus chromosome. Antimicrob. Agents Chemother., 2015, 59(1), 747-748.
[http://dx.doi.org/10.1128/AAC.04678-14] [PMID: 25403665]
[68]
Coêlho, M.L.; Ferreira, J.H.L.; de Siqueira Júnior, J.P.; Kaatz, G.W.; Barreto, H.M.; de Carvalho Melo Cavalcante, A.A. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes. Microb. Pathog., 2016, 99, 173-177.
[http://dx.doi.org/10.1016/j.micpath.2016.08.026] [PMID: 27565089]
[69]
Schindler, B.D.; Jacinto, P.L.; Buensalido, J.A.L.; Seo, S.M.; Kaatz, G.W. Clonal relatedness is a predictor of spontaneous multidrug efflux pump gene overexpression in Staphylococcus aureus. Int. J. Antimicrob. Agents, 2015, 45(5), 464-470.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.11.007] [PMID: 25548027]
[70]
Chambers, C.S. Viktorová, J.; Řehořová, K.; Biedermann, D.; Turková, L.; Macek, T.; Křen, V.; Valentová, K. Defying multidrug resistance! modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem., 2020, 68(7), 1763-1779.
[http://dx.doi.org/10.1021/acs.jafc.9b00694] [PMID: 30907588]
[71]
Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun., 2014, 453(2), 254-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[72]
Patel, D.; Kosmidis, C.; Seo, S.M.; Kaatz, G.W. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus. Antimicrob. Agents Chemother., 2010, 54(12), 5070-5073.
[http://dx.doi.org/10.1128/AAC.01058-10] [PMID: 20855743]
[73]
Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med., 2007, 39(3), 162-176.
[http://dx.doi.org/10.1080/07853890701195262] [PMID: 17457715]
[74]
Srivalli, K.M.R.; Lakshmi, P.K. Overview of P-glycoprotein inhibitors: a rational outlook. Braz. J. Pharm. Sci., 2012, 48(3), 353-367.
[http://dx.doi.org/10.1590/S1984-82502012000300002]
[75]
Jorgensen, W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res., 2009, 42(6), 724-733.
[http://dx.doi.org/10.1021/ar800236t] [PMID: 19317443]
[76]
Cavasotto, C.N.; Adler, N.S.; Aucar, M.G. Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem., 2018, 6, 188.
[http://dx.doi.org/10.3389/fchem.2018.00188] [PMID: 29896472]
[77]
Leis, S.; Zacharias, M. ReFlexIn: A flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease. PLoS One, 2012, 7(10), e48008.
[http://dx.doi.org/10.1371/journal.pone.0048008] [PMID: 23110159]
[78]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 11(8), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016] [PMID: 21152288]
[79]
Petrenko, R.; Meller, J. Molecular Dynamics.eLS, (Ed.); Wiley, Hoboken, 2010.
[http://dx.doi.org/10.1002/9780470015902.a0003048.pub2]
[80]
Bello, M.; Martínez-Archundia, M.; Correa-Basurto, J. Automated docking for novel drug discovery. Expert Opin. Drug Discov., 2013, 8(7), 821-834.
[http://dx.doi.org/10.1517/17460441.2013.794780] [PMID: 23642085]
[81]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[82]
Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: Combining techniques to model RNA–small molecule complexes. RNA, 2009, 15(6), 1219-1230.
[http://dx.doi.org/10.1261/rna.1563609] [PMID: 19369428]
[83]
Zavodszky, M.I.; Rohatgi, A.; Van Voorst, J.R.; Yan, H.; Kuhn, L.A. Scoring ligand similarity in structure-based virtual screening. J. Mol. Recognit., 2009, 22(4), 280-292.
[http://dx.doi.org/10.1002/jmr.942] [PMID: 19235177]
[84]
Lemmon, G.; Meiler, J. Rosetta Ligand docking with flexible XML protocols. Methods Mol. Biol., 2012, 819, 143-155.
[http://dx.doi.org/10.1007/978-1-61779-465-0_10] [PMID: 22183535]
[85]
Tuccinardi, T.; Botta, M.; Giordano, A.; Martinelli, A. Protein kinases: docking and homology modeling reliability. J. Chem. Inf. Model., 2010, 50(8), 1432-1441.
[http://dx.doi.org/10.1021/ci100161z] [PMID: 20726600]
[86]
Ripphausen, P.; Nisius, B.; Wawer, M.; Bajorath, J. Rationalizing the role of SAR tolerance for ligand-based virtual screening. J. Chem. Inf. Model., 2011, 51(4), 837-842.
[http://dx.doi.org/10.1021/ci200064c] [PMID: 21438544]
[87]
Davis, I.W.; Raha, K.; Head, M.S.; Baker, D. Blind docking of pharmaceutically relevant compounds using RosettaLigand. Protein Sci., 2009, 18(9), 1998-2002.
[http://dx.doi.org/10.1002/pro.192] [PMID: 19554568]
[88]
Dias, R.; de Azevedo, W., Jr Molecular docking algorithms. Curr. Drug Targets, 2008, 9(12), 1040-1047.
[http://dx.doi.org/10.2174/138945008786949432] [PMID: 19128213]
[89]
Timmers, L.F.S.M.; Caceres, R.A.; Vivan, A.L.; Gava, L.M.; Dias, R.; Ducati, R.G.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F., Jr Structural studies of human purine nucleoside phosphorylase: Towards a new specific empirical scoring function. Arch. Biochem. Biophys., 2008, 479(1), 28-38.
[http://dx.doi.org/10.1016/j.abb.2008.08.015] [PMID: 18790691]
[90]
Correa-Basurto, J.; Ramos-Morales, F.R.; Matus, M.H.; Rosales-Hernández, M.C.; Mancilla-Percino, T.; Trujillo-Ferrara, J.; Ilizaliturri-Flores, I. Docking and DFT Studies to explore the Topoisomerase II ATP Pocket employing 3-Substituted 2,6-Piperazindiones for drug design. Mol. Simul., 2012, 38(13), 1072-1084.
[http://dx.doi.org/10.1080/08927022.2012.690877]
[91]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[92]
Fu, D.Y.; Meiler, J. Predictive power of different types of experimental restraints in small molecule docking: a review. J. Chem. Inf. Model., 2018, 58(2), 225-233.
[http://dx.doi.org/10.1021/acs.jcim.7b00418] [PMID: 29286651]
[93]
Biesiada, J.; Porollo, A.; Meller, J. On setting up and assessing docking simulations for virtual screening. Methods Mol. Biol., 2012, 928, 1-16.
[http://dx.doi.org/10.1007/978-1-62703-008-3_1] [PMID: 22956129]
[94]
Alkozi, H.A.; Sánchez Montero, J.M.; Doadrio, A.L.; Pintor, J. Docking studies for melatonin receptors. Expert Opin. Drug Discov., 2018, 13(3), 241-248.
[http://dx.doi.org/10.1080/17460441.2018.1419184] [PMID: 29271261]
[95]
Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K. K v N S, S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur. J. Med. Chem., 2015, 93, 564-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.027] [PMID: 25743216]
[96]
Scotti, L.; Ishiki, H.; Mendonca, F.J.B.; Silva, M.S.; Scotti, M.T. In-silico analyses of natural products on leishmania enzyme targets. Mini Rev. Med. Chem., 2015, 15(3), 253-269.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[97]
Vaz, R.J.; Zamora, I.; Li, Y.; Reiling, S.; Shen, J.; Cruciani, G. The challenges of in silico contributions to drug metabolism in lead optimization. Expert Opin. Drug Metab. Toxicol., 2010, 6(7), 851-861.
[http://dx.doi.org/10.1517/17425255.2010.499123] [PMID: 20565339]
[98]
Scotti, L.; Mendonca, Junior, F.; Ishiki, H.; Ribeiro, F.; Singla, R.; Filho, J.; Silva, M.; Scotti, M. Docking studies for multi-target drugs. Curr. Drug Targets, 2017, 18(5), 592-604.
[http://dx.doi.org/10.2174/1389450116666150825111818] [PMID: 26302806]
[99]
Dantas, N.; de Aquino, T.M.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.; Gomes, E.A.; Gomes, A.A.S.; Siqueira-Júnior, J.P.; Mendonça Junior, F.J.B. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact., 2018, 280, 8-14.
[http://dx.doi.org/10.1016/j.cbi.2017.12.009] [PMID: 29208359]
[100]
Oliveira, M.M.; Santos, H.S.; Coutinho, H.D.M.; Bandeira, P.N.; da Silva, P.T.; Freitas, T.S.; Rocha, J.E.; Xavier, J.C.; Campina, F.F.; Barbosa, C.R.S.; Araújo Neto, J.B.; Pereira, R.L.S.; Silva, M.M.C.; Muniz, D.F.; Teixeira, A.M.R.; Frota, V.M.; Rodrigues, T.H.S.; Amado, A.M.; Marques, M.P.M.; Batista de Carvalho, L.A.E.; Nogueira, C.E.S. Spectroscopic characterization and efflux pump modulation of a thiophene curcumin derivative. J. Mol. Struct., 2020, 1215(128291), 128291.
[http://dx.doi.org/10.1016/j.molstruc.2020.128291]
[101]
Melo Lucio, F.N.; Da Silva, J.E.; Marinho, E.M.; Da Silva Mendes, F.R.; Marinho, M.M.; Marinho, E.S. Methylcytisine alcaloid potentially active against dengue virus: A molecular docking study and electronic structural characterization. Int. J. Res. -. GRANTHAALAYAH, 2020, 8(1), 221-236.
[http://dx.doi.org/10.29121/granthaalayah.v8.i1.2020.270]
[102]
Milite, C.; Amendola, G.; Nocentini, A.; Bua, S.; Cipriano, A.; Barresi, E.; Feoli, A.; Novellino, E.; Da Settimo, F.; Supuran, C.T.; Castellano, S.; Cosconati, S.; Taliani, S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1697-1710.
[http://dx.doi.org/10.1080/14756366.2019.1666836] [PMID: 31537132]
[103]
Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model., 2013, 19(1), 1-32.
[http://dx.doi.org/10.1007/s00894-012-1667-x] [PMID: 23187683]
[104]
Almeida-Neto, F.W.Q.; da Silva, L.P.; Ferreira, M.K.A.; Mendes, F.R.S.; de Castro, K.K.A.; Bandeira, P.N.; de Menezes, J.E.S.A.; dos Santos, H.S.; Monteiro, N.K.V.; Marinho, E.S.; de Lima-Neto, P. Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-4′-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]-acetamide. J. Mol. Struct., 2020, 1220(128765), 128765.
[http://dx.doi.org/10.1016/j.molstruc.2020.128765]
[105]
Shityakov, S.; Foerster, C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinform. Chem., 2014, 7, 23-36.
[http://dx.doi.org/10.2147/AABC.S63749] [PMID: 25214795]
[106]
Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs. RMSD. J. Chem. Inf. Model., 2008, 48(7), 1411-1422.
[http://dx.doi.org/10.1021/ci800084x] [PMID: 18598022]
[107]
Hockney, R.W.; Goel, S.P.; Eastwood, J.W. Quiet high-resolution computer models of a plasma. J. Comput. Phys., 1974, 14(2), 148-158.
[http://dx.doi.org/10.1016/0021-9991(74)90010-2]
[108]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[109]
Csizmadia, P. Marvinsketch and marvinview: molecule applets for the world wide web. Proceedings of The 3rd International Electronic Conference on Synthetic Organic Chemistry, 1999.
[http://dx.doi.org/10.3390/ecsoc-3-01775]
[110]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[111]
Imberty, A.; Hardman, K.D.; Carver, J.P.; Pérez, S. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology, 1991, 1(6), 631-642.
[http://dx.doi.org/10.1093/glycob/1.6.631] [PMID: 1822243]
[112]
Hay, T.; Jones, R.; Beaumont, K.; Kemp, M. Modulation of the partition coefficient between octanol and buffer at pH 7.4 and pKa to achieve the optimum balance of blood clearance and volume of distribution for a series of tetrahydropyran histamine type 3 receptor antagonists. Drug Metab. Dispos., 2009, 37(9), 1864-1870.
[http://dx.doi.org/10.1124/dmd.109.027888] [PMID: 19546239]
[113]
Perisic-Janjic, N.; Kaliszan, R.; Wiczling, P.; Milosevic, N.; Uscumlic, G.; Banjac, N. Reversed-phase TLC and HPLC retention data in correlation studies with in silico molecular descriptors and druglikeness properties of newly synthesized anticonvulsant succinimide derivatives. Mol. Pharm., 2011, 8(2), 555-563.
[http://dx.doi.org/10.1021/mp100373d] [PMID: 21244097]
[114]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[115]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[116]
de Lange, E.C.M.; Ravenstijn, P.G.M.; Groenendaal, D.; van Steeg, T.J. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J., 2005, 7(3), E532-E543.
[http://dx.doi.org/10.1208/aapsj070354] [PMID: 16353931]
[117]
Hudson, I.R.B. The efficacy of intranasal mupirocin in the prevention of staphylococcal infections: a review of recent experience. J. Hosp. Infect., 1994, 27(2), 81-98.
[http://dx.doi.org/10.1016/0195-6701(94)90001-9] [PMID: 7930545]
[118]
Schimmel, P.; Tao, J.; Hill, J. Aminoacyl tRNA synthetases as targets for new anti‐infectives. FASEB J., 1998, 12(15), 1599-1609.
[http://dx.doi.org/10.1096/fasebj.12.15.1599] [PMID: 9837850]
[119]
Qiu, X.; Janson, C.A.; Smith, W.W.; Green, S.M.; McDevitt, P.; Johanson, K.; Carter, P.; Hibbs, M.; Lewis, C.; Chalker, A.; Fosberry, A.; Lalonde, J.; Berge, J.; Brown, P.; Houge-Frydrych, C.S.V.; Jarvest, R.L. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci., 2001, 10(10), 2008-2016.
[http://dx.doi.org/10.1110/ps.18001] [PMID: 11567092]
[120]
Berge, J.M.; Broom, N.J.P.; Houge-Frydrych, C.S.; Jarvest, R.L.; Mensah, L.; McNair, D.J.; O’Hanlon, P.J.; Pope, A.J.; Rittenhouse, S. Synthesis and activity of analogues of SB-219383: Novel potent inhibitors of bacterial tyrosyl tRNA synthetase. J. Antibiot. (Tokyo), 2000, 53(11), 1282-1292.
[http://dx.doi.org/10.7164/antibiotics.53.1282] [PMID: 11213289]
[121]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152.
[http://dx.doi.org/10.1002/jcc.20634] [PMID: 17274016]
[122]
Meunier, B.; de Visser, S.P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem. Rev., 2004, 104(9), 3947-3980.
[http://dx.doi.org/10.1021/cr020443g] [PMID: 15352783]
[123]
Louet, M.; Labbé, C.M.; Fagnen, C.; Aono, C.M.; Homem-de-Mello, P.; Villoutreix, B.O.; Miteva, M.A. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS One, 2018, 13(5), e0197249.
[http://dx.doi.org/10.1371/journal.pone.0197249] [PMID: 29746595]
[124]
Cho, Y.A.; Choi, J.S.; Burm, J.P. Effects of the antioxidant baicalein on the pharmacokinetics of nimodipine in rats: a possible role of P-glycoprotein and CYP3A4 inhibition by baicalein. Pharmacol. Rep., 2011, 63(4), 1066-1073.
[http://dx.doi.org/10.1016/S1734-1140(11)70624-7] [PMID: 22001996]
[125]
Olivo, M.; Bhuvaneswari, R.; Lucky, S.S.; Dendukuri, N.; Soo-Ping Thong, P. Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals (Basel), 2010, 3(5), 1507-1529.
[http://dx.doi.org/10.3390/ph3051507] [PMID: 27713315]
[126]
D’Eliseo, D.; Velotti, F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J. Clin. Med., 2016, 5(2), 15.
[http://dx.doi.org/10.3390/jcm5020015] [PMID: 26821053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy